Citation: Jianyin He, Liuyun Chen, Xinling Xie, Zuzeng Qin, Hongbing Ji, Tongming Su. Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240403. doi: 10.3866/PKU.WHXB202404030 shu

Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution

  • Corresponding author: Tongming Su, sutm@gxu.edu.cn
  • Received Date: 19 April 2024
    Revised Date: 20 May 2024
    Accepted Date: 21 May 2024
    Available Online: 28 May 2024

    Fund Project: the National Natural Science Foundation of China 22208065Guangxi Natural Science Foundation 2022GXNSFBA035483Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology 2023K012

  • Photocatalytic hydrogen evolution by heterojunction photocatalysts is considered an effective way to address environmental and energy crises. In this work, a novel ZnCoP/CdLa2S4 Schottky heterojunction was prepared via a physical mixing method assisted by water bath heating and used to enhance the efficiency of photocatalytic hydrogen production. Owing to the higher work function and metallic conductivity of ZnCoP, the photoinduced electrons can transfer from CdLa2S4 to ZnCoP through the ZnCoP/CdLa2S4 interface, which suppresses the recombination of photoinduced electrons and holes. Moreover, the Schottky heterojunction formed at the interface between ZnCoP and CdLa2S4 inhibits electron backflow from ZnCoP to CdLa2S4, which further promotes the separation of electron-hole pairs. Meanwhile, the ZnCoP/CdLa2S4 heterojunction exhibited enhanced visible light absorption compared to CdLa2S4. In addition, ZnCoP acts as an electron acceptor and hydrogen evolution active site. The synergistic effect of the tight ZnCoP/CdLa2S4 interface, the higher work function and metallic conductivity of ZnCoP, and the formation of Schottky junctions significantly enhance the photocatalytic hydrogen production evolution performance of CdLa2S4. When the amount of ZnCoP was 30 wt% (wt%, mass fraction), the 30ZCP/CLS composite showed the highest photocatalytic performance, and the hydrogen production rate reached 10.26 mmol·g-1·h-1 under visible light irradiation and with Na2S and Na2SO3 as sacrificial agents, which was 7.7 times that of CdLa2S4. Combined with the activity data and characterization results, a potential mechanism for photocatalytic hydrogen production over ZnCoP/CdLa2S4 Schottky heterojunctions was proposed.
  • 加载中
    1. [1]

      Liao, M.; Wang, T.; Zuo, T.; Meng, L.; Yang, M.; Chen, Y. X.; Hu, T.; Xie, Y. Inorg. Chem. 2021, 60, 13136. doi: 10.1021/acs.inorgchem.1c01540  doi: 10.1021/acs.inorgchem.1c01540

    2. [2]

      Trang, T. N. Q.; Phan, T. B.; Nam, N. D.; Thu, V. T. H. ACS Appl. Mater. Interfaces 2020, 12, 12195. doi: 10.1021/acsami.9b15578  doi: 10.1021/acsami.9b15578

    3. [3]

      Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37, 2005027. doi: 10.3866/PKU.WHXB202005027  doi: 10.3866/PKU.WHXB202005027

    4. [4]

      Almazroai, L.; El-Mekawy, R. E.; Musa, R.; Ali, L. RSC Adv. 2022, 12, 15992. doi: 10.1039/d2ra00788f  doi: 10.1039/d2ra00788f

    5. [5]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98  doi: 10.1038/natrevmats.2016.98

    6. [6]

      Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J. W. Nano Lett. 2020, 20, 6263. doi: 10.1021/acs.nanolett.0c00983  doi: 10.1021/acs.nanolett.0c00983

    7. [7]

      Huang, K.; Li, C.; Li, H.; Ren, G.; Wang, L.; Wang, W.; Meng, X. ACS Appl. Nano Mater. 2020, 3, 9581. doi: 10.1021/acsanm.0c02481  doi: 10.1021/acsanm.0c02481

    8. [8]

      Yan, J.; Zhang, X.; Zheng, W.; Lee, L. Y. S. ACS Appl. Mater. Interfaces 2021, 13, 24723. doi: 10.1021/acsami.1c03240  doi: 10.1021/acsami.1c03240

    9. [9]

      Yan, B.; Li, J.; Lin, Z.; Du, C.; Yang, G. ACS Appl. Nano Mater. 2019, 2, 6783. doi: 10.1021/acsanm.9b01773  doi: 10.1021/acsanm.9b01773

    10. [10]

      Zhang, Q.; Zhang, J.; Wang, X.; Li, L.; Li, Y.-F.; Dai, W.-L. ACS Catal. 2021, 11, 6276. doi: 10.1021/acscatal.0c05520  doi: 10.1021/acscatal.0c05520

    11. [11]

      Fan, H.-T.; Wu, Z.; Liu, K.-C.; Liu, W.-S. Chem. Eng. J. 2022, 433, 134474. doi: 10.1016/j.cej.2021.134474  doi: 10.1016/j.cej.2021.134474

    12. [12]

      Sun, Y.; Li, Y.; He, J.; Chen, L.; Ji, H.; Qin, Z.; Su, T. Chin. J. Struct. Chem. 2023, 42, 100145. doi: 10.1016/j.cjsc.2023.100145  doi: 10.1016/j.cjsc.2023.100145

    13. [13]

      Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138. doi: 10.1039/c9nr00168a  doi: 10.1039/c9nr00168a

    14. [14]

      Du, S.; Chen, L.; Men, C.; Ji, H.; Su, T.; Qin, Z. J. Alloys Compd. 2023, 955, 170265. doi: 10.1016/j.jallcom.2023.170265  doi: 10.1016/j.jallcom.2023.170265

    15. [15]

      Kim, H.; Yoon, U. H.; Ryu, T. I.; Jeong, H. J.; il Kim, S.; Park, J.; Kye, Y. S.; Hwang, S.-R.; Kim, D.; Cho, Y.; et al. New J. Chem. 2022, 8653. doi: 10.1039/d2nj00850e  doi: 10.1039/d2nj00850e

    16. [16]

      Xiao, L.; Li, X.; Zhang, J.; He, Z. ACS Appl. Nano Mater. 2021, 4, 12779. doi: 10.1021/acsanm.1c03497  doi: 10.1021/acsanm.1c03497

    17. [17]

      Zhao, M.-Q.; Xie, X.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Adv. Mater. 2017, 29, 1702410. doi: 10.1002/adma.201702410  doi: 10.1002/adma.201702410

    18. [18]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    19. [19]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    20. [20]

      Liu, X.; Chen, X.; Wang, S.; Yan, L.; Yan, J.; Guo, H.; Yang, F.; Lin, J. Int. J. Hydrog. Energy 2022, 47, 2327. doi: 10.1016/j.ijhydene.2021.10.227  doi: 10.1016/j.ijhydene.2021.10.227

    21. [21]

      Zhang, S.; Zhang, Z.; Si, Y.; Li, B.; Deng, F.; Yang, L.; Liu, X.; Dai, W.; Luo, S. ACS Nano 2021, 15, 15238. doi: 10.1021/acsnano.1c05834  doi: 10.1021/acsnano.1c05834

    22. [22]

      Cao, A.; Zhang, L.; Wang, Y.; Zhao, H.; Deng, H.; Liu, X.; Lin, Z.; Su, X.; Yue, F. ACS Sustain. Chem. Eng. 2018, 7, 2492. doi: 10.1021/acssuschemeng.8b05396  doi: 10.1021/acssuschemeng.8b05396

    23. [23]

      Chen, Q.; Li, J.; Cheng, L.; Liu, H. Chem. Eng. J. 2020, 379, 122389. doi: 10.1016/j.cej.2019.122389  doi: 10.1016/j.cej.2019.122389

    24. [24]

      Zhao, J.; Liu, F.; Wang, W.; Wang, Y.; Wen, N.; Zhang, Z.; Dai, W.; Yuan, R.; Ding, Z.; Long, J. ACS Appl. Nano Mater. 2023, 6, 8927. doi: 10.1021/acsanm.3c01443  doi: 10.1021/acsanm.3c01443

    25. [25]

      Hou, J.; Yang, C.; Wang, Z.; Jiao, S.; Zhu, H. RSC Adv. 2012, 2, 10330. doi: 10.1039/c2ra21641h  doi: 10.1039/c2ra21641h

    26. [26]

      Reshak, A. H. Phys. Chem. Chem. Phys. 2018, 20, 8848. doi: 10.1039/c8cp00373d  doi: 10.1039/c8cp00373d

    27. [27]

      Guru, S.; Kumar, S.; Bellamkonda, S.; Gangavarapu, R. R. Int. J. Hydrog. Energy 2021, 46, 16414. doi: 10.1016/j.ijhydene.2020.08.102  doi: 10.1016/j.ijhydene.2020.08.102

    28. [28]

      Wang, C.; Zhang, W.; Fan, J.; Sun, W.; Liu, E. Ceram. Int. 2021, 47, 30194. doi: 10.1016/j.ceramint.2021.07.199  doi: 10.1016/j.ceramint.2021.07.199

    29. [29]

      He, Z.; Tang, Q.; Liu, X.; Yan, X.; Li, K.; Yue, D. Energy Fuels 2021, 35, 15005. doi: 10.1021/acs.energyfuels.1c01482  doi: 10.1021/acs.energyfuels.1c01482

    30. [30]

      Chu, J.; Sun, Y.; Han, X.; Zhang, B.; Du, Y.; Song, B.; Xu, P. ACS Appl. Mater. Interfaces 2019, 11, 18475. doi: 10.1021/acsami.9b04787  doi: 10.1021/acsami.9b04787

    31. [31]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    32. [32]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, 202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    33. [33]

      Dai, M.; Yu, H.; Chen, W.; Qu, K.-A.; Zhai, D.; Liu, C.; Zhao, S.; Wang, S.; He, Z. Chem. Eng. J. 2023, 470, 144240. doi: 10.1016/j.cej.2023.144240  doi: 10.1016/j.cej.2023.144240

    34. [34]

      Liu, H.; Xu, Z.; Zhang, Z.; Ao, D. Appl. Catal. B-Environ. 2016, 192, 234. doi: 10.1016/j.apcatb.2016.03.074  doi: 10.1016/j.apcatb.2016.03.074

    35. [35]

      Fan, Y.; Yu, S.; Wang, Y.; Xie, Y.; Qiu, X. Sep. Purif. Technol. 2024, 335, 126243. doi: 10.1016/j.seppur.2023.126243  doi: 10.1016/j.seppur.2023.126243

    36. [36]

      Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001  doi: 10.1016/j.jmst.2022.11.001

    37. [37]

      Zeng, Q.; Zheng, L.; Wang, L.; Liu, Y.; Yu, Q.; Fujita, T.; Zeng, D. J. Alloy. Compd. 2023, 942, 169006. doi: 10.1016/j.jallcom.2023.169006  doi: 10.1016/j.jallcom.2023.169006

    38. [38]

      Xie, M.; Jia, K.; Lu, J.; Zhao, R. CrystEngComm 2020, 22, 546. doi: 10.1039/c9ce01575b  doi: 10.1039/c9ce01575b

    39. [39]

      Chu, W.; Hou, Y.; Liu, J.; Bai, X.; Gao, Y. f.; Cao, Z. Electrochim. Acta 2020, 364, 137063. doi: 10.1016/j.electacta.2020.137063  doi: 10.1016/j.electacta.2020.137063

    40. [40]

      Li, C.; Zhu, D.; Cheng, S.; Zuo, Y.; Wang, Y.; Ma, C.; Dong, H. Chin. Chem. Lett. 2022, 33, 1141. doi: 10.1016/j.cclet.2021.07.057  doi: 10.1016/j.cclet.2021.07.057

    41. [41]

      Xu, J.; Cao, S.; Zhong, M.; Ren, S.; Chen, X.; Li, W.; Wang, C.; Wang, Z.; Lu, X.; Lu, X. J. Colloid Interface Sci. 2024, 657, 83. doi: 10.1016/j.jcis.2023.11.141  doi: 10.1016/j.jcis.2023.11.141

    42. [42]

      Dai, M.; Zhao, D.; Liu, H.; Tong, Y.; Hu, P.; Wu, X. Mater. Today Energy 2020, 16, 100412. doi: 10.1016/j.mtener.2020.100412  doi: 10.1016/j.mtener.2020.100412

    43. [43]

      Huang, H.-b.; Luo, S.-h.; Liu, C.-l.; Yi, T.-f.; Zhai, Y.-c. ACS Appl. Mater. Interfaces 2018, 10, 21281. doi: 10.1021/acsami.8b03736  doi: 10.1021/acsami.8b03736

    44. [44]

      Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020, 267, 118379. doi: 10.1016/j.apcatb.2019.118379  doi: 10.1016/j.apcatb.2019.118379

    45. [45]

      Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715  doi: 10.1002/advs.202103715

    46. [46]

      Gao, Z.; Chen, K.; Wang, L.; Bai, B.; Liu, H.; Wang, Q. Appl. Catal. B-Environ. 2020, 268, 118462. doi: 10.1016/j.apcatb.2019.118462  doi: 10.1016/j.apcatb.2019.118462

    47. [47]

      Zhang, H.; Sun, B.; Wang, J.; Zhu, Q.; Hou, D.; Li, C.; Qiao, X. Q.; Li, D. S. J. Colloid Interface Sci. 2023, 645, 429. doi: 10.1016/j.jcis.2023.04.146  doi: 10.1016/j.jcis.2023.04.146

    48. [48]

      Le, K. T. N.; Hoa, V. H.; Le, H. T.; Tran, D. T.; Kim, N. H.; Lee, J. H. Appl. Surf. Sci. 2022, 600, 154206. doi: 10.1016/j.apsusc.2022.154206  doi: 10.1016/j.apsusc.2022.154206

    49. [49]

      Li, Y.; Jin, Z.; Tsubaki, N. ACS Appl. Nano Mater. 2022, 5, 14677. doi: 10.1021/acsanm.2c03031  doi: 10.1021/acsanm.2c03031

    50. [50]

      Hsiang, H.-I.; Chiou, Y.-Y.; Chung, S.-H. J. Energy Storage 2022, 55, 105402. doi: 10.1016/j.est.2022.105402  doi: 10.1016/j.est.2022.105402

    51. [51]

      Jin, C.; Xu, C.; Chang, W.; Ma, X.; Hu, X.; Liu, E.; Fan, J. J. Alloy. Compd. 2019, 803, 205. doi: 10.1016/j.jallcom.2019.06.252  doi: 10.1016/j.jallcom.2019.06.252

    52. [52]

      Dai, Z.; Geng, H.; Wang, J.; Luo, Y.; Li, B.; Zong, Y.; Yang, J.; Guo, Y.; Zheng, Y.; Wang, X.; et al. ACS Nano 2017, 11, 11031. doi: 10.1021/acsnano.7b05050  doi: 10.1021/acsnano.7b05050

    53. [53]

      Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H.-C.; Tsai, M.-L.; He, J.-H.; Jin, S. Nat. Mater. 2015, 14, 1245. doi: 10.1038/nmat4410  doi: 10.1038/nmat4410

    54. [54]

      Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater. 2021, 4, 14342. doi: 10.1021/acsaem.1c03019  doi: 10.1021/acsaem.1c03019

    55. [55]

      Fajrina, N.; Tahir, M. Int. J. Hydrog. Energy 2019, 44, 540. doi: 10.1016/j.ijhydene.2018.10.200  doi: 10.1016/j.ijhydene.2018.10.200

    56. [56]

      Men, C.; Chen, L.; Ji, H.; Qin, Z.; Su, T. Chem. Eng. J. 2023, 473, 145173. doi: 10.1016/j.cej.2023.145173  doi: 10.1016/j.cej.2023.145173

    57. [57]

      Zhong, T.; Yu, Z.; Jiang, R.; Hou, Y.; Chen, H.; Ding, L.; Lian, C.; Zou, B. Sol. RRL 2021, 6, 2100863. doi: 10.1002/solr.202100863  doi: 10.1002/solr.202100863

    58. [58]

      Li, H.; Gong, H.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38, 2201037. doi: 10.3866/PKU.WHXB202201037  doi: 10.3866/PKU.WHXB202201037

    59. [59]

      Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109. doi: 10.1039/c8cs00542g  doi: 10.1039/c8cs00542g

    60. [60]

      Ren, T.; Huang, H.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. J. Colloid Interface Sci. 2021, 598, 398. doi: 10.1016/j.jcis.2021.04.027  doi: 10.1016/j.jcis.2021.04.027

    61. [61]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi: 10.3866/PKU.WHXB202302051  doi: 10.3866/PKU.WHXB202302051

    62. [62]

      Bi, L.; Gao, X.; Zhang, L.; Wang, D.; Zou, X.; Xie, T. ChemSusChem 2017, 11, 276. doi: 10.1002/cssc.201701574  doi: 10.1002/cssc.201701574

    63. [63]

      Yang, H.; Jin, Z.; Liu, D.; Fan, K.; Wang, G. J. Phys. Chem. C 2018, 122, 10430. doi: 10.1021/acs.jpcc.8b01666  doi: 10.1021/acs.jpcc.8b01666

    64. [64]

      Jin, Y.; Zhang, H.; Song, C.; Wang, L.; Lu, Q.; Gao, F. Sci. Rep. 2016, 6, 29997. doi: 10.1038/srep29997  doi: 10.1038/srep29997

    65. [65]

      Xiao, L.; Ren, W.; Shen, S.; Chen, M.; Liao, R.; Zhou, Y.; Li, X. Acta Phys. -Chim. Sin. 2024, 40, 2308036. doi: 10.3866/PKU.WHXB202308036  doi: 10.3866/PKU.WHXB202308036

    66. [66]

      Han, C.; Zhang, R.; Ye, Y.; Wang, L.; Ma, Z.; Su, F.; Xie, H.; Zhou, Y.; Wong, P. K.; Ye, L. J. Mater. Chem. A 2019, 7, 9726. doi: 10.1039/C9TA01061K  doi: 10.1039/C9TA01061K

    67. [67]

      Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. Nano Energy 2018, 47, 463. doi: 10.1016/j.nanoen.2018.03.014  doi: 10.1016/j.nanoen.2018.03.014

    68. [68]

      Li, L.; Zhang, R.; Lin, Y.; Wang, D.; Xie, T. Chem. Eng. J. 2023, 453, 139970. doi: 10.1016/j.cej.2022.139970  doi: 10.1016/j.cej.2022.139970

    69. [69]

      Kong, X.; Lv, F.; Zhang, H.; Yu, F.; Wang, Y.; Yin, L.; Huang, J.; Feng, Q. J. Alloy. Compd. 2022, 903, 163864. doi: 10.1016/j.jallcom.2022.163864  doi: 10.1016/j.jallcom.2022.163864

    70. [70]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    71. [71]

      Jin, Z.; Wang, X. Mater. Today Energy 2022, 30, 101164. doi: 10.1016/j.mtener.2022.101164  doi: 10.1016/j.mtener.2022.101164

    72. [72]

      Wang, Y.; Pan, Y.; Zhu, H.; Xiang, Y.; Han, R.; Huang, R.; Du, C.; Pan, C. Acta Phys. -Chim. Sin. 2024, 40, 2304050. doi: 10.3866/PKU.WHXB202304050  doi: 10.3866/PKU.WHXB202304050

    73. [73]

      Feng, F.; Hua, H.; Li, L.; Xu, R.; Tang, J.; Dong, D.; Zhang, J.; Li, X. a. ACS Appl. Energy Mater. 2021, 4, 4365. doi: 10.1021/acsaem.0c03168  doi: 10.1021/acsaem.0c03168

    74. [74]

      Du, J.; Shen, Y.; Yang, F.; Zhang, B.; Jiang, X.; An, C.; Ye, J. Inorg. Chem. Front. 2023, 10, 832. doi: 10.1039/D2QI01665F  doi: 10.1039/D2QI01665F

  • 加载中
    1. [1]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    4. [4]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    6. [6]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    14. [14]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    19. [19]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(3)
  • Abstract views(302)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return