Citation: Tianqi Bai, Kun Huang, Fachen Liu, Ruochen Shi, Wencai Ren, Songfeng Pei, Peng Gao, Zhongfan Liu. Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240402. doi: 10.3866/PKU.WHXB202404024 shu

Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets

  • Corresponding author: Songfeng Pei, pgao@pku.edu.cn Peng Gao, sfpei@imr.ac.cn Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 17 April 2024
    Revised Date: 13 June 2024
    Accepted Date: 17 June 2024

    Fund Project: the National Natural Science Foundation of China T2188101the National Natural Science Foundation of China 52125307the National Natural Science Foundation of China 52021006the National Natural Science Foundation of China 52273240

  • The rapid advancement in the integration density of electronic components has led to a pressing need for effective thermal management solutions. Among the promising materials in this regard, graphene stands out due to its exceptional thermal conductivity properties. Currently, the production of ultra-high thermally conductive thick graphene sheets primarily involves the reduction of graphene oxide. However, despite significant progress, the impact of defects on thermal properties remains inadequately understood, limiting the achievement of thermal conductivity exceeding 1500 W·m-1·K-1. During the preparation process of reduced graphene oxide-based graphene sheets, hole structures are inevitably formed, reducing the overall density and thus decreasing thermal conductivity. However, the influencing factors on thermal diffusivity, one of the determining factors of thermal conductivity, have not been reported. Thus, we defined the intrinsic thermal diffusivity specific to materials with internal holes and further investigated the correlation between the intrinsic thermal diffusivity of thick graphene sheets and microstructure through various electron microscopy characterization, thermal diffusivity measurements, and simulations. We aim to elucidate the factors and mechanisms affecting the thermal diffusivity and hence thermal conductivity. Our research reveals subtle insights, particularly regarding the impact of holes of different sizes and quantities on thermal diffusivity. Notably, our simulation results show that a real dense-small-holes structure in graphene sheets can reduce thermal diffusivity by 39.4%, more than twice the reduction caused by a single-large-hole structure (16.1%). Statistical conclusions obtained through three-dimensional reconstruction also perfectly match these computational results. We emphasize that the presence of dense-small-holes structures disrupt the original high-speed heat transfer paths more severely, while the effect of single-large-hole structures are relatively weaker, primarily reducing overall density and thus thermal conductivity. Additionally, we found that the out-of-plane crystallinity has a significant impact on thermal diffusivity, further enhancing our understanding of microstructural factors affecting thermal diffusivity. By elucidating these mechanisms, our findings make significant contributions to the technological advancement of producing ultra-high thermally conductive thick graphene sheets. A deeper understanding of the interaction between microstructure and thermal performance brings hope for the development of next-generation electronic device thermal management solutions. Through continued research in this field, we anticipate further improvements in the performance and efficiency of graphene thermal management systems, ultimately driving innovation in electronic device design and manufacturing.
  • 加载中
    1. [1]

      Moore, A. L.; Shi, L. Mater. Today 2014, 17 (4), 163. doi: 10.1016/j.mattod.2014.04.003  doi: 10.1016/j.mattod.2014.04.003

    2. [2]

      Garimella, S. V. Microelectron. J. 2006, 37 (11), 1165. doi: 10.1016/j.mejo.2005.07.017  doi: 10.1016/j.mejo.2005.07.017

    3. [3]

      Pop, E. Nano Res. 2010, 3 (3), 147. doi: 10.1007/s12274-010-1019-z  doi: 10.1007/s12274-010-1019-z

    4. [4]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    5. [5]

      Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Appl. Phys. Lett. 2008, 92 (15), 151911. doi: 10.1063/1.2907977  doi: 10.1063/1.2907977

    6. [6]

      Zhang, P.; Ma, L.; Fan, F.; Zeng, Z.; Peng, C.; Loya, P. E.; Liu, Z.; Gong, Y.; Zhang, J.; Zhang, X.; et al. Nat. Commun. 2014, 5 (1), 3782. doi: 10.1038/ncomms4782  doi: 10.1038/ncomms4782

    7. [7]

      Stöberl, U.; Wurstbauer, U.; Wegscheider, W.; Weiss, D.; Eroms, J. Appl. Phys. Lett. 2008, 93 (5), 051906. doi: 10.1063/1.2968310  doi: 10.1063/1.2968310

    8. [8]

      Ma, Y.; Zhi, L. Acta Phys. -Chim. Sin. 2022, 38 (1), 2101004.  doi: 10.3866/PKU.WHXB202101004

    9. [9]

      Renteria, J. D.; Nika, D. L.; Balandin, A. A. Appl. Sci. 2014, 4 (4), 525. doi: 10.3390/app4040525  doi: 10.3390/app4040525

    10. [10]

      Fu, Y.; Hansson, J.; Liu, Y.; Chen, S.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y.; Zhang, Y.; Zhang, Z. -B.; et al. 2D Mater. 2020, 7 (1), 012001. doi: 10.1088/2053-1583/ab48d9  doi: 10.1088/2053-1583/ab48d9

    11. [11]

      Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4 (4), 217. doi: 10.1038/nnano.2009.58  doi: 10.1038/nnano.2009.58

    12. [12]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    13. [13]

      Pei, S.; Cheng, H. -M. Carbon 2012, 50 (9), 3210. doi: 10.1016/j.carbon.2011.11.010  doi: 10.1016/j.carbon.2011.11.010

    14. [14]

      Huh, S. H. Phys. Appl. Graphene: Exp. 2011, 19, 73. doi: 10.5772/14156  doi: 10.5772/14156

    15. [15]

      Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Adv. Funct. Mater. 2017, 27 (20), 1700240. doi: 10.1002/adfm.201700240  doi: 10.1002/adfm.201700240

    16. [16]

      Ding, J.; Zhao, H.; Wang, Q.; Dou, H.; Chen, H.; Yu, H. Nanoscale 2017, 9 (43), 16871. doi: 10.1039/c7nr06667hScopus  doi: 10.1039/c7nr06667hScopus

    17. [17]

      Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312 (5777), 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    18. [18]

      Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. J. Phys. Chem. B 2004, 108 (52), 19912. doi: 10.1021/jp040650f  doi: 10.1021/jp040650f

    19. [19]

      Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhrl, J.; et al. Nat. Mater. 2009, 8 (3), 203. doi: 10.1038/nmat2382  doi: 10.1038/nmat2382

    20. [20]

      Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. -S. Appl. Phys. Lett. 2008, 93 (11), 113103. doi: 10.1063/1.2982585  doi: 10.1063/1.2982585

    21. [21]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324 (5932), 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    22. [22]

      Sun, J.; Chen, Y.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Song, X.; Gao, Y.; Rümmeli, M. H.; et al. Nano Lett. 2015, 15 (9), 5846. doi: 10.1021/acs.nanolett.5b01936  doi: 10.1021/acs.nanolett.5b01936

    23. [23]

      Rozada, R.; Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. Nano Res. 2013, 6, 216. doi: 10.1007/s12274-013-0298-6  doi: 10.1007/s12274-013-0298-6

    24. [24]

      Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8 (1), 323. doi: 10.1021/nl072838r  doi: 10.1021/nl072838r

    25. [25]

      Valles, C.; Nunez, J. D.; Benito, A. M.; Maser, W. K. Carbon 2012, 50 (3), 835. doi: 10.1016/j.carbon.2011.09.042  doi: 10.1016/j.carbon.2011.09.042

    26. [26]

      Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20 (18), 3557. doi: 10.1002/adma.200800757  doi: 10.1002/adma.200800757

    27. [27]

      Akbari, A.; Cunning, B. V.; Joshi, S. R.; Wang, C.; Camacho-Mojica, D. C.; Chatterjee, S.; Modepalli, V.; Cahoon, C.; Bielawski, C. W.; Bakharev, P.; et al. Matter 2020, 2 (5), 1198. doi: 10.1016/j.matt.2020.02.014  doi: 10.1016/j.matt.2020.02.014

    28. [28]

      Xu, F.; Chen, R.; Lin, Z.; Sun, X.; Wang, S.; Yin, W.; Peng, Q.; Li, Y.; He, X. J. Mater. Chem. C 2018, 6 (45), 12321. doi: 10.1039/C8TC04008G  doi: 10.1039/C8TC04008G

    29. [29]

      Chen, X.; Deng, X.; Kim, N. Y.; Wang, Y.; Huang, Y.; Peng, L.; Huang, M.; Zhang, X.; Chen, X.; Luo, D.; et al. Carbon 2018, 132, 294. doi: 10.1016/j.carbon.2018.02.049  doi: 10.1016/j.carbon.2018.02.049

    30. [30]

      Zhang, P.; Hao, Y.; Shi, H.; Lu, J.; Liu, Y.; Ming, X.; Wang, Y.; Fang, W.; Xia, Y.; Chen, Y.; et al. Nano-Micro Lett. 2023, 16 (1), 58. doi: 10.1007/s40820-023-01277-1  doi: 10.1007/s40820-023-01277-1

    31. [31]

      Hao, Y.; Ming, X.; Lu, J.; Cao, M.; Zhang, P.; Shi, H.; Li, K.; Gao, Y.; Wang, L.; Fang, W.; et al. Adv. Funct. Mater. 2024, 34, 2400110. doi: 10.1002/adfm.202400110  doi: 10.1002/adfm.202400110

    32. [32]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29 (27), 1700589. doi: 10.1002/adma.201700589  doi: 10.1002/adma.201700589

    33. [33]

      Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Adv. Mater. 2014, 26 (26), 4521. doi: 10.1002/adma.201400951  doi: 10.1002/adma.201400951

    34. [34]

      Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. -H.; Koo, C. M. Carbon 2015, 94, 494. doi: 10.1016/j.carbon.2015.07.032  doi: 10.1016/j.carbon.2015.07.032

    35. [35]

      Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H. -M. ACS Nano 2010, 4 (9), 5245. doi: 10.1021/nn1015506  doi: 10.1021/nn1015506

    36. [36]

      Wei, Q.; Pei, S.; Qian, X.; Liu, H.; Liu, Z.; Zhang, W.; Zhou, T.; Zhang, Z.; Zhang, X.; Cheng, H. -M.; et al. Adv. Mater. 2020, 32 (14), 1907411. doi: 10.1002/adma.201907411  doi: 10.1002/adma.201907411

    37. [37]

      Houfu Song, F. K. Acta Phys. -Chim. Sin. 2022, 38 (1), 2101013.  doi: 10.3866/PKU.WHXB202101013

    38. [38]

      Parker, W. J.; Jenkins, R. J.; Butler, C. P.; Abbott, G. L. J. Appl. Phys. 2004, 32 (9), 1679. doi: 10.1063/1.1728417  doi: 10.1063/1.1728417

    39. [39]

      Shieh, S. R.; Hsieh, W. -P.; Tsao, Y. -C.; Crisostomo, C.; Hsu, H. J. Geophys. Res. : Planets 2022, 127 (3), e2022JE007180. doi: 10.1029/2022JE007180  doi: 10.1029/2022JE007180

    40. [40]

      Park, H. K.; Grigoropoulos, C. P.; Tam, A. C. Int. J. Thermophys. 1995, 16 (4), 973. doi: 10.1007/BF02093477  doi: 10.1007/BF02093477

    41. [41]

      Groeber, M. A.; Haley, B. K.; Uchic, M. D.; Dimiduk, D. M.; Ghosh, S. Mater. Charact. 2006, 57 (4), 259. doi: 10.1016/j.matchar.2006.01.019  doi: 10.1016/j.matchar.2006.01.019

    42. [42]

      Nan, N.; Wang, J. Adv. Mater. Sci. Eng. 2019, 2019 (1), 8680715. doi: 10.1155/2019/8680715  doi: 10.1155/2019/8680715

    43. [43]

      Liu, Z.; Chen-Wiegart, Y. -C. K.; Wang, J.; Barnett, S. A.; Faber, K. T. Microsc. Microanal. 2016, 22 (1), 140. doi: 10.1017/S1431927615015640  doi: 10.1017/S1431927615015640

    44. [44]

      Saini, P.; Sharma, R.; Chadha, N. Indian J. Pure Appl. Phys. 2017, 55 (9), 625. doi: 10.56042/ijpap.v55i9.16047  doi: 10.56042/ijpap.v55i9.16047

    45. [45]

      Nika, D. L.; Balandin, A. A. Rep. Prog. Phys. 2017, 80 (3), 036502. doi: 10.1088/1361-6633/80/3/036502  doi: 10.1088/1361-6633/80/3/036502

    46. [46]

      Wang, Y.; Vallabhaneni, A. K.; Qiu, B.; Ruan, X. Nanoscale Microscale Thermophys. Eng. 2014, 18 (2), 155. doi: 10.1080/15567265.2014.891680  doi: 10.1080/15567265.2014.891680

    47. [47]

      Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    48. [48]

      Sudhakar, K.; Plummer, G.; Tucker, G.; Barsoum, M. Carbon 2023, 213, 118221. doi: 10.1016/j.carbon.2023.118221  doi: 10.1016/j.carbon.2023.118221

    49. [49]

      Badr, H. O.; Barsoum, M. W. Carbon 2023, 201, 599. doi: 10.1016/j.carbon.2022.09.042  doi: 10.1016/j.carbon.2022.09.042

    50. [50]

      Gruber, J.; Lang, A. C.; Griggs, J.; Taheri, M. L.; Tucker, G. J.; Barsoum, M. W. Sci. Rep. 2016, 6 (1), 33451. doi:10.1038/srep33451  doi: 10.1038/srep33451

  • 加载中
    1. [1]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    2. [2]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    3. [3]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    9. [9]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    18. [18]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    19. [19]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(109)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return