Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution
- Corresponding author: Tongming Su, sutm@gxu.edu.cn
Citation:
Jianyin He, Liuyun Chen, Xinling Xie, Zuzeng Qin, Hongbing Ji, Tongming Su. Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica,
;2024, 40(11): 240403.
doi:
10.3866/PKU.WHXB202404030
Liao, M.; Wang, T.; Zuo, T.; Meng, L.; Yang, M.; Chen, Y. X.; Hu, T.; Xie, Y. Inorg. Chem. 2021, 60, 13136. doi: 10.1021/acs.inorgchem.1c01540
doi: 10.1021/acs.inorgchem.1c01540
Trang, T. N. Q.; Phan, T. B.; Nam, N. D.; Thu, V. T. H. ACS Appl. Mater. Interfaces 2020, 12, 12195. doi: 10.1021/acsami.9b15578
doi: 10.1021/acsami.9b15578
Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37, 2005027. doi: 10.3866/PKU.WHXB202005027
doi: 10.3866/PKU.WHXB202005027
Almazroai, L.; El-Mekawy, R. E.; Musa, R.; Ali, L. RSC Adv. 2022, 12, 15992. doi: 10.1039/d2ra00788f
doi: 10.1039/d2ra00788f
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98
doi: 10.1038/natrevmats.2016.98
Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Nano Lett. 2020, 20, 6263. doi: 10.1021/acs.nanolett.0c00983
doi: 10.1021/acs.nanolett.0c00983
Huang, K.; Li, C.; Li, H.; Ren, G.; Wang, L.; Wang, W.; Meng, X. ACS Appl. Nano Mater. 2020, 3, 9581. doi: 10.1021/acsanm.0c02481
doi: 10.1021/acsanm.0c02481
Yan, J.; Zhang, X.; Zheng, W.; Lee, L. Y. S. ACS Appl. Mater. Interfaces 2021, 13, 24723. doi: 10.1021/acsami.1c03240
doi: 10.1021/acsami.1c03240
Yan, B.; Li, J.; Lin, Z.; Du, C.; Yang, G. ACS Appl. Nano Mater. 2019, 2, 6783. doi: 10.1021/acsanm.9b01773
doi: 10.1021/acsanm.9b01773
Zhang, Q.; Zhang, J.; Wang, X.; Li, L.; Li, Y.-F.; Dai, W.-L. ACS Catal. 2021, 11, 6276. doi: 10.1021/acscatal.0c05520
doi: 10.1021/acscatal.0c05520
Fan, H.-T.; Wu, Z.; Liu, K.-C.; Liu, W.-S. Chem. Eng. J. 2022, 433, 134474. doi: 10.1016/j.cej.2021.134474
doi: 10.1016/j.cej.2021.134474
Sun, Y.; Li, Y.; He, J.; Chen, L.; Ji, H.; Qin, Z.; Su, T. Chin. J. Struct. Chem. 2023, 42, 100145. doi: 10.1016/j.cjsc.2023.100145
doi: 10.1016/j.cjsc.2023.100145
Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138. doi: 10.1039/c9nr00168a
doi: 10.1039/c9nr00168a
Du, S.; Chen, L.; Men, C.; Ji, H.; Su, T.; Qin, Z. J. Alloys Compd. 2023, 955, 170265. doi: 10.1016/j.jallcom.2023.170265
doi: 10.1016/j.jallcom.2023.170265
Kim, H.; Yoon, U. H.; Ryu, T. I.; Jeong, H. J.; il Kim, S.; Park, J.; Kye, Y. S.; Hwang, S.-R.; Kim, D.; Cho, Y.; et al. New J. Chem. 2022, 8653. doi: 10.1039/d2nj00850e
doi: 10.1039/d2nj00850e
Xiao, L.; Li, X.; Zhang, J.; He, Z. ACS Appl. Nano Mater. 2021, 4, 12779. doi: 10.1021/acsanm.1c03497
doi: 10.1021/acsanm.1c03497
Zhao, M.-Q.; Xie, X.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Adv. Mater. 2017, 29, 1702410. doi: 10.1002/adma.201702410
doi: 10.1002/adma.201702410
Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013
doi: 10.1016/j.chempr.2022.04.013
Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Liu, X.; Chen, X.; Wang, S.; Yan, L.; Yan, J.; Guo, H.; Yang, F.; Lin, J. Int. J. Hydrog. Energy 2022, 47, 2327. doi: 10.1016/j.ijhydene.2021.10.227
doi: 10.1016/j.ijhydene.2021.10.227
Zhang, S.; Zhang, Z.; Si, Y.; Li, B.; Deng, F.; Yang, L.; Liu, X.; Dai, W.; Luo, S. ACS Nano 2021, 15, 15238. doi: 10.1021/acsnano.1c05834
doi: 10.1021/acsnano.1c05834
Cao, A.; Zhang, L.; Wang, Y.; Zhao, H.; Deng, H.; Liu, X.; Lin, Z.; Su, X.; Yue, F. ACS Sustain. Chem. Eng. 2018, 7, 2492. doi: 10.1021/acssuschemeng.8b05396
doi: 10.1021/acssuschemeng.8b05396
Chen, Q.; Li, J.; Cheng, L.; Liu, H. Chem. Eng. J. 2020, 379, 122389. doi: 10.1016/j.cej.2019.122389
doi: 10.1016/j.cej.2019.122389
Zhao, J.; Liu, F.; Wang, W.; Wang, Y.; Wen, N.; Zhang, Z.; Dai, W.; Yuan, R.; Ding, Z.; Long, J. ACS Appl. Nano Mater. 2023, 6, 8927. doi: 10.1021/acsanm.3c01443
doi: 10.1021/acsanm.3c01443
Hou, J.; Yang, C.; Wang, Z.; Jiao, S.; Zhu, H. RSC Adv. 2012, 2, 10330. doi: 10.1039/c2ra21641h
doi: 10.1039/c2ra21641h
Reshak, A. H. Phys. Chem. Chem. Phys. 2018, 20, 8848. doi: 10.1039/c8cp00373d
doi: 10.1039/c8cp00373d
Guru, S.; Kumar, S.; Bellamkonda, S.; Gangavarapu, R. R. Int. J. Hydrog. Energy 2021, 46, 16414. doi: 10.1016/j.ijhydene.2020.08.102
doi: 10.1016/j.ijhydene.2020.08.102
Wang, C.; Zhang, W.; Fan, J.; Sun, W.; Liu, E. Ceram. Int. 2021, 47, 30194. doi: 10.1016/j.ceramint.2021.07.199
doi: 10.1016/j.ceramint.2021.07.199
He, Z.; Tang, Q.; Liu, X.; Yan, X.; Li, K.; Yue, D. Energy Fuels 2021, 35, 15005. doi: 10.1021/acs.energyfuels.1c01482
doi: 10.1021/acs.energyfuels.1c01482
Chu, J.; Sun, Y.; Han, X.; Zhang, B.; Du, Y.; Song, B.; Xu, P. ACS Appl. Mater. Interfaces 2019, 11, 18475. doi: 10.1021/acsami.9b04787
doi: 10.1021/acsami.9b04787
Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051
doi: 10.3866/PKU.WHXB202211051
He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, 202313172. doi: 10.1002/anie.202313172
doi: 10.1002/anie.202313172
Dai, M.; Yu, H.; Chen, W.; Qu, K.-A.; Zhai, D.; Liu, C.; Zhao, S.; Wang, S.; He, Z. Chem. Eng. J. 2023, 470, 144240. doi: 10.1016/j.cej.2023.144240
doi: 10.1016/j.cej.2023.144240
Liu, H.; Xu, Z.; Zhang, Z.; Ao, D. Appl. Catal. B-Environ. 2016, 192, 234. doi: 10.1016/j.apcatb.2016.03.074
doi: 10.1016/j.apcatb.2016.03.074
Fan, Y.; Yu, S.; Wang, Y.; Xie, Y.; Qiu, X. Sep. Purif. Technol. 2024, 335, 126243. doi: 10.1016/j.seppur.2023.126243
doi: 10.1016/j.seppur.2023.126243
Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001
doi: 10.1016/j.jmst.2022.11.001
Zeng, Q.; Zheng, L.; Wang, L.; Liu, Y.; Yu, Q.; Fujita, T.; Zeng, D. J. Alloy. Compd. 2023, 942, 169006. doi: 10.1016/j.jallcom.2023.169006
doi: 10.1016/j.jallcom.2023.169006
Xie, M.; Jia, K.; Lu, J.; Zhao, R. CrystEngComm 2020, 22, 546. doi: 10.1039/c9ce01575b
doi: 10.1039/c9ce01575b
Chu, W.; Hou, Y.; Liu, J.; Bai, X.; Gao, Y. f.; Cao, Z. Electrochim. Acta 2020, 364, 137063. doi: 10.1016/j.electacta.2020.137063
doi: 10.1016/j.electacta.2020.137063
Li, C.; Zhu, D.; Cheng, S.; Zuo, Y.; Wang, Y.; Ma, C.; Dong, H. Chin. Chem. Lett. 2022, 33, 1141. doi: 10.1016/j.cclet.2021.07.057
doi: 10.1016/j.cclet.2021.07.057
Xu, J.; Cao, S.; Zhong, M.; Ren, S.; Chen, X.; Li, W.; Wang, C.; Wang, Z.; Lu, X.; Lu, X. J. Colloid Interface Sci. 2024, 657, 83. doi: 10.1016/j.jcis.2023.11.141
doi: 10.1016/j.jcis.2023.11.141
Dai, M.; Zhao, D.; Liu, H.; Tong, Y.; Hu, P.; Wu, X. Mater. Today Energy 2020, 16, 100412. doi: 10.1016/j.mtener.2020.100412
doi: 10.1016/j.mtener.2020.100412
Huang, H.-b.; Luo, S.-h.; Liu, C.-l.; Yi, T.-f.; Zhai, Y.-c. ACS Appl. Mater. Interfaces 2018, 10, 21281. doi: 10.1021/acsami.8b03736
doi: 10.1021/acsami.8b03736
Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020, 267, 118379. doi: 10.1016/j.apcatb.2019.118379
doi: 10.1016/j.apcatb.2019.118379
Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715
doi: 10.1002/advs.202103715
Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Appl. Catal. B-Environ. 2020, 268, 118462. doi: 10.1016/j.apcatb.2019.118462
doi: 10.1016/j.apcatb.2019.118462
Zhang, H.; Sun, B.; Wang, J.; Zhu, Q.; Hou, D.; Li, C.; Qiao, X. Q.; Li, D. S. J. Colloid Interface Sci. 2023, 645, 429. doi: 10.1016/j.jcis.2023.04.146
doi: 10.1016/j.jcis.2023.04.146
Le, K. T. N.; Hoa, V. H.; Le, H. T.; Tran, D. T.; Kim, N. H.; Lee, J. H. Appl. Surf. Sci. 2022, 600, 154206. doi: 10.1016/j.apsusc.2022.154206
doi: 10.1016/j.apsusc.2022.154206
Li, Y.; Jin, Z.; Tsubaki, N. ACS Appl. Nano Mater. 2022, 5, 14677. doi: 10.1021/acsanm.2c03031
doi: 10.1021/acsanm.2c03031
Hsiang, H.-I.; Chiou, Y.-Y.; Chung, S.-H. J. Energy Storage 2022, 55, 105402. doi: 10.1016/j.est.2022.105402
doi: 10.1016/j.est.2022.105402
Jin, C.; Xu, C.; Chang, W.; Ma, X.; Hu, X.; Liu, E.; Fan, J. J. Alloy. Compd. 2019, 803, 205. doi: 10.1016/j.jallcom.2019.06.252
doi: 10.1016/j.jallcom.2019.06.252
Dai, Z.; Geng, H.; Wang, J.; Luo, Y.; Li, B.; Zong, Y.; Yang, J.; Guo, Y.; Zheng, Y.; Wang, X.; et al. ACS Nano 2017, 11, 11031. doi: 10.1021/acsnano.7b05050
doi: 10.1021/acsnano.7b05050
Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H.-C.; Tsai, M.-L.; He, J.-H.; Jin, S. Nat. Mater. 2015, 14, 1245. doi: 10.1038/nmat4410
doi: 10.1038/nmat4410
Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater. 2021, 4, 14342. doi: 10.1021/acsaem.1c03019
doi: 10.1021/acsaem.1c03019
Fajrina, N.; Tahir, M. Int. J. Hydrog. Energy 2019, 44, 540. doi: 10.1016/j.ijhydene.2018.10.200
doi: 10.1016/j.ijhydene.2018.10.200
Men, C.; Chen, L.; Ji, H.; Qin, Z.; Su, T. Chem. Eng. J. 2023, 473, 145173. doi: 10.1016/j.cej.2023.145173
doi: 10.1016/j.cej.2023.145173
Zhong, T.; Yu, Z.; Jiang, R.; Hou, Y.; Chen, H.; Ding, L.; Lian, C.; Zou, B. Sol. RRL 2021, 6, 2100863. doi: 10.1002/solr.202100863
doi: 10.1002/solr.202100863
Li, H.; Gong, H.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38, 2201037. doi: 10.3866/PKU.WHXB202201037
doi: 10.3866/PKU.WHXB202201037
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/c8cs00542g
doi: 10.1039/c8cs00542g
Ren, T.; Huang, H.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. J. Colloid Interface Sci. 2021, 598, 398. doi: 10.1016/j.jcis.2021.04.027
doi: 10.1016/j.jcis.2021.04.027
Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi: 10.3866/PKU.WHXB202302051
doi: 10.3866/PKU.WHXB202302051
Bi, L.; Gao, X.; Zhang, L.; Wang, D.; Zou, X.; Xie, T. ChemSusChem 2017, 11, 276. doi: 10.1002/cssc.201701574
doi: 10.1002/cssc.201701574
Yang, H.; Jin, Z.; Liu, D.; Fan, K.; Wang, G. J. Phys. Chem. C 2018, 122, 10430. doi: 10.1021/acs.jpcc.8b01666
doi: 10.1021/acs.jpcc.8b01666
Jin, Y.; Zhang, H.; Song, C.; Wang, L.; Lu, Q.; Gao, F. Sci. Rep. 2016, 6, 29997. doi: 10.1038/srep29997
doi: 10.1038/srep29997
Xiao, L.; Ren, W.; Shen, S.; Chen, M.; Liao, R.; Zhou, Y.; Li, X. Acta Phys. -Chim. Sin. 2024, 40, 2308036. doi: 10.3866/PKU.WHXB202308036
doi: 10.3866/PKU.WHXB202308036
Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P. K.; Ye, L. J. Mater. Chem. A 2019, 7, 9726. doi: 10.1039/C9TA01061K
doi: 10.1039/C9TA01061K
Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. Nano Energy 2018, 47, 463. doi: 10.1016/j.nanoen.2018.03.014
doi: 10.1016/j.nanoen.2018.03.014
Li, L.; Zhang, R.; Lin, Y.; Wang, D.; Xie, T. Chem. Eng. J. 2023, 453, 139970. doi: 10.1016/j.cej.2022.139970
doi: 10.1016/j.cej.2022.139970
Kong, X.; Lv, F.; Zhang, H.; Yu, F.; Wang, Y.; Yin, L.; Huang, J.; Feng, Q. J. Alloy. Compd. 2022, 903, 163864. doi: 10.1016/j.jallcom.2022.163864
doi: 10.1016/j.jallcom.2022.163864
Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447
doi: 10.1002/smll.202103447
Jin, Z.; Wang, X. Mater. Today Energy 2022, 30, 101164. doi: 10.1016/j.mtener.2022.101164
doi: 10.1016/j.mtener.2022.101164
Wang, Y.; Pan, Y.; Zhu, H.; Xiang, Y.; Han, R.; Huang, R.; Du, C.; Pan, C. Acta Phys. -Chim. Sin. 2024, 40, 2304050. doi: 10.3866/PKU.WHXB202304050
doi: 10.3866/PKU.WHXB202304050
Feng, F.; Hua, H.; Li, L.; Xu, R.; Tang, J.; Dong, D.; Zhang, J.; Li, X. a. ACS Appl. Energy Mater. 2021, 4, 4365. doi: 10.1021/acsaem.0c03168
doi: 10.1021/acsaem.0c03168
Du, J.; Shen, Y.; Yang, F.; Zhang, B.; Jiang, X.; An, C.; Ye, J. Inorg. Chem. Front. 2023, 10, 832. doi: 10.1039/D2QI01665F
doi: 10.1039/D2QI01665F
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067