Citation: Jiaxuan Zuo,  Kun Zhang,  Jing Wang,  Xifei Li. 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 240404. doi: 10.3866/PKU.WHXB202404042 shu

锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制

  • Corresponding author: Xifei Li, xfli@xaut.edu.cn
  • Received Date: 29 April 2024
    Revised Date: 11 June 2024
    Accepted Date: 13 June 2024

    Fund Project: The project was supported by the Key Research and Development Program of Shaanxi (2024GH-ZDXM-02), Foshan Science and Technology Innovation Team Project (1920001004098) and University-level Principle Investigator (PI) team of Qinghai Minzu University.

  • 三元正极材料具有较高的放电比容量、倍率性能和工作电压,成为锂离子电池正极材料代表之一。三元正极材料由前驱体经过嵌锂烧结拓扑转变而来,因此,前驱体材料直接决定了三元正极材料的电池性能。针对前驱体可控均匀沉淀需求和对共沉淀过程参数变化极度敏感特性,本综述首先阐述络合调控实现Ni、Co、Mn元素均匀共沉淀,及沉淀物过饱和度诱导溶液体系不同形核状态基本原理,其次从晶面择优生长结合溶解-再结晶模型讨论了前驱体一次颗粒和二次颗粒生长模式,最后从实际生产角度,基本涵盖共沉淀过程所有可调参数,并深入讨论了各种参数由低到高变化对共沉淀反应形核及前驱体材料理化性能的影响。本综述阐释的相关理论及规律可进一步延伸至富锂锰基前驱体、单晶用前驱体以及径向排列织构前驱体等高端产品研发。
  • 加载中
    1. [1]

      (1) Choi, J. U.; Voronina, N.; Sun, Y. K.; Myung, S. T. Adv. Energy Mater. 2020, 10, 2002027. doi: 10.1002/aenm.202002027

    2. [2]

      (2) Li, W.; Erickson, E. M.; Manthiram, A. Nat. Energy 2020, 5, 26. doi: 10.1038/s41560-019-0513-0

    3. [3]

    4. [4]

      (4) Lee, W.; Lee, D.; Kim, Y.; Choi, W.; Yoon, W. S. J. Mater. Chem. A 2020, 8, 10206. doi: 10.1039/d0ta01083a

    5. [5]

      (5) Yoon, C. S.; Kim, U. H.; Park, G. T.; Kim, S. J.; Kim, K. H.; Kim, J.; Sun, Y. K. ACS Energy Lett. 2018, 3, 1634. doi: 10.1021/acsenergylett.8b00805

    6. [6]

      (6) Zhou, J. H.; Zhou, X.; Yu, W. H.; Shang, Z.; Xu, S. M. Electrochem. Energy Rev. 2024, 7, 13. doi: 10.1007/s41918-023-00206-5

    7. [7]

      (7) Li, M.; Lu, J. Science 2020, 367, 979. doi: 10.1126/science.aba9168

    8. [8]

      (8) Kim, Y. J.; Park, H. J; Shin, K. H.; Henkelman, G.; Warner, J. H.; Manthiram, A. Adv. Energy Mater. 2021, 11, 2101112. doi: 10.1002/aenm.202101112

    9. [9]

      (9) Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Energy Environ. Sci. 2008, 1, 621. doi: 10.1039/b811802g

    10. [10]

      (10) Shen, J. X.; Zhang, B.; Hao, C. W.; Li, X.; Xiao, Z. M.; He, X. Y.; Ou, X. Green Energy Environ. 2022, 9, 1045. doi: 10.1016/j.gee.2022.11.006

    11. [11]

      (11) Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. Electrochem. Energy Rev. 2022, 5, 1. doi: 10.1007/s41918-022-00155-5

    12. [12]

      (12) Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Chem. Mater. 2018, 30, 1155. doi: 10.1021/acs.chemmater.7b05269

    13. [13]

      (13) Shi, T. F.; Liu, F.; Liu, W. H.; Wang, H.; Han, K.; Yang, C.; Wu, J. S.; Meng, J. S.; Niu, C. J.; Han, C. H.; et al. Nano Energy 2024, 123, 109410. doi: 10.1016/j.nanoen.2024.109410

    14. [14]

      (14) Wang, Y. Y.; Liang, Z.; Liu, Z. C.; Liu, S.; Ban, C.; Li, G. R.; Gao, X. P. Adv. Funct. Mater. 2023, 33, 2308152. doi: 10.1002/adfm.202308152

    15. [15]

    16. [16]

      (16) Lin, T. E.; Seaby, T.; Hu, Y. X.; Ding, S. S.; Liu, Y.; Luo, B.; Wang, L. Z. Electrochem. Energy Rev. 2022, 5, 27. doi: 10.1007/s41918-022-00172-4

    17. [17]

      (17) Du, B. D.; Mo, Y.; Jin, H. F.; Li, X. R.; Qu, Y. Y.; Li, D.; Cao, B. K.; Jia, X. B.; Lu, Y.; Chen, Y. ACS Appl. Energy Mater. 2020, 3, 6657. doi: 10.1021/acsaem.0c00803

    18. [18]

      (18) Li, H.; Wang, L.; Song, Y. Z.; Zhang, Z. G.; Du, A. M.; Tang, Y. P.; Wang, J. L.; He, X. M. Adv. Mater. 2024, 36, 2312292. doi: 10.1002/adma.202312292

    19. [19]

      (19) Shen, Y. B.; Wu, Y. Q.; Xue, H. J.; Wang, S. H.; Yin, D. M.; Wang, L. M.; Cheng, Y. ACS Appl. Mater. Interfaces 2021, 13, 717. doi: 10.1021/acsami.0c19493

    20. [20]

      (20) Noh, M. J.; Cho, J. P. J. Electrochem. Soc. 2012, 160, A105. doi: 10.1149/2.004302jes

    21. [21]

      (21) Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. J. Power Sources 2013, 233, 121. doi: 10.1016/j.jpowsour.2013.01.063

    22. [22]

      (22) Zhang, S. C.; Qiu, X. P.; He, Z. Q.; Weng, D. S.; Zhu, W. T. J. Power Sources 2006, 153, 350. doi: 10.1016/j.jpowsour.2005.05.021

    23. [23]

      (23) Song, S. H.; Kim, H. S.; Kim, K. S.; Hong, S.; Jeon, H.; Lim, J.; Jung, Y. H.; Ahn, H.; Jang, J. D.; Kim, M. H.; et al. Adv. Funct. Mater. 2024, 34, 2306654. doi: 10.1002/adfm.202306654

    24. [24]

      (24) Zhou, P. F.; Meng, H. J.; Zhang, Z.; Chen, C. C.; Lu, Y. Y.; Cao, J.; Cheng, F. Y.; Chen, J. J. Mater. Chem. A 2017, 5, 2724. doi: 10.1039/C6TA09921A

    25. [25]

      (25) Qian, G. N.; Zhang, Y. T.; Li, L. S.; Zhang, R. X.; Xu, J. M.; Cheng, Z. J.; Xie, S. J.; Wang, H.; Rao, Q. L.; He, Y. S.; et al. Energy Storage Mater. 2020, 27, 140. doi: 10.1016/j.ensm.2020.01.027

    26. [26]

      (26) Xu, Z. L.; Xiao, L. L.; Wang, F.; Wu, K. C.; Zhao, L. T.; Li, M. R.; Zhang, H. L.; Wu, Q. G.; Wang, J. B. J. Power Sources 2014, 248, 180. doi: 10.1016/j.jpowsour.2013.09.064

    27. [27]

      (27) Berk, R. B.; Beierling, T.; Metzger, L.; Gasteiger, H. A. J. Electrochem. Soc. 2023, 170, 110513. doi: 10.1149/1945-7111/ad050b

    28. [28]

      (28) Jiang, Y. P.; Liu, Z. H.; Zhang, Y. Z.; Hu, H. L.; Teng, X. G.; Wang, D. L.; Gao, P.; Zhu, Y. M. Electrochim. Acta 2019, 309, 74. doi: 10.1016/j.electacta.2019.04.058

    29. [29]

      (29) Huang, B.; Cheng, L.; Li, X. Z.; Zhao, Z. W.; Yang, J. W.; Li, Y. W.; Pang, Y. Y.; Cao, G. Z. Small 2022, 18, 2107697. doi: 10.1002/smll.202107697

    30. [30]

      (30) Zhang, P. W.; Yokoyama, T.; Itabashi, O.; Wakui, Y.; Suzuki, T. M.; Inoue, K. J. Power Sources 1999, 77, 116. doi: 10.1016/S0378-7753(98)00182-7

    31. [31]

      (31) Qiu, L.; Zhang, M. K.; Ming, Y.; Song, Y.; Xu, C. L.; Wu, Z. G.; Xu, Q.; Chen, T. R.; Wang, G. K.; Liu, Y. X.; et al. Chem. Eng. Sci. 2021, 233, 116337. doi: 10.1016/j.ces.2020.116337

    32. [32]

      (32) Entwistle, T.; Sanchez-Perez, E.; Murray, G. J.; Anthonisamy, N.; Cussen, S. A. Energy Rep. 2022, 8, 67. doi: 10.1016/j.egyr.2022.06.110

    33. [33]

      (33) Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Electrochim. Acta 2004, 50, 939. doi: 10.1016/j.electacta.2004.07.038

    34. [34]

    35. [35]

      (35) Zuo, J. X.; Wang, J.; Duan, R. X.; Bai, Y. K.; Xu, K. H.; Zhang, K.; Wang, J.; Zhang, K. L.; Yang, Z. G.; Yang, Z. H.; et al. Nano Energy 2024, 121, 109214. doi: 10.1016/j.nanoen.2023.109214

    36. [36]

      (36) Lamer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. doi: 10.1021/ja01167a001

    37. [37]

      (37) Ulrich, J.; Strege, C. J. Cryst. Growth 2002, 237–239, 2130. doi: 10.1016/S0022-0248(01)02284-9

    38. [38]

      (38) Kim, H.; Kim, Y. Ceram. Int. 2020, 46, 19476. doi: 10.1016/j.ceramint.2020.04.297

    39. [39]

      (39) Hua, W. B.; Liu, W. Y.; Chen, M. Z.; Indris, S.; Zheng, Z.; Guo, X. D.; Bruns, M.; Wu, T. H.; Chen, Y. X.; Zhong, B. H.; et al. Electrochim. Acta 2017, 232, 123. doi: 10.1016/j.electacta.2017.02.105

    40. [40]

      (40) Yang, Y.; Xu, S. M.; Xie, M.; He, Y. H.; Huang, G. Y.; Yang, Y. C. J. Alloys Compd. 2015, 619, 846. doi: 10.1016/j.jallcom.2014.08.152

    41. [41]

      (41) Tang, Y. F.; Liu, Y. Y.; Yu, S. X.; Mu, S. C.; Xiao, S. H.; Zhao, Y. F.; Gao, F. M. J. Power Sources 2014, 256, 160. doi: 10.1016/j.jpowsour.2014.01.064

    42. [42]

    43. [43]

      (43) Andrew, V. B.; Dahn, J. R. Chem. Mater. 2009, 21, 1500. doi: 10.1021/cm803144d

    44. [44]

      (44) Barai, P.; Feng, Z. G.; Kondo, H.; Srinivasan, V. J. Phys. Chem. B 2019, 123, 3291. doi: 10.1021/acs.jpcb.8b12004

    45. [45]

    46. [46]

      (46) Zhu, B. Y.; Xu, Z. Y.; Ning, Y. D.; Wei, G. Y.; Qu, J. K. Solid State Sci. 2023, 142, 107224. doi: 10.1016/j.solidstatesciences.2023.107224

    47. [47]

      (47) Xiang, W.; Liu, W. Y.; Zhang, J.; Wang, S.; Zhang, T. T.; Yin, K.; Peng, X.; Jiang, Y. C.; Liu, K. H.; Guo, X. D. J. Alloys Compd. 2019, 775, 72. doi: 10.1016/j.jallcom.2018.10.057

    48. [48]

      (48) Xu, X.; Huo, H.; Jian, J. Y.; Wang, L. G.; Zhu, H.; Xu, S.; He, X. S.; Yin, G. P.; Du, C. Y.; Sun, X. L. Adv. Energy Mater. 2019, 9, 1803963. doi: 10.1002/aenm.201803963

    49. [49]

    50. [50]

    51. [51]

    52. [52]

    53. [53]

      (53) Liang, L. W.; Du, K.; Peng, Z. D.; Cao, Y. B.; Duan, J. G.; Jiang, J. B.; Hu, G. R. Electrochim. Acta 2014, 130, 82. doi: 10.1016/j.electacta.2014.02.100

    54. [54]

      (54) Martín, M.; Montes, F. J.; Galán, M. A. Chem. Eng. Sci. 2008, 63, 3223. doi: 10.1016/j.ces.2008.03.035

    55. [55]

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    12. [12]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(298)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return