Citation: Xue Dong, Xiaofu Sun, Shuaiqiang Jia, Shitao Han, Dawei Zhou, Ting Yao, Min Wang, Minghui Fang, Haihong Wu, Buxing Han. Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240401. doi: 10.3866/PKU.WHXB202404012 shu

Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts

  • Corresponding author: Xiaofu Sun, sunxiaofu@iccas.ac.cn Haihong Wu, hhwu@chem.ecnu.edu.cn Buxing Han, hanbx@iccas.ac.cn
  • Received Date: 8 April 2024
    Revised Date: 7 May 2024
    Accepted Date: 7 May 2024

    Fund Project: the National Key Research and Development Program of China 2023YFA1507901the National Key Research and Development Program of China 2020YFA0710201National Natural Science Foundation of China 22293015National Natural Science Foundation of China 22121002

  • Copper-based electrocatalysts have great potential to produce high-value products in CO2 reduction reaction (CO2RR), offering a promising way to achieve negative carbon emissions. Additionally, achieving ampere-level currents is crucial for realizing the industrialization of multi-carbon (C2+) products. However, the C2+ selectivity at industrial current densities remains unsatisfactory due to complex electron transport processes and inevitable side reactions. Herein, we developed a carbon-modification strategy aimed at optimizing the local environment and regulating the adsorption of intermediates at Cu active sites. Our findings demonstrated the effectiveness of Cu-Cx catalysts (where 'x' denoted the atomic percentage of C in the catalysts) in facilitating CO2RR for producing C2+ products. Especially, over Cu-C6%, the current density could reach to 1.25 A∙cm-2 at -0.72 V vs. RHE (versus reversible hydrogen electrode) in a flow cell, and the Faradaic efficiency (FE) of C2H4 and C2+ products could reach to 54.4% and 80.2%, respectively. In situ spectral analysis and density functional theory (DFT) calculations showed that the presence of C regulated the adsorption of *CO on Cu surface, reduced the energy barrier of C—C coupling, thus promoting the production of C2+ products.
  • 加载中
    1. [1]

      Li, F.; Li, Y.; Wang, Z.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S. F.; et al. Nat. Catal. 2020, 3, 75. doi: 10.1038/s41929-019-0383-7  doi: 10.1038/s41929-019-0383-7

    2. [2]

      Liu, Z.; Yi, X.; Gao, F.; Xie, Z.; Han, B.; Sun, Y.; He, M.; Yang, J. Acta Phys. -Chim. Sin. 2023, 39, 2112029. doi: 10.3866/PKU.WHXB202112029  doi: 10.3866/PKU.WHXB202112029

    3. [3]

      De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506  doi: 10.1126/science.aav3506

    4. [4]

      Liu, H.; Jia, S.; Wu, L.; He, L.; Sun, X.; Han, B. Innovat. Mater. 2024, 2, 100058. doi: 10.59717/j.xinn-mater.2024.100058  doi: 10.59717/j.xinn-mater.2024.100058

    5. [5]

      Li, X.; Chen, Y.; Zhan, X.; Xu, Y.; Hao, L.; Xu, L.; Li, X.; Umer, M.; Tan, X.; Han, B.; Robertson, A.W.; Sun, Z. Innovat. Mater. 2023, 1, 100014. doi: 10.59717/j.xinn-mater.2023.100014  doi: 10.59717/j.xinn-mater.2023.100014

    6. [6]

      Yang, D.; Zhu, Q.; Han, B. Innovation 2020, 1. 100016. doi: 10.1016/j.xinn.2020.100016  doi: 10.1016/j.xinn.2020.100016

    7. [7]

      Peng, L.; Zhang, Y.; He, R.; Xu, N.; Qiao, J. Acta Phys. -Chim. Sin. 2023, 39, 2302037. doi: 10.3866/PKU.WHXB202302037  doi: 10.3866/PKU.WHXB202302037

    8. [8]

      Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9, nwab022. doi: 10.1093/nsr/nwab022  doi: 10.1093/nsr/nwab022

    9. [9]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166  doi: 10.1002/adma.201807166

    10. [10]

      Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2021, 133, 20795. doi: 10.1002/anie.202101818  doi: 10.1002/anie.202101818

    11. [11]

      Zhu, S.; Delmo, E. P.; Li, T.; Qin, X.; Tian, J.; Zhang, L.; Shao, M. Adv. Mater. 2021, 33, 2005484. doi: 10.1002/adma.202005484  doi: 10.1002/adma.202005484

    12. [12]

      Zou, Y.; Wang, S. Adv. Sci. 2021, 8, 2003579. doi: 10.1002/advs.202003579  doi: 10.1002/advs.202003579

    13. [13]

      Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5  doi: 10.1038/s41929-019-0235-5

    14. [14]

      Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E.; et al. Nat. Energy 2020, 5, 623. doi: 10.1038/s41560-020-0666-x  doi: 10.1038/s41560-020-0666-x

    15. [15]

      Xie, M.; Shen, Y.; Ma, W.; Wei, D.; Zhang, B.; Wang, Z.; Wang, Y.; Zhang, Q.; Xie, S.; Wang, C.; et al. Angew. Chem. Int. Ed. 2022, 61, e202213423. doi: 10.1002/anie.202213423  doi: 10.1002/anie.202213423

    16. [16]

      Li, X.; Wu, X.; Lv, X.; Wang, J.; Wu, H. Chem. Catal. 2022, 2, 262. doi: 10.1016/j.checat.2021.10.015  doi: 10.1016/j.checat.2021.10.015

    17. [17]

      Rong, Y.; Sang, J.; Che, L.; Gao, D.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212027. doi: 10.3866/PKU.WHXB202212027  doi: 10.3866/PKU.WHXB202212027

    18. [18]

      Lum, Y.; Cheng, T.; Goddard, W. A.; III; Ager, J. W. J. Am. Chem. Soc. 2018, 140, 9337. doi: 10.1021/jacs.8b03986  doi: 10.1021/jacs.8b03986

    19. [19]

      Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Li, W.; Wang, Z.; Sham, T. K.; et al. Adv. Mater. 2022, 34, 2204476. doi: 10.1002/adma.202204476  doi: 10.1002/adma.202204476

    20. [20]

      Zhuang, T.; Liang, Z.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R.; et al. Nat. Catal. 2018, 1, 421. doi: 10.1038/s41929-018-0084-7  doi: 10.1038/s41929-018-0084-7

    21. [21]

      Kuang, S.; Su, Y.; Li, M.; Liu, H.; Chuai, H.; Chen, X.; Hensen, E. J.; Meyer, T. J.; Zhang, S.; Ma, X. Natl. Acad. Sci. USA 2023, 120, e2214175120. doi: 10.1073/pnas.2214175120  doi: 10.1073/pnas.2214175120

    22. [22]

      Zhao, S.; Christensen, O.; Sun, Z.; Liang, H.; Bagger, A.; Torbensen, K.; Nazari, P.; Lauritsen, J. V.; Pedersen, S. U.; Rossmeisl, J.; et al. Nat. Commun. 2023, 14, 844. doi: 10.1038/s41467-023-36530-z  doi: 10.1038/s41467-023-36530-z

    23. [23]

      Ge, W.; Chen, Y.; Fan, Y.; Zhu, Y.; Liu, H.; Song, L.; Liu, Z.; Lian, C.; Jiang, H.; Li, C. J. Am. Chem. Soc. 2022, 144, 6613. doi: 10.1021/jacs.2c02486  doi: 10.1021/jacs.2c02486

    24. [24]

      Feng, J.; Wu, L.; Liu, S.; Xu, L.; Song, X.; Zhang, L.; Zhu, Q.; Kang, X.; Sun, X.; Han, B. J. Am. Chem. Soc. 2023, 145, 9857. doi: 10.1021/jacs.3c02428  doi: 10.1021/jacs.3c02428

    25. [25]

      Liu, C.; Wang, M.; Ye, J.; Liu, L.; Li, L.; Li, Y.; Huang, X. Nano Lett. 2023, 23, 1474. doi: 10.1021/acs.nanolett.2c04911  doi: 10.1021/acs.nanolett.2c04911

    26. [26]

      Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x  doi: 10.1038/s41557-018-0092-x

    27. [27]

      Guo, C.; Guo, Y.; Shi, Y.; Lan, X.; Wang, Y.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2022, 134, e202205909. doi: 10.1002/anie.202205909  doi: 10.1002/anie.202205909

    28. [28]

      Dinh, C.T.; Burdyny, T.; Kibria, M.G.; Sei, A. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    29. [29]

      Lv, J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J.; Jiao, F. Adv. Mater. 2018, 30, 1803111. doi: 10.1002/adma.201803111  doi: 10.1002/adma.201803111

    30. [30]

      Gao, D.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2017, 7, 5112. doi: 10.1021/acscatal.7b01416  doi: 10.1021/acscatal.7b01416

    31. [31]

      Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4, 20. doi: 10.1038/s41929-020-00547-0  doi: 10.1038/s41929-020-00547-0

    32. [32]

      Li, Y.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    33. [33]

      Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    34. [34]

      Xue, L.; Gao, Z.; Ning, T.; Li, W.; Li, J.; Yin, J.; Xiao, L.; Wang, G.; Zhuang, L. Angew. Chem. Int. Ed. 2023, 135, e202309519. doi: 10.1002/anie.202309519  doi: 10.1002/anie.202309519

    35. [35]

      Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; Handoko, A. D.; Teh, W. J.; Zheng, Y.; Khoo, Z. H. J.; Lin, M.; Isaacs, M.; Tam, T. L. D.; et al. Nat. Commun. 2023, 14, 335. doi: 10.1038/s41467-023-35912-7  doi: 10.1038/s41467-023-35912-7

    36. [36]

      Yu, S.; Jain, P. K. Nat. Commun. 2019, 10, 2022. doi: 10.1038/s41467-019-10084-5  doi: 10.1038/s41467-019-10084-5

    37. [37]

      Zhao, K.; Liu, Y.; Quan, X.; Chen, S.; Yu, H. ACS Appl. Mater. Interfaces. 2017, 9, 5302. doi: 10.1021/acsami.6b15402  doi: 10.1021/acsami.6b15402

    38. [38]

      Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231. doi: 10.1021/ja3010978  doi: 10.1021/ja3010978

    39. [39]

      Kanda, S.; Shimizu, Y.; Ohno, Y.; Shirasaki, K.; Nagai, Y.; Kasu, M.; Shigekawa, N.; Liang, J. J. Appl. Phys. 2019, 59, SBBB03. doi: 10.7567/1347-4065/ab4f19  doi: 10.7567/1347-4065/ab4f19

    40. [40]

      Fallon, P. J.; Brown, L. M. Diam. Relat. Mater. 1993, 2, 1004. doi: 10.1016/0925-9635(93)90265-4  doi: 10.1016/0925-9635(93)90265-4

    41. [41]

      Leapman, R. D.; Grunes, L. A.; Fejes, P. L. Phys. Rev. B 1982, 26, 614. doi: 10.1103/physrevb.26.614  doi: 10.1103/physrevb.26.614

    42. [42]

      Feng, J.; Zhang, L.; Liu, S.; Xu, L.; Ma, X.; Tan, X.; Wu, L.; Qian, Q.; Wu, T.; Zhang, J.; et al. Nat. Commun. 2023, 14, 4615. doi: 10.1038/s41467-023-40412-9  doi: 10.1038/s41467-023-40412-9

    43. [43]

      Yang, B.; Liu, K.; Li, H.; Liu, C.; Fu, J.; Li, H.; Huang, J. E.; Ou, P.; Alkayyali, T.; Cai, C.; et al. J. Am. Chem. Soc. 2022, 144, 3039. doi: 10.1021/jacs.1c11253  doi: 10.1021/jacs.1c11253

    44. [44]

      Song, X.; Xu, L.; Sun, X.; Han, B. Sci. China Chem. 2023, 66, 315. doi: 10.1007/s11426-021-1463-6  doi: 10.1007/s11426-021-1463-6

    45. [45]

      Zhu, S.; Jiang, B.; Cai, W. -B.; Shao, M. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462  doi: 10.1021/jacs.7b10462

    46. [46]

      Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B. R. ACS Catal. 2021, 11, 7694. doi: 10.1021/acscatal.1c01478  doi: 10.1021/acscatal.1c01478

    47. [47]

      Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52, 7282. doi: 10.1002/anie.201301470  doi: 10.1002/anie.201301470

    48. [48]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559  doi: 10.1021/acs.jpclett.5b01559

    49. [49]

      Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Wang, Z.; Wei, W.; Sham, T. K.; et al. Small 2023, 19, 2207374. doi:10.1002/smll.202207374  doi: 10.1002/smll.202207374

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    15. [15]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    16. [16]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    19. [19]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    20. [20]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

Metrics
  • PDF Downloads(0)
  • Abstract views(93)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return