碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物

董雪 孙晓甫 贾帅强 韩世涛 周达伟 姚婷 王敏 方明慧 吴海虹 韩布兴

引用本文: 董雪, 孙晓甫, 贾帅强, 韩世涛, 周达伟, 姚婷, 王敏, 方明慧, 吴海虹, 韩布兴. 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物[J]. 物理化学学报, 2025, 41(3): 240401. doi: 10.3866/PKU.WHXB202404012 shu
Citation:  Xue Dong, Xiaofu Sun, Shuaiqiang Jia, Shitao Han, Dawei Zhou, Ting Yao, Min Wang, Minghui Fang, Haihong Wu, Buxing Han. Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts[J]. Acta Physico-Chimica Sinica, 2025, 41(3): 240401. doi: 10.3866/PKU.WHXB202404012 shu

碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物

    通讯作者: 孙晓甫, sunxiaofu@iccas.ac.cn; 吴海虹, hhwu@chem.ecnu.edu.cn; 韩布兴, hanbx@iccas.ac.cn
  • 基金项目:

    国家重点研发计划项目 2023YFA1507901

    国家重点研发计划项目 2020YFA0710201

    国家自然科学基金项目 22293015

    国家自然科学基金项目 22121002

摘要: 铜基电催化剂在CO2还原反应(CO2RR)中产高附加值产物的潜力巨大,是实现碳负排放的一种很有前景的途径。同时,安培级电流是实现多碳(C2+)产业化的关键。然而,由于复杂的电子传递过程和不可避免的副反应,工业电流密度下的C2+选择性仍然不令人满意。在此,我们开发了一种碳修饰策略来优化局部环境并调节中间产物在Cu活性位点的吸附。结果表明,Cu-Cx催化剂(x为催化剂中C的原子百分数)能有效催化CO2RR生成C2+产物。特别是在流动池中,Cu-C6%在-0.72 V vs. RHE(相对可逆氢电极)条件下,电流密度可达1.25 A∙cm-2, C2H4和C2+产物的法拉第效率(FE)分别可达54.4%和80.2%。原位光谱分析和密度泛函理论(DFT)计算表明,C的存在调节了*CO在Cu表面的吸附,降低了C—C耦合的能垒,从而促进了C2+产物的生成。

English

    1. [1]

      Li, F.; Li, Y.; Wang, Z.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S. F.; et al. Nat. Catal. 2020, 3, 75. doi: 10.1038/s41929-019-0383-7

    2. [2]

      Liu, Z.; Yi, X.; Gao, F.; Xie, Z.; Han, B.; Sun, Y.; He, M.; Yang, J. Acta Phys. -Chim. Sin. 2023, 39, 2112029. doi: 10.3866/PKU.WHXB202112029

    3. [3]

      De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506

    4. [4]

      Liu, H.; Jia, S.; Wu, L.; He, L.; Sun, X.; Han, B. Innovat. Mater. 2024, 2, 100058. doi: 10.59717/j.xinn-mater.2024.100058

    5. [5]

      Li, X.; Chen, Y.; Zhan, X.; Xu, Y.; Hao, L.; Xu, L.; Li, X.; Umer, M.; Tan, X.; Han, B.; Robertson, A.W.; Sun, Z. Innovat. Mater. 2023, 1, 100014. doi: 10.59717/j.xinn-mater.2023.100014

    6. [6]

      Yang, D.; Zhu, Q.; Han, B. Innovation 2020, 1. 100016. doi: 10.1016/j.xinn.2020.100016

    7. [7]

      Peng, L.; Zhang, Y.; He, R.; Xu, N.; Qiao, J. Acta Phys. -Chim. Sin. 2023, 39, 2302037. doi: 10.3866/PKU.WHXB202302037

    8. [8]

      Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9, nwab022. doi: 10.1093/nsr/nwab022

    9. [9]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166

    10. [10]

      Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2021, 133, 20795. doi: 10.1002/anie.202101818

    11. [11]

      Zhu, S.; Delmo, E. P.; Li, T.; Qin, X.; Tian, J.; Zhang, L.; Shao, M. Adv. Mater. 2021, 33, 2005484. doi: 10.1002/adma.202005484

    12. [12]

      Zou, Y.; Wang, S. Adv. Sci. 2021, 8, 2003579. doi: 10.1002/advs.202003579

    13. [13]

      Gao, D.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Nat. Catal. 2019, 2, 198. doi: 10.1038/s41929-019-0235-5

    14. [14]

      Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E.; et al. Nat. Energy 2020, 5, 623. doi: 10.1038/s41560-020-0666-x

    15. [15]

      Xie, M.; Shen, Y.; Ma, W.; Wei, D.; Zhang, B.; Wang, Z.; Wang, Y.; Zhang, Q.; Xie, S.; Wang, C.; et al. Angew. Chem. Int. Ed. 2022, 61, e202213423. doi: 10.1002/anie.202213423

    16. [16]

      Li, X.; Wu, X.; Lv, X.; Wang, J.; Wu, H. Chem. Catal. 2022, 2, 262. doi: 10.1016/j.checat.2021.10.015

    17. [17]

      Rong, Y.; Sang, J.; Che, L.; Gao, D.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212027. doi: 10.3866/PKU.WHXB202212027

    18. [18]

      Lum, Y.; Cheng, T.; Goddard, W. A.; III; Ager, J. W. J. Am. Chem. Soc. 2018, 140, 9337. doi: 10.1021/jacs.8b03986

    19. [19]

      Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Li, W.; Wang, Z.; Sham, T. K.; et al. Adv. Mater. 2022, 34, 2204476. doi: 10.1002/adma.202204476

    20. [20]

      Zhuang, T.; Liang, Z.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R.; et al. Nat. Catal. 2018, 1, 421. doi: 10.1038/s41929-018-0084-7

    21. [21]

      Kuang, S.; Su, Y.; Li, M.; Liu, H.; Chuai, H.; Chen, X.; Hensen, E. J.; Meyer, T. J.; Zhang, S.; Ma, X. Natl. Acad. Sci. USA 2023, 120, e2214175120. doi: 10.1073/pnas.2214175120

    22. [22]

      Zhao, S.; Christensen, O.; Sun, Z.; Liang, H.; Bagger, A.; Torbensen, K.; Nazari, P.; Lauritsen, J. V.; Pedersen, S. U.; Rossmeisl, J.; et al. Nat. Commun. 2023, 14, 844. doi: 10.1038/s41467-023-36530-z

    23. [23]

      Ge, W.; Chen, Y.; Fan, Y.; Zhu, Y.; Liu, H.; Song, L.; Liu, Z.; Lian, C.; Jiang, H.; Li, C. J. Am. Chem. Soc. 2022, 144, 6613. doi: 10.1021/jacs.2c02486

    24. [24]

      Feng, J.; Wu, L.; Liu, S.; Xu, L.; Song, X.; Zhang, L.; Zhu, Q.; Kang, X.; Sun, X.; Han, B. J. Am. Chem. Soc. 2023, 145, 9857. doi: 10.1021/jacs.3c02428

    25. [25]

      Liu, C.; Wang, M.; Ye, J.; Liu, L.; Li, L.; Li, Y.; Huang, X. Nano Lett. 2023, 23, 1474. doi: 10.1021/acs.nanolett.2c04911

    26. [26]

      Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x

    27. [27]

      Guo, C.; Guo, Y.; Shi, Y.; Lan, X.; Wang, Y.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2022, 134, e202205909. doi: 10.1002/anie.202205909

    28. [28]

      Dinh, C.T.; Burdyny, T.; Kibria, M.G.; Sei, A. Science 2018, 360, 783. doi: 10.1126/science.aas9100

    29. [29]

      Lv, J.; Jouny, M.; Luc, W.; Zhu, W.; Zhu, J.; Jiao, F. Adv. Mater. 2018, 30, 1803111. doi: 10.1002/adma.201803111

    30. [30]

      Gao, D.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2017, 7, 5112. doi: 10.1021/acscatal.7b01416

    31. [31]

      Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4, 20. doi: 10.1038/s41929-020-00547-0

    32. [32]

      Li, Y.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; De Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945

    33. [33]

      Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2

    34. [34]

      Xue, L.; Gao, Z.; Ning, T.; Li, W.; Li, J.; Yin, J.; Xiao, L.; Wang, G.; Zhuang, L. Angew. Chem. Int. Ed. 2023, 135, e202309519. doi: 10.1002/anie.202309519

    35. [35]

      Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; Handoko, A. D.; Teh, W. J.; Zheng, Y.; Khoo, Z. H. J.; Lin, M.; Isaacs, M.; Tam, T. L. D.; et al. Nat. Commun. 2023, 14, 335. doi: 10.1038/s41467-023-35912-7

    36. [36]

      Yu, S.; Jain, P. K. Nat. Commun. 2019, 10, 2022. doi: 10.1038/s41467-019-10084-5

    37. [37]

      Zhao, K.; Liu, Y.; Quan, X.; Chen, S.; Yu, H. ACS Appl. Mater. Interfaces. 2017, 9, 5302. doi: 10.1021/acsami.6b15402

    38. [38]

      Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231. doi: 10.1021/ja3010978

    39. [39]

      Kanda, S.; Shimizu, Y.; Ohno, Y.; Shirasaki, K.; Nagai, Y.; Kasu, M.; Shigekawa, N.; Liang, J. J. Appl. Phys. 2019, 59, SBBB03. doi: 10.7567/1347-4065/ab4f19

    40. [40]

      Fallon, P. J.; Brown, L. M. Diam. Relat. Mater. 1993, 2, 1004. doi: 10.1016/0925-9635(93)90265-4

    41. [41]

      Leapman, R. D.; Grunes, L. A.; Fejes, P. L. Phys. Rev. B 1982, 26, 614. doi: 10.1103/physrevb.26.614

    42. [42]

      Feng, J.; Zhang, L.; Liu, S.; Xu, L.; Ma, X.; Tan, X.; Wu, L.; Qian, Q.; Wu, T.; Zhang, J.; et al. Nat. Commun. 2023, 14, 4615. doi: 10.1038/s41467-023-40412-9

    43. [43]

      Yang, B.; Liu, K.; Li, H.; Liu, C.; Fu, J.; Li, H.; Huang, J. E.; Ou, P.; Alkayyali, T.; Cai, C.; et al. J. Am. Chem. Soc. 2022, 144, 3039. doi: 10.1021/jacs.1c11253

    44. [44]

      Song, X.; Xu, L.; Sun, X.; Han, B. Sci. China Chem. 2023, 66, 315. doi: 10.1007/s11426-021-1463-6

    45. [45]

      Zhu, S.; Jiang, B.; Cai, W. -B.; Shao, M. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462

    46. [46]

      Zhan, C.; Dattila, F.; Rettenmaier, C.; Bergmann, A.; Kühl, S.; García-Muelas, R.; López, N.; Cuenya, B. R. ACS Catal. 2021, 11, 7694. doi: 10.1021/acscatal.1c01478

    47. [47]

      Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2013, 52, 7282. doi: 10.1002/anie.201301470

    48. [48]

      Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. J. Phys. Chem. Lett. 2015, 6, 4073. doi: 10.1021/acs.jpclett.5b01559

    49. [49]

      Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Wang, Z.; Wei, W.; Sham, T. K.; et al. Small 2023, 19, 2207374. doi: 10.1002/smll.202207374

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  98
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2025-03-15
  • 收稿日期:  2024-04-08
  • 接受日期:  2024-05-07
  • 修回日期:  2024-05-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章