Citation: Zhuo Wang, Xue Bai, Kexin Zhang, Hongzhi Wang, Jiabao Dong, Yuan Gao, Bin Zhao. MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240500. doi: 10.3866/PKU.WHXB202405002 shu

MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal

  • Corresponding author: Bin Zhao, zhaobin@usst.edu.cn
  • Received Date: 1 May 2024
    Revised Date: 24 May 2024
    Accepted Date: 31 May 2024

    Fund Project: the National Natural Science Foundation of China 22209114the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education 21CGA56the Natural Science Foundation of Shanghai 21ZR1445700the Shanghai Sailing Program 21YF1430800

  • Water scarcity has become a prominent global challenge in the twenty-first century, prompting the rapid advancement of desalination technology. Capacitive deionization (CDI) stands out as a cost-effective solution for sustainable water purification. The electrode material plays a pivotal role in capacitive deionization, impacting the salt ion removal and charge storage capacity. Carbon-based materials, characterized by high surface area and electrical conductivity, are ideal materials for capacitive deionization. However, their effectiveness in salt ion removal is hindered by unclear pore structures and poor wettability, limiting salt ion transport and storage. In this study, nitrogen-doped hierarchical porous carbon is successfully synthesized through the carbonization of MOF-5 and melamine mixtures, wherein melamine serves as both a nitrogen source and porogenic agent. Through optimization of carbonization temperature, the resulting MOF-5-derived nanoporous carbon (referred to as NPC-800) retains the cubic morphology of MOF-5, possesses a large surface area (754.34 m2∙g-1), high nitrogen content (10.13%), and favorable wettability. Electrochemical analysis reveals that the NPC-800 electrode demonstrates specific capacities of 91.8, 76.1, 66.3, 51.0, 28.0, and 15.2 mAh∙g-1 at current densities of 0.2, 0.5, 1.0, 2.0, 4.0, and 6.0 A∙g-1, respectively, outperforming NPC-700 (26.3, 19.7, 13.1, 6.90, 2.30, and 1.30 mAh∙g-1) and NPC-900 (46.0, 37.8, 30.4, 21.3, 11.7, and 7.50 mAh∙g-1). The superior electrochemical performance of NPC-800 can be attributed to its maximal specific surface area, abundant pore structure, and optimal wettability, facilitating increased active sites for salt ion adsorption and diffusion. Moreover, NPC-800 exhibits low intrinsic resistance, rapid ion transfer kinetics, and exceptional cycling stability (50000 cycles) with 100% capacity retention at 5 A∙g-1. Further investigation into the CDI performance of NPC electrodes under different applied voltages (0.8, 1.0, and 1.2 V) and initial NaCl solution concentrations (100, 300, and 500 mg∙L-1) demonstrates the superior adsorption capacity of the NPC-800 electrode compared to the other two electrodes. Specifically, at 1.2 V in a 500 mg∙L-1 salt solution, NPC-800 exhibits a faster salt adsorption rate (2.8 mg∙g-1∙min-1) and higher salt adsorption capacity (24.17 mg∙g-1) compared to NPC-700 and NPC-900. Consequently, the melamine-assisted synthesis of N-doped porous carbon material holds promise as an optimal choice for capacitive deionization.
  • 加载中
    1. [1]

      Eliasson, J. Nature 2015, 517, 6. doi: 10.1038/517006a  doi: 10.1038/517006a

    2. [2]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    3. [3]

      Rahman, M. F.; Mukherji, A.; Johannessen, Å.; Srivastava, S.; Verhagen, J.; Ovink, H.; Ligtvoet, W.; Olet, E. Nature 2023, 615, 582. doi: 10.1038/d41586-023-00793-9  doi: 10.1038/d41586-023-00793-9

    4. [4]

      Al-Obaidi, M.; Filippini, G.; Manenti, F.; Mujtaba, I. M. Desalination 2019, 456, 136. doi: 10.1016/j.desal.2019.01.019  doi: 10.1016/j.desal.2019.01.019

    5. [5]

      Tayefeh, M. J. Energy Storage 2022, 52, 105025. doi: 10.1016/j.est.2022.105025  doi: 10.1016/j.est.2022.105025

    6. [6]

      Hamed, O. A.; Al-Sofi, M. A.; Imam, M.; Mustafa, G. M.; Mardouf, K. B.; Al-Washmi, H. Desalination 2000, 128, 281. doi: 10.1016/s0011-9164(00)00043-6  doi: 10.1016/s0011-9164(00)00043-6

    7. [7]

      Jalili, Z.; Krakhella, K. W.; Einarsrud, K. E.; Burheim, O. S. J. Energy Storage 2019, 24, 100755. doi: 10.1016/j.est.2019.04.029  doi: 10.1016/j.est.2019.04.029

    8. [8]

      Liu, H.; Wu, B.; Maleki, A. J. Energy Storage 2022, 54, 104862. doi: 10.1016/j.est.2022.104862  doi: 10.1016/j.est.2022.104862

    9. [9]

      Ma, J.; Zhai, C.; Yu, F. Desalination 2023, 564, 116701. doi: 10.1016/j.desal.2023.116701  doi: 10.1016/j.desal.2023.116701

    10. [10]

      Xiong, Y.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2022, 38, 2006037.  doi: 10.3866/PKU.WHXB202006037

    11. [11]

      Zhang, B.; Yi, Q.; Qu, W.; Zhang, K.; Lu, Q.; Yan, T.; Zhang, D. Adv. Funct. Mater. 2024, 34, 2401332. doi: 10.1002/adfm.202401332  doi: 10.1002/adfm.202401332

    12. [12]

      Lei, J.; Zhang, X.; Wang, J.; Yu, F.; Liang, M.; Wang, X.; Bi, Z.; Shang, G.; Xie, H.; Ma, J. Angew. Chem. Int. Ed. 2024, 136, e202401972. doi: 10.1002/anie.202401972  doi: 10.1002/anie.202401972

    13. [13]

      Arnold, S.; Wang, L.; Presser, V. Small 2022, 18, 2107913. doi: 10.1002/smll.202107913  doi: 10.1002/smll.202107913

    14. [14]

      Zhao, X.; Wei, H.; Zhao, H.; Wang, Y.; Tang, N. J. Electroanal. Chem. 2020, 873, 114416. doi: 10.1016/j.jelechem.2020.114416  doi: 10.1016/j.jelechem.2020.114416

    15. [15]

      Kumar, S.; Aldaqqa, N. M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62, e202302180. doi: 10.1002/anie.202302180  doi: 10.1002/anie.202302180

    16. [16]

      Murphy, G.; Caudle, D. Electrochim. Acta 1967, 12, 1655. doi: 10.1016/0013-4686(67)80079-3  doi: 10.1016/0013-4686(67)80079-3

    17. [17]

      Ren, Y.; Yu, F.; Li, X. -G.; Ma, J. Mater. Today Chem. 2021, 22, 100603. doi: 10.1016/j.mtchem.2021.100603  doi: 10.1016/j.mtchem.2021.100603

    18. [18]

      Choi, J. -H. Sep. Purif. Technol. 2010, 70, 362. doi: 10.1016/j.seppur.2009.10.023  doi: 10.1016/j.seppur.2009.10.023

    19. [19]

      Xu, X.; Liu, Y.; Wang, M.; Yang, X.; Zhu, C.; Lu, T.; Zhao, R.; Pan, L. Electrochim. Acta 2016, 188, 406. doi: 10.1016/j.electacta.2015.12.028  doi: 10.1016/j.electacta.2015.12.028

    20. [20]

      Duan, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Chem. Commun. 2017, 53, 7465. doi: 10.1039/c7cc03424e  doi: 10.1039/c7cc03424e

    21. [21]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33, 1338.  doi: 10.3866/PKU.WHXB201704113

    22. [22]

      Wang, H.; Xu, X.; Gao, X.; Li, Y.; Lu, T.; Pan, L. Coord. Chem. Rev. 2024, 510, 215835. doi: 10.1016/j.ccr.2024.215835  doi: 10.1016/j.ccr.2024.215835

    23. [23]

      Chen, Z.; Xu, X.; Wang, K.; Jiang, D.; Meng, F.; Lu, T.; Yamauchi, Y.; Pan, L. Sep. Purif. Technol. 2023, 315, 123628. doi: 10.1016/j.seppur.2023.123628  doi: 10.1016/j.seppur.2023.123628

    24. [24]

      Liu, N.; Yu, L.; Liu, B.; Yu, F.; Li, L.; Xiao, Y.; Yang, J.; Ma, J. Adv. Sci. 2023, 10, 2204041. doi: 10.1002/advs.202204041  doi: 10.1002/advs.202204041

    25. [25]

      Zhou, Z.; Yu, F.; Ma, J. Environ. Chem. Lett. 2022, 20, 563. doi: 10.1007/s10311-021-01355-z  doi: 10.1007/s10311-021-01355-z

    26. [26]

      Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys. -Chim. Sin. 2022, 38, 2101020.  doi: 10.3866/PKU.WHXB202101020

    27. [27]

      Zhang, Z. H.; Wang, Z.; Li, H. B. Acta Phys. -Chim. Sin. 2024, 40, 2308020.  doi: 10.3866/PKU.WHXB202308020

    28. [28]

      Sun, Y.; Gao, M.; Li, H.; Xu, L.; Xue, Q.; Wang, X.; Bai, Y.; Wu, C. Acta Phys. -Chim. Sin. 2021, 37, 2007048.  doi: 10.3866/PKU.WHXB202007048

    29. [29]

      Yu, F.; Bai, X.; Liang, M.; Ma, J. Chem. Eng. J. 2021, 405, 126960. doi: 10.1016/j.cej.2020.126960  doi: 10.1016/j.cej.2020.126960

    30. [30]

      Li, X. -G.; Chen, J.; Wang, X.; Rao, L.; Zhou, R.; Yu, F.; Ma, J. Adv. Colloid Interface Sci. 2024, 234, 103092. doi: 10.1016/j.cis.2024.103092  doi: 10.1016/j.cis.2024.103092

    31. [31]

      Wu, Y. -F.; Kuo, T. -R.; Lin, L. -Y.; Kubendhiran, S.; Lai, K. -C.; Chen, T. -Y.; Yougbaré, S. J. Energy Storage 2022, 55, 105420. doi: 10.1016/j.est.2022.105420  doi: 10.1016/j.est.2022.105420

    32. [32]

      Jiang, G.; Osman, S.; Senthil, R. A.; Sun, Y.; Tan, X.; Pan, J. J. Energy Storage 2022, 49, 104071. doi: 10.1016/j.est.2022.104071  doi: 10.1016/j.est.2022.104071

    33. [33]

      Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Energy Environ. Sci. 2023, 16, 1815. doi: 10.1039/d2ee03530h  doi: 10.1039/d2ee03530h

    34. [34]

      Wang, Z.; Yan, T.; Shi, L.; Zhang, D. ACS Appl. Mater. Interfaces 2017, 9, 15068. doi: 10.1021/acsami.7b02712  doi: 10.1021/acsami.7b02712

    35. [35]

      Wang, Z.; Yan, T.; Fang, J.; Shi, L.; Zhang, D. J. Mater. Chem. A 2016, 4, 10858. doi: 10.1039/c6ta02420c  doi: 10.1039/c6ta02420c

    36. [36]

      Zhang, L.; Wang, R.; Chai, W.; Ma, M.; Li, L. ACS Appl. Mater. Interfaces 2023, 15, 48800. doi: 10.1021/acsami.3c10043  doi: 10.1021/acsami.3c10043

    37. [37]

      Wang, M.; Xu, X.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Carbon 2016, 108, 433. doi: 10.1016/j.carbon.2016.07.047  doi: 10.1016/j.carbon.2016.07.047

    38. [38]

      Zhang, J.; Yan, T.; Fang, J.; Shen, J.; Shi, L.; Zhang, D. Environ. Sci. : Nano 2020, 7, 926. doi: 10.1039/c9en01216h  doi: 10.1039/c9en01216h

    39. [39]

      Duan, X.; Liu, W.; Chang, L. J. Taiwan Inst. Chem. Eng. 2016, 62, 132. doi: 10.1016/j.jtice.2016.01.022  doi: 10.1016/j.jtice.2016.01.022

    40. [40]

      Chang, L.; Li, J.; Duan, X.; Liu, W. Electrochim. Acta 2015, 176, 956. doi: 10.1016/j.electacta.2015.07.130  doi: 10.1016/j.electacta.2015.07.130

    41. [41]

      Shi, M.; Hong, X.; Liu, C.; Qiang, H.; Wang, F.; Xia, M. Chem. Eng. J. 2023, 453, 139764. doi: 10.1016/j.cej.2022.139764  doi: 10.1016/j.cej.2022.139764

    42. [42]

      Cho, S. -H.; Park, J.; Jung, S.; Tsang, Y. F.; Lee, D.; Kwon, E. E. ACS Sustain. Chem. Eng. 2024, 12, 2476. doi: 10.1021/acssuschemeng.3c08359  doi: 10.1021/acssuschemeng.3c08359

    43. [43]

      Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. J. Mater. Chem. 2010, 20, 3758. doi: 10.1039/b922528e  doi: 10.1039/b922528e

    44. [44]

      Xu, X.; Li, J.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. ChemElectroChem 2016, 3, 993. doi: 10.1002/celc.201600051  doi: 10.1002/celc.201600051

    45. [45]

      Wang, H.; Yan, T.; Shen, J.; Zhang, J.; Shi, L.; Zhang, D. Environ. Sci. : Nano 2020, 7, 317. doi: 10.1039/c9en01233h  doi: 10.1039/c9en01233h

    46. [46]

      Zhang, S.; Wang, Y.; Zhang, L.; Fang, R.; Li, J. J. Environ. Chem. Eng. 2023, 11, 109684. doi: 10.1016/j.jece.2023.109684  doi: 10.1016/j.jece.2023.109684

    47. [47]

      Liang, M.; Bai, X.; Yu, F.; Ma, J. Nano Res. 2021, 14, 684. doi: 10.1007/s12274-020-3097-x  doi: 10.1007/s12274-020-3097-x

    48. [48]

      Liu, S.; Zhou, J.; Song, H. Small 2018, 14, 1703548. doi: 10.1002/smll.201703548  doi: 10.1002/smll.201703548

    49. [49]

      Guo, W.; Li, H.; Ren, Z.; Li, H.; Wang, N.; Du, Y.; Xu, Q. Mater. Lett. 2023, 344, 134434. doi: 10.1016/j.matlet.2023.134434  doi: 10.1016/j.matlet.2023.134434

    50. [50]

      Liu, S.; Zhou, J.; Song, H. Adv. Energy Mater. 2018, 8, 1800569. doi: 10.1002/aenm.201800569  doi: 10.1002/aenm.201800569

    51. [51]

      Zhao, L.; Li, Y.; Yu, M.; Peng, Y.; Ran, F. Adv. Sci. 2023, 10, 2300283. doi: 10.1002/advs.202300283  doi: 10.1002/advs.202300283

    52. [52]

      Li, H.; Du, T.; Wang, Q.; Guo, J.; Zhang, S.; Lu, Y. J. Energy Storage 2023, 66, 107397. doi: 10.1016/j.est.2023.107397  doi: 10.1016/j.est.2023.107397

    53. [53]

      Wang, H.; Edaño, L.; Valentino, L.; Lin, Y. J.; Palakkal, V. M.; Hu, D. -L.; Chen, B. -H.; Liu, D. -J. Nano Energy 2020, 77, 105304. doi: 10.1016/j.nanoen.2020.105304  doi: 10.1016/j.nanoen.2020.105304

    54. [54]

      Wu, S.; Yan, X.; Sun, X.; Tian, S.; Wang, J.; Liu, C.; Sun, S.; Wu, L.; Zhao, X.; Yang, Q. J. Energy Storage 2023, 71, 108152. doi: 10.1016/j.est.2023.108152  doi: 10.1016/j.est.2023.108152

    55. [55]

      Chao, Y.; Chen, S.; Xiao, Y.; Hu, X.; Lu, Y.; Chen, H.; Xin, S.; Bai, Y. J. Energy Storage 2021, 35, 102331. doi: 10.1016/j.est.2021.102331  doi: 10.1016/j.est.2021.102331

    56. [56]

      Feng, B.; Khan, Z. U.; Khan, W. U. Environ. Sci. : Nano 2023, 10, 1163. doi: 10.1039/d2en01103d  doi: 10.1039/d2en01103d

    57. [57]

      Qiang, H.; Shi, M.; Wang, F.; Xia, M. Sep. Purif. Technol. 2023, 308, 122918. doi: 10.1016/j.seppur.2022.122918  doi: 10.1016/j.seppur.2022.122918

    58. [58]

      Li, Y.; Li, H.; Zhou, T.; Lai, Q.; Egabaierdi, G.; Chen, S.; Song, H.; Zhang, S.; Shi, C.; Yang, S. J. Environ. Chem. Eng. 2023, 11, 109914. doi: 10.1016/j.jece.2023.109914  doi: 10.1016/j.jece.2023.109914

    59. [59]

      Huang, J.; Hao, F.; Zhang, X.; Chen, J. J. Electroanal. Chem. 2018, 810, 86. doi: 10.1016/j.jelechem.2017.12.078  doi: 10.1016/j.jelechem.2017.12.078

    60. [60]

      Gong, X.; Feng, S.; Wang, L.; Jia, D.; Guo, N.; Xu, M.; Ai, L.; Ma, Q.; Zhang, Q.; Wang, Z. Desalination 2023, 564, 116766. doi:10.1016/j.desal.2023.116766  doi: 10.1016/j.desal.2023.116766

  • 加载中
    1. [1]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(89)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return