Citation: Xin Han,  Zhihao Cheng,  Jinfeng Zhang,  Jie Liu,  Cheng Zhong,  Wenbin Hu. Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100033. doi: 10.3866/PKU.WHXB202404023 shu

Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction

  • Corresponding author: Jie Liu, jieliu0109@tju.edu.cn
  • Received Date: 15 April 2024
    Revised Date: 30 June 2024
    Accepted Date: 1 July 2024

    Fund Project: This work was supported by the National Natural Science Foundation of China (52271224, 51801134) and Tianjin Natural Science Foundation (20JCQNJC01130).

  • The efficient electrocatalysts towards the oxygen evolution reaction (OER) are vital for water splitting. Herein, a novel FeCoCrMnBS high-entropy (Oxy) hydroxide (HEH) is synthesized on a nickel foam (NF) surface via a facile approach. The FeCoCrMnBS HEH possesses a porous morphology composed of plentiful ultra-thin nanosheets with the amorphous structure. The obtained FeCoCrMnBS/NF electrode exhibits exceptional electrocatalytic OER activity in alkaline solution, requiring only 290 mV overpotential for 100 mA∙cm−2. Moreover, this catalyst displays a long-term durability of over 120 h at 10 mA∙cm−2. The enhanced catalytic performance benefits from the unique amorphous structure and the positive synergy effect between B and S, promoting the formation of SO42− and thus weakening the adsorption of intermediates in OER on the catalyst surface. This work provides a new strategy for the design of desirable OER electrocatalysts.
  • 加载中
    1. [1]

      (1) Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L.; Zhang, L.-C.; Liang, S.-X.; Lu, J.; Kruzic, J. J. Adv. Funct. Mater. 2021, 31, 2101586. doi: 10.1002/adfm.202101586

    2. [2]

      (2) Chen, Z.; Huang, K.; Zhang, T.; Xia, J.; Wu, J.; Zhang, Z.; Zhang, B. Processes 2023,11, 245. doi: 10.3390/pr11010245

    3. [3]

      (3) Lu, Y.; Huang, K.; Cao, X.; Zhang, L.; Wang, T.; Peng, D.; Zhang, B.; Liu, Z.; Wu, J.; Zhang, Y.; et al. Adv. Funct. Mater. 2022, 32,2110645. doi: 10.1002/adfm.202110645

    4. [4]

      (4) Wang, Q.; Li, Y.; Yang, Y.; Zhang, X.; Guo, Y.; Jia, Z.; Shen, B. APL Mater. 2022,10, 100701. doi: 10.1063/5.0117046

    5. [5]

      (5) Fu, X.; Zhang, J.; Zhan, S.; Xia, F.; Wang, C.; Ma, D.; Yue, Q.; Wu, J.; Kang, Y. ACS Catal. 2022, 12, 11955. doi: 10.1021/acscatal.2c02778

    6. [6]

      (6) Jiang, S.; Tian, K.; Li, X.; Duan, C.; Wang, D.; Wang, Z.; Sun, H.; Zheng, R.; Liu, Y. J. Colloid Interface Sci. 2022, 606, 635. doi: 10.1016/j.jcis.2021.08.060

    7. [7]

      (7) Mei, Y.; Feng, Y.; Zhang, C.; Zhang, Y.; Qi, Q.; Hu, J. ACS Catal. 2022, 12,10808. doi: 10.1021/acscatal.2c02604

    8. [8]

      (8) Ma, P.; Zhang, S.; Zhang, M.; Gu, J.; Zhang, L.; Sun, Y.; Ji, W.; Fu, Z. Sci. China-Mater. 2020, 63, 2613. doi: 10.1007/s40843-020-1461-2

    9. [9]

      (9) Wang, S.; Huo, W.; Fang, F.; Xie, Z.; Shang, J. K.; Jiang, J. Chem. Eng. J. 2022,429, 132410. doi: 10.1016/j.cej.2021.132410

    10. [10]

      (10) Sharma, L.; Katiyar, N. K.; Parui, A.; Das, R.; Kumar, R.; Tiwary, C. S.; Singh, A. K.; Halder, A.; Biswas, K. Nano Res. 2022, 15, 4799. doi: 10.1007/s12274-021-3802-4

    11. [11]

      (11) Zhou, P.; Liu, D.; Chen, Y.; Chen, M.; Liu, Y.; Chen, S.; Kwok, C. T.; Tang, Y.; Wang, S.; Pan, H. J. Mater. Sci. Technol. 2022, 109, 267. doi: 10.1016/j.jmst.2021.09.003

    12. [12]

      (12) Li, S.-Y.; Nguyen, T. X.; Su, Y.-H.; Lin, C.-C.; Huang, Y.-J.; Shen, Y.-H.; Liu, C.-P.; Ruan, J.-J.; Chang, K.-S.; Ting, J.-M. Small 2022, 18,2106127. doi: 10.1002/smll.202106127

    13. [13]

      (13) Tang, J.; Xu, J. L.; Ye, Z. G.; Ma, Y. C.; Li, X. B.; Luo, J. M.; Huang, Y. Z. J. Alloy. Compd. 2021, 885, 160995. doi: 10.1016/j.jallcom.2021.160995

    14. [14]

      (14) Zhang, L.; Cai, W.; Bao, N. Adv. Mater. 2021, 33, 2100745. doi: 10.1002/adma.202100745

    15. [15]

      (15) Yang, P.; Shi, Y.; Xia, T.; Jiang, Z.; Ren, X.; Liang, L.; Shao, Q.; Zhu, K. J. Alloy. Compd. 2023, 938, 168582. doi: 10.1016/j.jallcom.2022.168582

    16. [16]

      (16) Cui, M.; Yang, C.; Li, B.; Dong, Q.; Wu, M.; Hwang, S.; Xie, H.; Wang, X.; Wang, G.; Hu, L. Adv. Energy Mater. 2021, 11, 2002887. doi: 10.1002/aenm.202002887

    17. [17]

      (17) Yu, T.; Zhang, Y.; Hu, Y.; Hu, K.; Lin, X.; Xie, G.; Liu, X.; Reddy, K. M.; Ito, Y.; Qiu, H.-J. ACS Mater. Lett. 2022, 4, 181. doi: 10.1021/acsmaterialslett.1c00762

    18. [18]

      (18) Feng, D.; Dong, Y.; Nie, P.; Zhang, L.; Qiao, Z.-A. Chem. Eng. J. 2022, 430,132883. doi: 10.1016/j.cej.2021.132883

    19. [19]

      (19) Wu, L.; Shen, X.; Ji, Z.; Yuan, J.; Yang, S.; Zhu, G.; Chen, L.; Kong, L.; Zhou, H. Adv. Funct. Mater. 2023, 33, 2208170. doi: 10.1002/adfm.202208170

    20. [20]

      (20) Wang, G.; Chen, J.; Wen, Z.; Li, J. Sci. China-Mater. 2024, 67,1791. doi: 10.1007/s40843-024-2967-2

    21. [21]

      (21) Ren, J.-T.; Chen, L.; Wang, H.-Y.; Yuan, Z.-Y. Inorg. Chem. Front. 2024,11, 2029. doi: 10.1039/D4QI00103F

    22. [22]

      (22) Ren, J.-T.; Chen, L.; Wang, H.-Y.; Yuan, Z.-Y. Chem. Soc. Rev. 2023, 52,8319. doi: 10.1039/D3CS00557G

    23. [23]

      (23) Chen, L.; Wang, L.; Ren, J.-T.; Wang, H.-Y.; Tian, W.-W.; Sun, M.-L.; Yuan, Z.-Y. Small Methods. 2024, 2400108. doi: 10.1002/smtd.202400108

    24. [24]

      (24) Huang, K.; Peng, D.; Yao, Z.; Xia, J.; Zhang, B.; Liu, H.; Chen, Z.; Wu, F.; Wu, J.; Huang, Y. Chem. Eng. J. 2021, 425, 131533. doi: 10.1016/j.cej.2021.131533

    25. [25]

      (25) Duan, C.; Li, X.; Wang, D.; Wang, Z.; Sun, H.; Zheng, R.; Liu, Y. Sustain. Energ. Fuels 2022, 6, 1479. doi: 10.1039/d1se02038b

    26. [26]

      (26) Wang, Y.; Gong, N.; Liu, H.; Ma, W.; Hippalgaonkar, K.; Liu, Z.; Huang, Y. Adv. Mater.2023, 35, 2302067. doi: 10.1002/adma.202302067

    27. [27]

      (27) Mao, Q.; Mu, X.; Deng, K.; Yu, H.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Adv. Funct. Mater. 2023, 33, 2304963. doi: 10.1002/adfm.202304963

    28. [28]

      (28) Chen, Z.-J.; Zhang, T.; Gao, X.-Y.; Huang, Y.-J.; Qin, X.-H.; Wang, Y.-F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L.; et al. Adv. Mater. 2021, 33,2101845. doi: 10.1002/adma.202101845

    29. [29]

      (29) Bai, Y.; Wu, Y.; Zhou, X.; Ye, Y.; Nie, K.; Wang, J.; Xie, M.; Zhang, Z.; Liu, Z.; Cheng, T.; et al. Nat. Commun. 2022, 13, 6094. doi: 10.1038/s41467-022-33846-0

    30. [30]

      (30) Hu, Y.; Zheng, Y.; Jin, J.; Wang, Y.; Peng, Y.; Yin, J.; Shen, W.; Hou, Y.; Zhu, L.; An, L.; et al. Nat. Commun. 2023, 14, 1949. doi: 10.1038/s41467-023-37751-y

    31. [31]

      (31) Zhao, K.; Li, X.; Su, D. Acta Phys. -Chim. Sin. 2021, 37, 2009077. doi: 10.3866/PKU.WHXB202009077

    32. [32]

      (32) Zhang, X.; Qiu, Y.; Li, Q.; Ji, X.; Liu, J. J. Power Sources 2022, 522,231004. doi: 10.1016/j.jpowsour.2022.231004

    33. [33]

      (33) Nemani, S. K.; Zhang, B.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. ACS Nano 2021,15, 12815. doi: 10.1021/acsnano.1c02775

    34. [34]

      (34) Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Nat. Commun. 2019, 10, 2650. doi: 10.1038/s41467-019-10303-z

    35. [35]

      (35) Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi: 10.1126/science.aan5412

    36. [36]

      (36) Baek, J.; Hossain, M. D.; Mukherjee, P.; Lee, J.; Winther, K. T.; Leem, J.; Jiang, Y.; Chueh, W. C.; Bajdich, M.; Zheng, X. Nat. Commun. 2023, 14,5936. doi: 10.1038/s41467-023-41359-7

    37. [37]

      (37) Zhou, P.; Wong, P. K.; Niu, P.; Chen, M.; Kwok, C. T.; Tang, Y.; Li, R.; Wang, S.; Pan, H. Sci. China-Mater. 2023, 66, 1033. doi: 10.1007/s40843-022-2234-5

    38. [38]

      (38) Yao, Y.; Li, Z.; Dou, Y.; Jiang, T.; Zou, J.; Lim, S. Y.; Norby, P.; Stamate, E.; Jensen, J. O.; Zhang, W. Dalton Trans. 2023, 52, 4142. doi: 10.1039/d2dt03637a

    39. [39]

      (39) Antink, W. H.; Lee, S.; Lee, H. S.; Shin, H.; Yoo, T. Y.; Ko, W.; Shim, J.; Na, G.; Sung, Y.-E.; Hyeon, T. Adv. Funct. Mater. 2023, 34, 2309438. doi: 10.1002/adfm.202309438

    40. [40]

      (40) Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V. V.; Agrawal, D.; Hahn, H.; Aghassi-Hagmann, J.; Fichtner, M.; Breitung, B.; et al. Small Struct.2023, 4, 2300012. doi: 10.1002/sstr.202300012

    41. [41]

      (41) Qiu, H.-J.; Fang, G.; Gao, J.; Wen, Y.; Lv, J.; Li, H.; Xie, G.; Liu, X.; Sun, S. ACS Mater. Lett. 2019, 1, 526. doi: 10.1021/acsmaterialslett.9b00414

    42. [42]

      (42) Zhu, H.; Zhu, Z.; Hao, J.; Sun, S.; Lu, S.; Wang, C.; Ma, P.; Dong, W.; Du, M. Chem. Eng. J. 2022, 431, 133251. doi: 10.1016/j.cej.2021.133251

    43. [43]

      (43) Lu, Y.; Xu, S.; Zhang, L.; Hu, Q.; Song, J.; Zhang, F.; Zhang, B. Sustain. Mater. Technol. 2022, 33, e00455. doi: 10.1016/j.susmat.2022.e00455

    44. [44]

      (44) Liu, L.-H.; Li, N.; Han, M.; Han, J.-R.; Liang, H.-Y. Rare Metals 2022,41, 125. doi: 10.1007/s12598-021-01760-x

    45. [45]

      (45) Zhang, Y.; Dai, W.; Zhang, P.; Lu, T.; Pan, Y. J. Alloy. Compd. 2021, 868,159064. doi: 10.1016/j.jallcom.2021.159064

    46. [46]

      (46) Xue, Y.; Fang, J.; Wang, X.; Xu, Z.; Zhang, Y.; Lv, Q.; Liu, M.; Zhu, W.; Zhuang, Z. Adv. Funct. Mater. 2021, 31, 2101405. doi: 10.1002/adfm.202101405

    47. [47]

      (47) Chen, M.; Kitiphatpiboon, N.; Feng, C.; Zhao, Q.; Abudula, A.; Ma, Y.; Yan, K.; Guan, G. Appl. Catal. B-Environ. 2023, 330, 122577. doi: 10.1016/j.apcatb.2023.122577

    48. [48]

      (48) Wei, R.; Zhang, K.; Zhao, P.; An, Y.; Tang, C.; Chen, C.; Li, X.; Ma, X.; Ma, Y.; Hao, X. Appl. Surf. Sci. 2021, 549, 149327. doi: 10.1016/j.apsusc.2021.149327

    49. [49]

      (49) Wang, H.; Wei, R.; Li, X.; Ma, X.; Hao, X.; Guan, G. J. Mater. Sci. Technol. 2021,68, 191. doi: 10.1016/j.jmst.2020.06.045

    50. [50]

      (50) Nguyen, T. X.; Su, Y.-H.; Lin, C.-C.; Ting, J.-M. Adv. Funct. Mater. 2021, 31,2106229. doi: 10.1002/adfm.202106229

    51. [51]

      (51) Hu, R.; Wei, L. Y.; Xian, J. L.; Fang, G. Y.; Wu, Z.; Fan, M.; Guo, J. Y.; Li, Q. X.; Liu, K. S.; Jiang, H. Y.; et al. Acta Phys. Chim. Sin. 2023,39, 2212025. doi: 10.3866/pku.Whxb202212025

    52. [52]

      (52) Wang, Y.; Jia, D.; Zhang, W.; Jia, G.; Xie, H.; Ye, W.; Zhu, G.; Gao, P. Chem. Commun.2022, 58, 6132. doi: 10.1039/d2cc00696k

    53. [53]

      (53) Shi, Y.; Du, W.; Zhou, W.; Wang, C.; Lu, S.; Lu, S.; Zhang, B.Angew. Chem.-Int. Edit. 2020, 59, 22470. doi: 10.1002/anie.202011097

    54. [54]

      (54) Anantharaj, S.; Noda, S. Small 2020, 16, 1905779. doi: 10.1002/smll.201905779

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    10. [10]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    17. [17]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    18. [18]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

Metrics
  • PDF Downloads(0)
  • Abstract views(340)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return