Citation: Jiaxuan Zuo, Kun Zhang, Jing Wang, Xifei Li. Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100009. doi: 10.3866/PKU.WHXB202404042 shu

Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries

  • Corresponding author: Xifei Li, xfli@xaut.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 29 April 2024
    Revised Date: 11 June 2024
    Accepted Date: 13 June 2024

    Fund Project: the Key Research and Development Program of Shaanxi 2024GH-ZDXM-02Foshan Science and Technology Innovation Team Project 1920001004098

  • Nickel cobalt manganese-based cathode materials (NCMs) have emerged as key representatives in lithium-ion power batteries due to their high energy and power densities. The layered crystal structure of NCMs undergoes topological transformation from hydroxide precursor materials crystals. Therefore, the electrochemical performance of NCMs is directly influenced by factors such as particle size distribution, sphericity, and morphology of primary and secondary particles of precursor materials. The co-precipitation method is widely employed in laboratory and industry to produce batch precursor materials with uniform composition, adjustable structure, and high tap density. However, the co-precipitation process involves numerous adjustable parameters, and there exist significant variations in the growth parameters of precursors with different compositions and even different particle sizes within the same composition, resulting in poor characteristics such as bad sphericity, poor crystallinity, and low tap density. Addressing the need for controlled co-precipitation of nickel cobalt manganese-based precursors, this review began with an exposition on the basic theory of co-precipitation, elaborating on the principle of regulating precipitation rate and uniformity of Ni-Co-Mn elements through complexation. The heterogeneous nucleation (growth), homogeneous nucleation (independent nucleation), and the coexistence of two nucleation modes induced by different supersaturation of precipitates were explained according to different nucleation dominant modes. The growth theory of hexagonal nanosheet and rod-shaped primary particles was introduced from the perspective of preferential growth, while analyzing the growth pattern of secondary particle aggregates in terms of minimizing surface energy and following dissolving-recrystallization. From the viewpoint of practical production and application, this study comprehensively investigated adjustable parameters of the co-precipitation reaction process, including pH value, total ammonia concentration, solid content, reaction time, reaction temperature, base solution volume, stirring rate, tank reactor structure, aging time, reaction atmosphere, and drying atmosphere. The impact of varying each parameter from low to high on the nucleation of the co-precipitation reaction process and the physicochemical properties of precursors was extensively discussed. This systematic review contributes to a deeper understanding of the precursor nucleation process, facilitating the further development of relevant theories towards the advancement of products such as lithium-rich manganese-based precursors, single crystal precursors, and radially arranged texture precursors.
  • 加载中
    1. [1]

      Choi, J. U.; Voronina, N.; Sun, Y. K.; Myung, S. T. Adv. Energy Mater. 2020, 10, 2002027. doi: 10.1002/aenm.202002027  doi: 10.1002/aenm.202002027

    2. [2]

      Li, W.; Erickson, E. M.; Manthiram, A. Nat. Energy 2020, 5, 26. doi: 10.1038/s41560-019-0513-0  doi: 10.1038/s41560-019-0513-0

    3. [3]

      Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Acta Phys. -Chim. Sin. 2021, 37, 2011007.  doi: 10.3866/PKU.WHXB202011007

    4. [4]

      Lee, W.; Lee, D.; Kim, Y.; Choi, W.; Yoon, W. S. J. Mater. Chem. A 2020, 8, 10206. doi: 10.1039/d0ta01083a  doi: 10.1039/d0ta01083a

    5. [5]

      Yoon, C. S.; Kim, U. H.; Park, G. T.; Kim, S. J.; Kim, K. H.; Kim, J.; Sun, Y. K. ACS Energy Lett. 2018, 3, 1634. doi: 10.1021/acsenergylett.8b00805  doi: 10.1021/acsenergylett.8b00805

    6. [6]

      Zhou, J. H.; Zhou, X.; Yu, W. H.; Shang, Z.; Xu, S. M. Electrochem. Energy Rev. 2024, 7, 13. doi: 10.1007/s41918-023-00206-5  doi: 10.1007/s41918-023-00206-5

    7. [7]

      Li, M.; Lu, J. Science 2020, 367, 979. doi: 10.1126/science.aba9168  doi: 10.1126/science.aba9168

    8. [8]

      Kim, Y. J.; Park, H. J; Shin, K. H.; Henkelman, G.; Warner, J. H.; Manthiram, A. Adv. Energy Mater. 2021, 11, 2101112. doi: 10.1002/aenm.202101112  doi: 10.1002/aenm.202101112

    9. [9]

      Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Energy Environ. Sci. 2008, 1, 621. doi: 10.1039/b811802g  doi: 10.1039/b811802g

    10. [10]

      Shen, J. X.; Zhang, B.; Hao, C. W.; Li, X.; Xiao, Z. M.; He, X. Y.; Ou, X. Green Energy Environ. 2022, 9, 1045. doi: 10.1016/j.gee.2022.11.006  doi: 10.1016/j.gee.2022.11.006

    11. [11]

      Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. Electrochem. Energy Rev. 2022, 5, 1. doi: 10.1007/s41918-022-00155-5  doi: 10.1007/s41918-022-00155-5

    12. [12]

      Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Chem. Mater. 2018, 30, 1155. doi: 10.1021/acs.chemmater.7b05269  doi: 10.1021/acs.chemmater.7b05269

    13. [13]

      Shi, T. F.; Liu, F.; Liu, W. H.; Wang, H.; Han, K.; Yang, C.; Wu, J. S.; Meng, J. S.; Niu, C. J.; Han, C. H.; et al. Nano Energy 2024, 123, 109410. doi: 10.1016/j.nanoen.2024.109410  doi: 10.1016/j.nanoen.2024.109410

    14. [14]

      Wang, Y. Y.; Liang, Z.; Liu, Z. C.; Liu, S.; Ban, C.; Li, G. R.; Gao, X. P. Adv. Funct. Mater. 2023, 33, 2308152. doi: 10.1002/adfm.202308152  doi: 10.1002/adfm.202308152

    15. [15]

      Wu, F.; Li, Q.; Chen, L.; Wang, Z. R.; Chen, G.; Bao, L. Y.; Lu, Y.; Chen, S.; Su, Y. F. Acta Phys. -Chim. Sin. 2022, 38, 2007017.  doi: 10.3866/PKU.WHXB202007017

    16. [16]

      Lin, T. E.; Seaby, T.; Hu, Y. X.; Ding, S. S.; Liu, Y.; Luo, B.; Wang, L. Z. Electrochem. Energy Rev. 2022, 5, 27. doi: 10.1007/s41918-022-00172-4  doi: 10.1007/s41918-022-00172-4

    17. [17]

      Du, B. D.; Mo, Y.; Jin, H. F.; Li, X. R.; Qu, Y. Y.; Li, D.; Cao, B. K.; Jia, X. B.; Lu, Y.; Chen, Y. ACS Appl. Energy Mater. 2020, 3, 6657. doi: 10.1021/acsaem.0c00803  doi: 10.1021/acsaem.0c00803

    18. [18]

      Li, H.; Wang, L.; Song, Y. Z.; Zhang, Z. G.; Du, A. M.; Tang, Y. P.; Wang, J. L.; He, X. M. Adv. Mater. 2024, 36, 2312292. doi: 10.1002/adma.202312292  doi: 10.1002/adma.202312292

    19. [19]

      Shen, Y. B.; Wu, Y. Q.; Xue, H. J.; Wang, S. H.; Yin, D. M.; Wang, L. M.; Cheng, Y. ACS Appl. Mater. Interfaces 2021, 13, 717. doi: 10.1021/acsami.0c19493  doi: 10.1021/acsami.0c19493

    20. [20]

      Noh, M. J.; Cho, J. P. J. Electrochem. Soc. 2012, 160, A105. doi: 10.1149/2.004302jes  doi: 10.1149/2.004302jes

    21. [21]

      Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. J. Power Sources 2013, 233, 121. doi: 10.1016/j.jpowsour.2013.01.063  doi: 10.1016/j.jpowsour.2013.01.063

    22. [22]

      Zhang, S. C.; Qiu, X. P.; He, Z. Q.; Weng, D. S.; Zhu, W. T. J. Power Sources 2006, 153, 350. doi: 10.1016/j.jpowsour.2005.05.021  doi: 10.1016/j.jpowsour.2005.05.021

    23. [23]

      Song, S. H.; Kim, H. S.; Kim, K. S.; Hong, S.; Jeon, H.; Lim, J.; Jung, Y. H.; Ahn, H.; Jang, J. D.; Kim, M. H.; et al. Adv. Funct. Mater. 2024, 34, 2306654. doi: 10.1002/adfm.202306654  doi: 10.1002/adfm.202306654

    24. [24]

      Zhou, P. F.; Meng, H. J.; Zhang, Z.; Chen, C. C.; Lu, Y. Y.; Cao, J.; Cheng, F. Y.; Chen, J. J. Mater. Chem. A 2017, 5, 2724. doi: 10.1039/C6TA09921A  doi: 10.1039/C6TA09921A

    25. [25]

      Qian, G. N.; Zhang, Y. T.; Li, L. S.; Zhang, R. X.; Xu, J. M.; Cheng, Z. J.; Xie, S. J.; Wang, H.; Rao, Q. L.; He, Y. S.; et al. Energy Storage Mater. 2020, 27, 140. doi: 10.1016/j.ensm.2020.01.027  doi: 10.1016/j.ensm.2020.01.027

    26. [26]

      Xu, Z. L.; Xiao, L. L.; Wang, F.; Wu, K. C.; Zhao, L. T.; Li, M. R.; Zhang, H. L.; Wu, Q. G.; Wang, J. B. J. Power Sources 2014, 248, 180. doi: 10.1016/j.jpowsour.2013.09.064  doi: 10.1016/j.jpowsour.2013.09.064

    27. [27]

      Berk, R. B.; Beierling, T.; Metzger, L.; Gasteiger, H. A. J. Electrochem. Soc. 2023, 170, 110513. doi: 10.1149/1945-7111/ad050b  doi: 10.1149/1945-7111/ad050b

    28. [28]

      Jiang, Y. P.; Liu, Z. H.; Zhang, Y. Z.; Hu, H. L.; Teng, X. G.; Wang, D. L.; Gao, P.; Zhu, Y. M. Electrochim. Acta 2019, 309, 74. doi: 10.1016/j.electacta.2019.04.058  doi: 10.1016/j.electacta.2019.04.058

    29. [29]

      Huang, B.; Cheng, L.; Li, X. Z.; Zhao, Z. W.; Yang, J. W.; Li, Y. W.; Pang, Y. Y.; Cao, G. Z. Small 2022, 18, 2107697. doi: 10.1002/smll.202107697  doi: 10.1002/smll.202107697

    30. [30]

      Zhang, P. W.; Yokoyama, T.; Itabashi, O.; Wakui, Y.; Suzuki, T. M.; Inoue, K. J. Power Sources 1999, 77, 116. doi: 10.1016/S0378-7753(98)00182-7  doi: 10.1016/S0378-7753(98)00182-7

    31. [31]

      Qiu, L.; Zhang, M. K.; Ming, Y.; Song, Y.; Xu, C. L.; Wu, Z. G.; Xu, Q.; Chen, T. R.; Wang, G. K.; Liu, Y. X.; et al. Chem. Eng. Sci. 2021, 233, 116337. doi: 10.1016/j.ces.2020.116337  doi: 10.1016/j.ces.2020.116337

    32. [32]

      Entwistle, T.; Sanchez-Perez, E.; Murray, G. J.; Anthonisamy, N.; Cussen, S. A. Energy Rep. 2022, 8, 67. doi: 10.1016/j.egyr.2022.06.110  doi: 10.1016/j.egyr.2022.06.110

    33. [33]

      Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Electrochim. Acta 2004, 50, 939. doi: 10.1016/j.electacta.2004.07.038  doi: 10.1016/j.electacta.2004.07.038

    34. [34]

      Hu, G. X.; Cai, X.; Rong, Y. H. Fundamentals of Materials Science, 3rd ed.; Shanghai Jiao Tong University Press: Shanghai, China, 2016; pp. 230–236.

    35. [35]

      Zuo, J. X.; Wang, J.; Duan, R. X.; Bai, Y. K.; Xu, K. H.; Zhang, K.; Wang, J.; Zhang, K. L.; Yang, Z. G.; Yang, Z. H.; et al. Nano Energy 2024, 121, 109214. doi: 10.1016/j.nanoen.2023.109214  doi: 10.1016/j.nanoen.2023.109214

    36. [36]

      Lamer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. doi: 10.1021/ja01167a001  doi: 10.1021/ja01167a001

    37. [37]

      Ulrich, J.; Strege, C. J. Cryst. Growth 2002, 237–239, 2130. doi: 10.1016/S0022-0248(01)02284-9  doi: 10.1016/S0022-0248(01)02284-9

    38. [38]

      Kim, H.; Kim, Y. Ceram. Int. 2020, 46, 19476. doi: 10.1016/j.ceramint.2020.04.297  doi: 10.1016/j.ceramint.2020.04.297

    39. [39]

      Hua, W. B.; Liu, W. Y.; Chen, M. Z.; Indris, S.; Zheng, Z.; Guo, X. D.; Bruns, M.; Wu, T. H.; Chen, Y. X.; Zhong, B. H.; et al. Electrochim. Acta 2017, 232, 123. doi: 10.1016/j.electacta.2017.02.105  doi: 10.1016/j.electacta.2017.02.105

    40. [40]

      Yang, Y.; Xu, S. M.; Xie, M.; He, Y. H.; Huang, G. Y.; Yang, Y. C. J. Alloys Compd. 2015, 619, 846. doi: 10.1016/j.jallcom.2014.08.152  doi: 10.1016/j.jallcom.2014.08.152

    41. [41]

      Tang, Y. F.; Liu, Y. Y.; Yu, S. X.; Mu, S. C.; Xiao, S. H.; Zhao, Y. F.; Gao, F. M. J. Power Sources 2014, 256, 160. doi: 10.1016/j.jpowsour.2014.01.064  doi: 10.1016/j.jpowsour.2014.01.064

    42. [42]

      Jiang, Y. P. Synthesis and Structure Optimization of LiNi0.8Co0.1Mn0.1O2 Nickel Rich Cathode Materials. M. S. Dissertation, Harbin Institute of Technology, Harbin, 2018.

    43. [43]

      Andrew, V. B.; Dahn, J. R. Chem. Mater. 2009, 21, 1500. doi: 10.1021/cm803144d  doi: 10.1021/cm803144d

    44. [44]

      Barai, P.; Feng, Z. G.; Kondo, H.; Srinivasan, V. J. Phys. Chem. B 2019, 123, 3291. doi: 10.1021/acs.jpcb.8b12004  doi: 10.1021/acs.jpcb.8b12004

    45. [45]

      Wang, X.; Ren, L.; Wang, S.; Zhang, Y. H.; Zuo, M. H.; Zhang, J.; Lv, G. P.; Xiang, W. Acta Mater. Compositae Sin. 2022, 39, 1995.  doi: 10.13801/j.cnki.fhclxb.20210922.001

    46. [46]

      Zhu, B. Y.; Xu, Z. Y.; Ning, Y. D.; Wei, G. Y.; Qu, J. K. Solid State Sci. 2023, 142, 107224. doi: 10.1016/j.solidstatesciences.2023.107224  doi: 10.1016/j.solidstatesciences.2023.107224

    47. [47]

      Xiang, W.; Liu, W. Y.; Zhang, J.; Wang, S.; Zhang, T. T.; Yin, K.; Peng, X.; Jiang, Y. C.; Liu, K. H.; Guo, X. D. J. Alloys Compd. 2019, 775, 72. doi: 10.1016/j.jallcom.2018.10.057  doi: 10.1016/j.jallcom.2018.10.057

    48. [48]

      Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Adv. Energy Mater. 2019, 9, 1803963. doi: 10.1002/aenm.201803963  doi: 10.1002/aenm.201803963

    49. [49]

      Chen, L.; Yan, X. F.; Li, D. C.; Yang, M. P.; Xia, X. Met. Funct. Mater. 2020, 27, 18.  doi: 10.13228/j.boyuan.issn1005-8192.202000006

    50. [50]

      Jia, X. B. Synthesis and Modification of LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium Battery. M. S. Dissertation, Hainan University, Hainan, 2018.

    51. [51]

      Yan, C. Q. Study of Tap Density and Primary Particle of Ni-rich Ternary Material in Lithium Ion Battery. M. S. Dissertation, Harbin Institute of Technology, Harbin, 2015.

    52. [52]

      Xu, S. Study of Synthesis Amplification and Modification for Ni-rich Ternary Material in Lithium Ion Battery. M. S. Dissertation, Harbin Institute of Technology, Harbin, 2017.

    53. [53]

      Liang, L. W.; Du, K.; Peng, Z. D.; Cao, Y. B.; Duan, J. G.; Jiang, J. B.; Hu, G. R. Electrochim. Acta 2014, 130, 82. doi: 10.1016/j.electacta.2014.02.100  doi: 10.1016/j.electacta.2014.02.100

    54. [54]

      Martín, M.; Montes, F. J.; Galán, M. A. Chem. Eng. Sci. 2008, 63, 3223. doi: 10.1016/j.ces.2008.03.035  doi: 10.1016/j.ces.2008.03.035

    55. [55]

      Wang, W. D.; Qiu, W. H.; Ding, Q. Q. Nickel Cobalt Manganese Based Cathode Materials for Li-ion Batteries Technology Production and Application, 1st ed.; Chemical Industry Press: Beijing, China, 2015; pp. 231–232.

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    18. [18]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

Metrics
  • PDF Downloads(0)
  • Abstract views(441)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return