Citation: Tianqi Bai,  Kun Huang,  Fachen Liu,  Ruochen Shi,  Wencai Ren,  Songfeng Pei,  Peng Gao,  Zhongfan Liu. 石墨烯厚膜热扩散系数与微观结构的关系[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240402. doi: 10.3866/PKU.WHXB202404024 shu

石墨烯厚膜热扩散系数与微观结构的关系

  • Received Date: 17 April 2024
    Revised Date: 13 June 2024
    Accepted Date: 17 June 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (T2188101, 52125307, 52021006, 52273240).

  • 电子元件集成度的快速提升对器件热管理提出了更高的要求。石墨烯凭借其出色的导热性能成为备受关注的材料之一。目前制备高热导率石墨烯厚膜的主流方法是将氧化石墨烯组装成膜再还原,尽管前人的研究取得了突出成效,但截止目前仍未能完全理解石墨烯膜内部缺陷结构对热导率的具体影响机制,这将限制热导率的进一步提升,达到或超过1500 W·m-1·K-1。在氧化石墨烯膜的热还原过程中,不可避免地会形成一些孔洞结构,通过降低整体密度的方式降低热导率。热扩散系数作为决定热导率大小的另一因素,孔洞对其影响因素却尚未被研究过。在这里,我们定义了包含孔洞的石墨烯膜材料特有的本征热扩散系数,并通过多种电子显微学方法、热扩散系数的测试和有限元模拟,详细研究了石墨烯厚膜的本征热扩散系数与微观结构之间的关联。我们旨在阐明孔洞对热扩散系数以及热导率的影响方式和作用机制。研究结果揭示了不同尺寸和数量的孔洞对热扩散系数的影响,发现密集小孔洞结构可使热扩散系数降低39.4%,而同等面积的单一大孔洞结构对热扩散系数的降低仅约16.1%。通过三维重构获得的统计结论也与计算结果完全匹配。其内在机制是密集小孔洞结构的存在对原有传热路径的破坏更为严重,而单一大孔洞结构的这一作用则相对较弱,只是降低了整体密度从而降低热导率。此外,研究发现面外结晶性对热扩散系数有显著影响,进一步增进了对影响热扩散系数的微观机理的认识。通过阐明这些机制,我们的研究加深了对石墨烯厚膜微观结构与热学性能关联的理解,为生产超高热导率的石墨烯厚膜提供了重要信息,也为下一代电子器件热管理解决方案提供了有效策略。
  • 加载中
    1. [1]

      (1) Moore, A. L.; Shi, L. Mater. Today 2014, 17 (4), 163. doi:10.1016/j.mattod.2014.04.003

    2. [2]

      (2) Garimella, S. V. Microelectron. J. 2006, 37 (11), 1165. doi:10.1016/j.mejo.2005.07.017

    3. [3]

      (3) Pop, E. Nano Res. 2010, 3 (3), 147. doi:10.1007/s12274-010-1019-z

    4. [4]

      (4) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi:10.1021/nl0731872

    5. [5]

      (5) Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Appl. Phys. Lett. 2008, 92 (15), 151911. doi:10.1063/1.2907977

    6. [6]

      (6) Zhang, P.; Ma, L.; Fan, F.; Zeng, Z.; Peng, C.; Loya, P. E.; Liu, Z.; Gong, Y.; Zhang, J.; Zhang, X.; et al. Nat. Commun. 2014, 5 (1), 3782. doi:10.1038/ncomms4782

    7. [7]

      (7) Stöberl, U.; Wurstbauer, U.; Wegscheider, W.; Weiss, D.; Eroms, J. Appl. Phys. Lett. 2008, 93 (5), 051906. doi:10.1063/1.2968310

    8. [8]

    9. [9]

      doi:10.3866/PKU.WHXB202101004

    10. [10]

      (9) Renteria, J. D.; Nika, D. L.; Balandin, A. A. Appl. Sci. 2014, 4 (4), 525. doi:10.3390/app4040525

    11. [11]

      (10) Fu, Y.; Hansson, J.; Liu, Y.; Chen, S.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y.; Zhang, Y.; Zhang, Z.-B.; et al. 2D Mater. 2020, 7 (1), 012001. doi:10.1088/2053-1583/ab48d9

    12. [12]

      (11) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4 (4), 217. doi:10.1038/nnano.2009.58

    13. [13]

      (12) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi:10.1016/j.carbon.2007.02.034

    14. [14]

      (13) Pei, S.; Cheng, H.-M. Carbon 2012, 50 (9), 3210. doi:10.1016/j.carbon.2011.11.010

    15. [15]

      (14) Huh, S. H. Phys. Appl. Graphene: Exp. 2011, 19, 73. doi:10.5772/14156

    16. [16]

      (15) Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Adv. Funct. Mater. 2017, 27 (20), 1700240. doi:10.1002/adfm.201700240

    17. [17]

      (16) Ding, J.; Zhao, H.; Wang, Q.; Dou, H.; Chen, H.; Yu, H. Nanoscale 2017, 9 (43), 16871. doi:10.1039/c7nr06667h Scopus

    18. [18]

      (17) Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312 (5777), 1191. doi:10.1126/science.1125925

    19. [19]

      (18) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. J. Phys. Chem. B 2004, 108 (52), 19912. doi:10.1021/jp040650f

    20. [20]

      (19) Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J.; et al. Nat. Mater. 2009, 8 (3), 203. doi:10.1038/nmat2382

    21. [21]

      (20) Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S. Appl. Phys. Lett. 2008, 93 (11), 113103. doi:10.1063/1.2982585

    22. [22]

      (21) Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324 (5932), 1312. doi:10.1126/science.1171245

    23. [23]

      (22) Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Rümmeli, M. H.; et al. Nano Lett. 2015, 15 (9), 5846. doi:10.1021/acs.nanolett.5b01936

    24. [24]

      (23) Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. Nano Res. 2013, 6, 216. doi:10.1007/s12274-013-0298-6

    25. [25]

      (24) Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8 (1), 323. doi:10.1021/nl072838r

    26. [26]

      (25) Valles, C.; Nunez, J. D.; Benito, A. M.; Maser, W. K. Carbon 2012, 50 (3), 835. doi:10.1016/j.carbon.2011.09.042

    27. [27]

      (26) Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi:10.1002/adma.200800757

    28. [28]

      (27) Akbari, A.; Cunning, B. V.; Joshi, S. R.; Wang, C.; Camacho-Mojica, D. C.; Chatterjee, S.; Modepalli, V.; Cahoon, C.; Bielawski, C. W.; Bakharev, P.; et al. Matter 2020, 2 (5), 1198. doi:10.1016/j.matt.2020.02.014

    29. [29]

      (28) Xu, F.; Chen, R.; Lin, Z.; Sun, X.; Wang, S.; Yin, W.; Peng, Q.; Li, Y.; He, X. J. Mater. Chem. C 2018, 6 (45), 12321. doi:10.1039/C8TC04008G

    30. [30]

      (29) Chen, X.; Deng, X.; Kim, N. Y.; Wang, Y.; Huang, Y.; Peng, L.; Huang, M.; Zhang, X.; Chen, X.; Luo, D.; et al. Carbon 2018, 132, 294. doi:10.1016/j.carbon.2018.02.049

    31. [31]

      (30) Zhang, P.; Hao, Y.; Shi, H.; Lu, J.; Liu, Y.; Ming, X.; Wang, Y.; Fang, W.; Xia, Y.; Chen, Y.; et al. Nano-Micro Lett. 2023, 16 (1), 58. doi:10.1007/s40820-023-01277-1

    32. [32]

      (31) Hao, Y.; Ming, X.; Lu, J.; Cao, M.; Zhang, P.; Shi, H.; Li, K.; Gao, Y.; Wang, L.; Fang, W.; et al. Adv. Funct. Mater. 2024, 34, 2400110. doi:10.1002/adfm.202400110

    33. [33]

      (32) Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29 (27), 1700589. doi:10.1002/adma.201700589

    34. [34]

      (33) Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Adv. Mater. 2014, 26 (26), 4521. doi:10.1002/adma.201400951

    35. [35]

      (34) Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y.-H.; Koo, C. M. Carbon 2015, 94, 494. doi:10.1016/j.carbon.2015.07.032

    36. [36]

      (35) Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.-M. ACS Nano 2010, 4 (9), 5245. doi:10.1021/nn1015506

    37. [37]

      (36) Wei, Q.; Pei, S.; Qian, X.; Liu, H.; Liu, Z.; Zhang, W.; Zhou, T.; Zhang, Z.; Zhang, X.; Cheng, H.-M.; et al. Adv. Mater. 2020, 32 (14), 1907411. doi:10.1002/adma.201907411

    38. [38]

    39. [39]

      doi:10.3866/PKU.WHXB202101013

    40. [40]

      (38) Parker, W. J.; Jenkins, R. J.; Butler, C. P.; Abbott, G. L. J. Appl. Phys. 2004, 32 (9), 1679. doi:10.1063/1.1728417

    41. [41]

      (39) Shieh, S. R.; Hsieh, W.-P.; Tsao, Y.-C.; Crisostomo, C.; Hsu, H. J. Geophys. Res.: Planets 2022, 127 (3), e2022JE007180. doi:10.1029/2022JE007180

    42. [42]

      (40) Park, H. K.; Grigoropoulos, C. P.; Tam, A. C. Int. J. Thermophys. 1995, 16 (4), 973. doi:10.1007/BF02093477

    43. [43]

      (41) Groeber, M. A.; Haley, B. K.; Uchic, M. D.; Dimiduk, D. M.; Ghosh, S. Mater. Charact. 2006, 57 (4), 259. doi:10.1016/j.matchar.2006.01.019

    44. [44]

      (42) Nan, N.; Wang, J. Adv. Mater. Sci. Eng. 2019, 2019 (1), 8680715. doi:10.1155/2019/8680715

    45. [45]

      (43) Liu, Z.; Chen-Wiegart, Y.-C. K.; Wang, J.; Barnett, S. A.; Faber, K. T. Microsc. Microanal. 2016, 22 (1), 140. doi:10.1017/S1431927615015640

    46. [46]

      (44) Saini, P.; Sharma, R.; Chadha, N. Indian J. Pure Appl. Phys. 2017, 55 (9), 625. doi:10.56042/ijpap.v55i9.16047

    47. [47]

      (45) Nika, D. L.; Balandin, A. A. Rep. Prog. Phys. 2017, 80 (3), 036502. doi:10.1088/1361-6633/80/3/036502

    48. [48]

      (46) Wang, Y.; Vallabhaneni, A. K.; Qiu, B.; Ruan, X. Nanoscale Microscale Thermophys. Eng. 2014, 18 (2), 155. doi:10.1080/15567265.2014.891680

    49. [49]

      (47) Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi:10.1038/nmat3064

    50. [50]

      (48) Sudhakar, K.; Plummer, G.; Tucker, G.; Barsoum, M. Carbon 2023, 213, 118221. doi:10.1016/j.carbon.2023.118221

    51. [51]

      (49) Badr, H. O.; Barsoum, M. W. Carbon 2023, 201, 599. doi:10.1016/j.carbon.2022.09.042

    52. [52]

      (50) Gruber, J.; Lang, A. C.; Griggs, J.; Taheri, M. L.; Tucker, G. J.; Barsoum, M. W. Sci. Rep. 2016, 6 (1), 33451. doi:10.1038/srep33451

  • 加载中
    1. [1]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    2. [2]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    19. [19]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    20. [20]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

Metrics
  • PDF Downloads(0)
  • Abstract views(51)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return