Citation:
Zhuo Wang, Xue Bai, Kexin Zhang, Hongzhi Wang, Jiabao Dong, Yuan Gao, Bin Zhao. MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除[J]. Acta Physico-Chimica Sinica,
;2025, 41(3): 240500.
doi:
10.3866/PKU.WHXB202405002
-
电极材料在电容去离子技术中起到决定性作用,影响着盐离子的去除和电荷储存能力。本文通过碳化MOF-5和三聚氰胺的混合物,成功制备了氮掺杂的分级多孔碳,其中三聚氰胺起着氮源和造孔剂的双重作用。通过优化碳化温度,得到的MOF-5衍生纳米多孔碳(NPC-800),其不但保持着MOF-5原始的立方体形貌、还具有大的比表面积、高氮含量和良好的润湿性。NPC-800电极在0.2 A·g-1电流密度下具有91.8 mAh·g-1的高比容量。在5 A·g-1的电流密度下循环50000次,容量保持率为100%,展现出超长的循环稳定性。在500 mg·L-1的NaCl溶液,施加恒压1.2 V,NPC-800电极具有高的脱盐容量24.17 mg·g-1,快的脱盐速度2.8 mg·g-1·min-1和较稳定的再生循环能力。因此,以金属有机框架为模板合成氮掺杂的碳材料,能够有效增强钠离子的电化学储存和去除能力,有望成为电容去离子电极材料的最佳选择。
-
-
-
[1]
(1) Eliasson, J. Nature 2015, 517, 6. doi:10.1038/517006a
-
[2]
(2) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi:10.1038/nature06599
-
[3]
(3) Rahman, M. F.; Mukherji, A.; Johannessen, Å.; Srivastava, S.; Verhagen, J.; Ovink, H.; Ligtvoet, W.; Olet, E. Nature 2023, 615, 582. doi:10.1038/d41586-023-00793-9
-
[4]
(4) Al-Obaidi, M.; Filippini, G.; Manenti, F.; Mujtaba, I. M. Desalination 2019, 456, 136. doi:10.1016/j.desal.2019.01.019
-
[5]
(5) Tayefeh, M. J. Energy Storage 2022, 52, 105025. doi:10.1016/j.est.2022.105025
-
[6]
(6) Hamed, O. A.; Al-Sofi, M. A.; Imam, M.; Mustafa, G. M.; Mardouf, K. B.; Al-Washmi, H. Desalination 2000, 128, 281. doi:10.1016/s0011-9164(00)00043-6
-
[7]
(7) Jalili, Z.; Krakhella, K. W.; Einarsrud, K. E.; Burheim, O. S. J. Energy Storage 2019, 24, 100755. doi:10.1016/j.est.2019.04.029
-
[8]
(8) Liu, H.; Wu, B.; Maleki, A. J. Energy Storage 2022, 54, 104862. doi:10.1016/j.est.2022.104862
-
[9]
(9) Ma, J.; Zhai, C.; Yu, F. Desalination 2023, 564, 116701. doi:10.1016/j.desal.2023.116701
-
[10]
-
[11]
(11) Zhang, B.; Yi, Q.; Qu, W.; Zhang, K.; Lu, Q.; Yan, T.; Zhang, D. Adv. Funct. Mater. 2024, 34, 2401332. doi:10.1002/adfm.202401332
-
[12]
(12) Lei, J.; Zhang, X.; Wang, J.; Yu, F.; Liang, M.; Wang, X.; Bi, Z.; Shang, G.; Xie, H.; Ma, J. Angew. Chem. Int. Ed. 2024, 136, e202401972. doi:10.1002/anie.202401972
-
[13]
(13) Arnold, S.; Wang, L.; Presser, V. Small 2022, 18, 2107913. doi:10.1002/smll.202107913
-
[14]
(14) Zhao, X.; Wei, H.; Zhao, H.; Wang, Y.; Tang, N. J. Electroanal. Chem. 2020, 873, 114416. doi:10.1016/j.jelechem.2020.114416
-
[15]
(15) Kumar, S.; Aldaqqa, N. M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62, e202302180. doi:10.1002/anie.202302180
-
[16]
(16) Murphy, G.; Caudle, D. Electrochim. Acta 1967, 12, 1655. doi:10.1016/0013-4686(67)80079-3
-
[17]
(17) Ren, Y.; Yu, F.; Li, X.-G.; Ma, J. Mater. Today Chem. 2021, 22, 100603. doi:10.1016/j.mtchem.2021.100603
-
[18]
(18) Choi, J.-H. Sep. Purif. Technol. 2010, 70, 362. doi:10.1016/j.seppur.2009.10.023
-
[19]
(19) Xu, X.; Liu, Y.; Wang, M.; Yang, X.; Zhu, C.; Lu, T.; Zhao, R.; Pan, L. Electrochim. Acta 2016, 188, 406. doi:10.1016/j.electacta.2015.12.028
-
[20]
(20) Duan, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Chem. Commun. 2017, 53, 7465. doi:10.1039/c7cc03424e
-
[21]
-
[22]
(22) Wang, H.; Xu, X.; Gao, X.; Li, Y.; Lu, T.; Pan, L. Coord. Chem. Rev. 2024, 510, 215835. doi:10.1016/j.ccr.2024.215835
-
[23]
(23) Chen, Z.; Xu, X.; Wang, K.; Jiang, D.; Meng, F.; Lu, T.; Yamauchi, Y.; Pan, L. Sep. Purif. Technol. 2023, 315, 123628. doi:10.1016/j.seppur.2023.123628
-
[24]
(24) Liu, N.; Yu, L.; Liu, B.; Yu, F.; Li, L.; Xiao, Y.; Yang, J.; Ma, J. Adv. Sci. 2023, 10, 2204041. doi:10.1002/advs.202204041
-
[25]
(25) Zhou, Z.; Yu, F.; Ma, J. Environ. Chem. Lett. 2022, 20, 563. doi:10.1007/s10311-021-01355-z
-
[26]
-
[27]
-
[28]
-
[29]
(29) Yu, F.; Bai, X.; Liang, M.; Ma, J. Chem. Eng. J. 2021, 405, 126960. doi:10.1016/j.cej.2020.126960
-
[30]
(30) Li, X.-G.; Chen, J.; Wang, X.; Rao, L.; Zhou, R.; Yu, F.; Ma, J. Adv. Colloid Interface Sci. 2024, 234, 103092. doi:10.1016/j.cis.2024.103092
-
[31]
(31) Wu, Y.-F.; Kuo, T.-R.; Lin, L.-Y.; Kubendhiran, S.; Lai, K.-C.; Chen, T.-Y.; Yougbaré, S. J. Energy Storage 2022, 55, 105420. doi:10.1016/j.est.2022.105420
-
[32]
(32) Jiang, G.; Osman, S.; Senthil, R. A.; Sun, Y.; Tan, X.; Pan, J. J. Energy Storage 2022, 49, 104071. doi:10.1016/j.est.2022.104071
-
[33]
(33) Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Energy Environ. Sci. 2023, 16, 1815. doi:10.1039/d2ee03530h
-
[34]
(34) Wang, Z.; Yan, T.; Shi, L.; Zhang, D. ACS Appl. Mater. Interfaces 2017, 9, 15068. doi:10.1021/acsami.7b02712
-
[35]
(35) Wang, Z.; Yan, T.; Fang, J.; Shi, L.; Zhang, D. J. Mater. Chem. A 2016, 4, 10858. doi:10.1039/c6ta02420c
-
[36]
(36) Zhang, L.; Wang, R.; Chai, W.; Ma, M.; Li, L. ACS Appl. Mater. Interfaces 2023, 15, 48800. doi:10.1021/acsami.3c10043
-
[37]
(37) Wang, M.; Xu, X.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Carbon 2016, 108, 433. doi:10.1016/j.carbon.2016.07.047
-
[38]
(38) Zhang, J.; Yan, T.; Fang, J.; Shen, J.; Shi, L.; Zhang, D. Environ. Sci.: Nano 2020, 7, 926. doi:10.1039/c9en01216h
-
[39]
(39) Duan, X.; Liu, W.; Chang, L. J. Taiwan Inst. Chem. Eng. 2016, 62, 132. doi:10.1016/j.jtice.2016.01.022
-
[40]
(40) Chang, L.; Li, J.; Duan, X.; Liu, W. Electrochim. Acta 2015, 176, 956. doi:10.1016/j.electacta.2015.07.130
-
[41]
(41) Shi, M.; Hong, X.; Liu, C.; Qiang, H.; Wang, F.; Xia, M. Chem. Eng. J. 2023, 453, 139764. doi:10.1016/j.cej.2022.139764
-
[42]
(42) Cho, S.-H.; Park, J.; Jung, S.; Tsang, Y. F.; Lee, D.; Kwon, E. E. ACS Sustain. Chem. Eng. 2024, 12, 2476. doi:10.1021/acssuschemeng.3c08359
-
[43]
(43) Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. J. Mater. Chem. 2010, 20, 3758. doi:10.1039/b922528e
-
[44]
(44) Xu, X.; Li, J.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. ChemElectroChem 2016, 3, 993. doi:10.1002/celc.201600051
-
[45]
(45) Wang, H.; Yan, T.; Shen, J.; Zhang, J.; Shi, L.; Zhang, D. Environ. Sci.: Nano 2020, 7, 317. doi:10.1039/c9en01233h
-
[46]
(46) Zhang, S.; Wang, Y.; Zhang, L.; Fang, R.; Li, J. J. Environ. Chem. Eng. 2023, 11, 109684. doi:10.1016/j.jece.2023.109684
-
[47]
(47) Liang, M.; Bai, X.; Yu, F.; Ma, J. Nano Res. 2021, 14, 684. doi:10.1007/s12274-020-3097-x
-
[48]
(48) Liu, S.; Zhou, J.; Song, H. Small 2018, 14, 1703548. doi:10.1002/smll.201703548
-
[49]
(49) Guo, W.; Li, H.; Ren, Z.; Li, H.; Wang, N.; Du, Y.; Xu, Q. Mater. Lett. 2023, 344, 134434. doi:10.1016/j.matlet.2023.134434
-
[50]
(50) Liu, S.; Zhou, J.; Song, H. Adv. Energy Mater. 2018, 8, 1800569. doi:10.1002/aenm.201800569
-
[51]
(51) Zhao, L.; Li, Y.; Yu, M.; Peng, Y.; Ran, F. Adv. Sci. 2023, 10, 2300283. doi:10.1002/advs.202300283
-
[52]
(52) Li, H.; Du, T.; Wang, Q.; Guo, J.; Zhang, S.; Lu, Y. J. Energy Storage 2023, 66, 107397. doi:10.1016/j.est.2023.107397
-
[53]
(53) Wang, H.; Edaño, L.; Valentino, L.; Lin, Y. J.; Palakkal, V. M.; Hu, D.-L.; Chen, B.-H.; Liu, D.-J. Nano Energy 2020, 77, 105304. doi:10.1016/j.nanoen.2020.105304
-
[54]
(54) Wu, S.; Yan, X.; Sun, X.; Tian, S.; Wang, J.; Liu, C.; Sun, S.; Wu, L.; Zhao, X.; Yang, Q. J. Energy Storage 2023, 71, 108152. doi:10.1016/j.est.2023.108152
-
[55]
(55) Chao, Y.; Chen, S.; Xiao, Y.; Hu, X.; Lu, Y.; Chen, H.; Xin, S.; Bai, Y. J. Energy Storage 2021, 35, 102331. doi:10.1016/j.est.2021.102331
-
[56]
(56) Feng, B.; Khan, Z. U.; Khan, W. U. Environ. Sci.: Nano 2023, 10, 1163. doi:10.1039/d2en01103d
-
[57]
(57) Qiang, H.; Shi, M.; Wang, F.; Xia, M. Sep. Purif. Technol. 2023, 308, 122918. doi:10.1016/j.seppur.2022.122918
-
[58]
(58) Li, Y.; Li, H.; Zhou, T.; Lai, Q.; Egabaierdi, G.; Chen, S.; Song, H.; Zhang, S.; Shi, C.; Yang, S. J. Environ. Chem. Eng. 2023, 11, 109914. doi:10.1016/j.jece.2023.109914
-
[59]
(59) Huang, J.; Hao, F.; Zhang, X.; Chen, J. J. Electroanal. Chem. 2018, 810, 86. doi:10.1016/j.jelechem.2017.12.078
-
[60]
(60) Gong, X.; Feng, S.; Wang, L.; Jia, D.; Guo, N.; Xu, M.; Ai, L.; Ma, Q.; Zhang, Q.; Wang, Z. Desalination 2023, 564, 116766. doi:10.1016/j.desal.2023.116766
-
[1]
-
-
-
[1]
Guoze Yan , Bin Zuo , Shaoqing Liu , Tao Wang , Ruoyu Wang , Jinyang Bao , Zhongzhou Zhao , Feifei Chu , Zhengtong Li , Yusuke Yamauchi , Saad Melhi , Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006
-
[2]
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032
-
[3]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[4]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[5]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[6]
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
-
[7]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[8]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[9]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[10]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[11]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[12]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[13]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[14]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[15]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
-
[16]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[19]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[20]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(58)
- HTML views(0)