Citation: Zhuo Wang,  Xue Bai,  Kexin Zhang,  Hongzhi Wang,  Jiabao Dong,  Yuan Gao,  Bin Zhao. MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240500. doi: 10.3866/PKU.WHXB202405002 shu

MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除

  • Received Date: 1 May 2024
    Revised Date: 24 May 2024
    Accepted Date: 31 May 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (22209114), the Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21CGA56), the Natural Science Foundation of Shanghai (21ZR1445700), the Shanghai Sailing Program (21YF1430800).

  • 电极材料在电容去离子技术中起到决定性作用,影响着盐离子的去除和电荷储存能力。本文通过碳化MOF-5和三聚氰胺的混合物,成功制备了氮掺杂的分级多孔碳,其中三聚氰胺起着氮源和造孔剂的双重作用。通过优化碳化温度,得到的MOF-5衍生纳米多孔碳(NPC-800),其不但保持着MOF-5原始的立方体形貌、还具有大的比表面积、高氮含量和良好的润湿性。NPC-800电极在0.2 A·g-1电流密度下具有91.8 mAh·g-1的高比容量。在5 A·g-1的电流密度下循环50000次,容量保持率为100%,展现出超长的循环稳定性。在500 mg·L-1的NaCl溶液,施加恒压1.2 V,NPC-800电极具有高的脱盐容量24.17 mg·g-1,快的脱盐速度2.8 mg·g-1·min-1和较稳定的再生循环能力。因此,以金属有机框架为模板合成氮掺杂的碳材料,能够有效增强钠离子的电化学储存和去除能力,有望成为电容去离子电极材料的最佳选择。
  • 加载中
    1. [1]

      (1) Eliasson, J. Nature 2015, 517, 6. doi:10.1038/517006a

    2. [2]

      (2) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi:10.1038/nature06599

    3. [3]

      (3) Rahman, M. F.; Mukherji, A.; Johannessen, Å.; Srivastava, S.; Verhagen, J.; Ovink, H.; Ligtvoet, W.; Olet, E. Nature 2023, 615, 582. doi:10.1038/d41586-023-00793-9

    4. [4]

      (4) Al-Obaidi, M.; Filippini, G.; Manenti, F.; Mujtaba, I. M. Desalination 2019, 456, 136. doi:10.1016/j.desal.2019.01.019

    5. [5]

      (5) Tayefeh, M. J. Energy Storage 2022, 52, 105025. doi:10.1016/j.est.2022.105025

    6. [6]

      (6) Hamed, O. A.; Al-Sofi, M. A.; Imam, M.; Mustafa, G. M.; Mardouf, K. B.; Al-Washmi, H. Desalination 2000, 128, 281. doi:10.1016/s0011-9164(00)00043-6

    7. [7]

      (7) Jalili, Z.; Krakhella, K. W.; Einarsrud, K. E.; Burheim, O. S. J. Energy Storage 2019, 24, 100755. doi:10.1016/j.est.2019.04.029

    8. [8]

      (8) Liu, H.; Wu, B.; Maleki, A. J. Energy Storage 2022, 54, 104862. doi:10.1016/j.est.2022.104862

    9. [9]

      (9) Ma, J.; Zhai, C.; Yu, F. Desalination 2023, 564, 116701. doi:10.1016/j.desal.2023.116701

    10. [10]

    11. [11]

      (11) Zhang, B.; Yi, Q.; Qu, W.; Zhang, K.; Lu, Q.; Yan, T.; Zhang, D. Adv. Funct. Mater. 2024, 34, 2401332. doi:10.1002/adfm.202401332

    12. [12]

      (12) Lei, J.; Zhang, X.; Wang, J.; Yu, F.; Liang, M.; Wang, X.; Bi, Z.; Shang, G.; Xie, H.; Ma, J. Angew. Chem. Int. Ed. 2024, 136, e202401972. doi:10.1002/anie.202401972

    13. [13]

      (13) Arnold, S.; Wang, L.; Presser, V. Small 2022, 18, 2107913. doi:10.1002/smll.202107913

    14. [14]

      (14) Zhao, X.; Wei, H.; Zhao, H.; Wang, Y.; Tang, N. J. Electroanal. Chem. 2020, 873, 114416. doi:10.1016/j.jelechem.2020.114416

    15. [15]

      (15) Kumar, S.; Aldaqqa, N. M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62, e202302180. doi:10.1002/anie.202302180

    16. [16]

      (16) Murphy, G.; Caudle, D. Electrochim. Acta 1967, 12, 1655. doi:10.1016/0013-4686(67)80079-3

    17. [17]

      (17) Ren, Y.; Yu, F.; Li, X.-G.; Ma, J. Mater. Today Chem. 2021, 22, 100603. doi:10.1016/j.mtchem.2021.100603

    18. [18]

      (18) Choi, J.-H. Sep. Purif. Technol. 2010, 70, 362. doi:10.1016/j.seppur.2009.10.023

    19. [19]

      (19) Xu, X.; Liu, Y.; Wang, M.; Yang, X.; Zhu, C.; Lu, T.; Zhao, R.; Pan, L. Electrochim. Acta 2016, 188, 406. doi:10.1016/j.electacta.2015.12.028

    20. [20]

      (20) Duan, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Chem. Commun. 2017, 53, 7465. doi:10.1039/c7cc03424e

    21. [21]

    22. [22]

      (22) Wang, H.; Xu, X.; Gao, X.; Li, Y.; Lu, T.; Pan, L. Coord. Chem. Rev. 2024, 510, 215835. doi:10.1016/j.ccr.2024.215835

    23. [23]

      (23) Chen, Z.; Xu, X.; Wang, K.; Jiang, D.; Meng, F.; Lu, T.; Yamauchi, Y.; Pan, L. Sep. Purif. Technol. 2023, 315, 123628. doi:10.1016/j.seppur.2023.123628

    24. [24]

      (24) Liu, N.; Yu, L.; Liu, B.; Yu, F.; Li, L.; Xiao, Y.; Yang, J.; Ma, J. Adv. Sci. 2023, 10, 2204041. doi:10.1002/advs.202204041

    25. [25]

      (25) Zhou, Z.; Yu, F.; Ma, J. Environ. Chem. Lett. 2022, 20, 563. doi:10.1007/s10311-021-01355-z

    26. [26]

    27. [27]

    28. [28]

    29. [29]

      (29) Yu, F.; Bai, X.; Liang, M.; Ma, J. Chem. Eng. J. 2021, 405, 126960. doi:10.1016/j.cej.2020.126960

    30. [30]

      (30) Li, X.-G.; Chen, J.; Wang, X.; Rao, L.; Zhou, R.; Yu, F.; Ma, J. Adv. Colloid Interface Sci. 2024, 234, 103092. doi:10.1016/j.cis.2024.103092

    31. [31]

      (31) Wu, Y.-F.; Kuo, T.-R.; Lin, L.-Y.; Kubendhiran, S.; Lai, K.-C.; Chen, T.-Y.; Yougbaré, S. J. Energy Storage 2022, 55, 105420. doi:10.1016/j.est.2022.105420

    32. [32]

      (32) Jiang, G.; Osman, S.; Senthil, R. A.; Sun, Y.; Tan, X.; Pan, J. J. Energy Storage 2022, 49, 104071. doi:10.1016/j.est.2022.104071

    33. [33]

      (33) Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Energy Environ. Sci. 2023, 16, 1815. doi:10.1039/d2ee03530h

    34. [34]

      (34) Wang, Z.; Yan, T.; Shi, L.; Zhang, D. ACS Appl. Mater. Interfaces 2017, 9, 15068. doi:10.1021/acsami.7b02712

    35. [35]

      (35) Wang, Z.; Yan, T.; Fang, J.; Shi, L.; Zhang, D. J. Mater. Chem. A 2016, 4, 10858. doi:10.1039/c6ta02420c

    36. [36]

      (36) Zhang, L.; Wang, R.; Chai, W.; Ma, M.; Li, L. ACS Appl. Mater. Interfaces 2023, 15, 48800. doi:10.1021/acsami.3c10043

    37. [37]

      (37) Wang, M.; Xu, X.; Liu, Y.; Li, Y.; Lu, T.; Pan, L. Carbon 2016, 108, 433. doi:10.1016/j.carbon.2016.07.047

    38. [38]

      (38) Zhang, J.; Yan, T.; Fang, J.; Shen, J.; Shi, L.; Zhang, D. Environ. Sci.: Nano 2020, 7, 926. doi:10.1039/c9en01216h

    39. [39]

      (39) Duan, X.; Liu, W.; Chang, L. J. Taiwan Inst. Chem. Eng. 2016, 62, 132. doi:10.1016/j.jtice.2016.01.022

    40. [40]

      (40) Chang, L.; Li, J.; Duan, X.; Liu, W. Electrochim. Acta 2015, 176, 956. doi:10.1016/j.electacta.2015.07.130

    41. [41]

      (41) Shi, M.; Hong, X.; Liu, C.; Qiang, H.; Wang, F.; Xia, M. Chem. Eng. J. 2023, 453, 139764. doi:10.1016/j.cej.2022.139764

    42. [42]

      (42) Cho, S.-H.; Park, J.; Jung, S.; Tsang, Y. F.; Lee, D.; Kwon, E. E. ACS Sustain. Chem. Eng. 2024, 12, 2476. doi:10.1021/acssuschemeng.3c08359

    43. [43]

      (43) Chen, B.; Wang, X.; Zhang, Q.; Xi, X.; Cai, J.; Qi, H.; Shi, S.; Wang, J.; Yuan, D.; Fang, M. J. Mater. Chem. 2010, 20, 3758. doi:10.1039/b922528e

    44. [44]

      (44) Xu, X.; Li, J.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. ChemElectroChem 2016, 3, 993. doi:10.1002/celc.201600051

    45. [45]

      (45) Wang, H.; Yan, T.; Shen, J.; Zhang, J.; Shi, L.; Zhang, D. Environ. Sci.: Nano 2020, 7, 317. doi:10.1039/c9en01233h

    46. [46]

      (46) Zhang, S.; Wang, Y.; Zhang, L.; Fang, R.; Li, J. J. Environ. Chem. Eng. 2023, 11, 109684. doi:10.1016/j.jece.2023.109684

    47. [47]

      (47) Liang, M.; Bai, X.; Yu, F.; Ma, J. Nano Res. 2021, 14, 684. doi:10.1007/s12274-020-3097-x

    48. [48]

      (48) Liu, S.; Zhou, J.; Song, H. Small 2018, 14, 1703548. doi:10.1002/smll.201703548

    49. [49]

      (49) Guo, W.; Li, H.; Ren, Z.; Li, H.; Wang, N.; Du, Y.; Xu, Q. Mater. Lett. 2023, 344, 134434. doi:10.1016/j.matlet.2023.134434

    50. [50]

      (50) Liu, S.; Zhou, J.; Song, H. Adv. Energy Mater. 2018, 8, 1800569. doi:10.1002/aenm.201800569

    51. [51]

      (51) Zhao, L.; Li, Y.; Yu, M.; Peng, Y.; Ran, F. Adv. Sci. 2023, 10, 2300283. doi:10.1002/advs.202300283

    52. [52]

      (52) Li, H.; Du, T.; Wang, Q.; Guo, J.; Zhang, S.; Lu, Y. J. Energy Storage 2023, 66, 107397. doi:10.1016/j.est.2023.107397

    53. [53]

      (53) Wang, H.; Edaño, L.; Valentino, L.; Lin, Y. J.; Palakkal, V. M.; Hu, D.-L.; Chen, B.-H.; Liu, D.-J. Nano Energy 2020, 77, 105304. doi:10.1016/j.nanoen.2020.105304

    54. [54]

      (54) Wu, S.; Yan, X.; Sun, X.; Tian, S.; Wang, J.; Liu, C.; Sun, S.; Wu, L.; Zhao, X.; Yang, Q. J. Energy Storage 2023, 71, 108152. doi:10.1016/j.est.2023.108152

    55. [55]

      (55) Chao, Y.; Chen, S.; Xiao, Y.; Hu, X.; Lu, Y.; Chen, H.; Xin, S.; Bai, Y. J. Energy Storage 2021, 35, 102331. doi:10.1016/j.est.2021.102331

    56. [56]

      (56) Feng, B.; Khan, Z. U.; Khan, W. U. Environ. Sci.: Nano 2023, 10, 1163. doi:10.1039/d2en01103d

    57. [57]

      (57) Qiang, H.; Shi, M.; Wang, F.; Xia, M. Sep. Purif. Technol. 2023, 308, 122918. doi:10.1016/j.seppur.2022.122918

    58. [58]

      (58) Li, Y.; Li, H.; Zhou, T.; Lai, Q.; Egabaierdi, G.; Chen, S.; Song, H.; Zhang, S.; Shi, C.; Yang, S. J. Environ. Chem. Eng. 2023, 11, 109914. doi:10.1016/j.jece.2023.109914

    59. [59]

      (59) Huang, J.; Hao, F.; Zhang, X.; Chen, J. J. Electroanal. Chem. 2018, 810, 86. doi:10.1016/j.jelechem.2017.12.078

    60. [60]

      (60) Gong, X.; Feng, S.; Wang, L.; Jia, D.; Guo, N.; Xu, M.; Ai, L.; Ma, Q.; Zhang, Q.; Wang, Z. Desalination 2023, 564, 116766. doi:10.1016/j.desal.2023.116766

  • 加载中
    1. [1]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    3. [3]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

Metrics
  • PDF Downloads(0)
  • Abstract views(58)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return