Citation: Guoze Yan,  Bin Zuo,  Shaoqing Liu,  Tao Wang,  Ruoyu Wang,  Jinyang Bao,  Zhongzhou Zhao,  Feifei Chu,  Zhengtong Li,  Yusuke Yamauchi,  Saad Melhi,  Xingtao Xu. Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100032. doi: 10.3866/PKU.WHXB202404006 shu

Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater

  • Corresponding author: Bin Zuo,  Xingtao Xu, 
  • Received Date: 1 April 2024
    Revised Date: 30 April 2024
    Accepted Date: 7 May 2024

    Fund Project: The project was supported by the Zhejiang Ocean University Talent Introduction Research Fund (JX6311101423, JX6311103723), the General Project of the Zhejiang Provincial Department of Education (Y202353930), the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes (2024J006) and the National Undergraduate Innovation Training Program (202310340024).

  • Uranium is an indispensable resource for the nuclear industry, while land-based uranium mines are limited in content and unevenly distributed. Therefore, uranium extraction from seawater (UES) holds great potential for sustainable energy production. Capacitive deionization (CDI) technology, known for its low energy consumption, simple process, environmentally friendliness, and high adsorption efficiency, holds significant potential for UES. This paper reviews the development history, principles, classifications, and applications of CDI technology. In the section on development history, we provide a brief overview of the early development of CDI technology, emphasizing key milestones in its application to UES and recent optimization efforts. In the section on principle and categorization, we contextualize CDI technology within UES applications for a comprehensive introduction. Additionally, in the application section, we concentrate on current applications of CDI technology in UES. Furthermore, this paper elaborates on the current research status of CDI for UES and its advantages in terms of adsorptivity, selectivity, and economic benefits. In terms of adsorptivity, CDI technology demonstrates its efficiency in adsorbing uranium ions, achieved through meticulous optimization of electrode structure and material selection. With regard to selectivity, CDI technology selectively extracts uranium while mitigating interference from competing ions through adept modulation of electrode materials and operational parameters, thereby enhancing extraction efficiency. Economically, CDI technology stands out due to its hallmark features of low energy consumption and cost-effectiveness, facilitating high-efficiency uranium extraction and providing substantial economic advantages over alternative methods in the UES domain. Lastly, we discuss the challenge factors (competing ions, salinity, pH, and biofouling) of this technology in the uranium extraction process, aiming to explore the feasibility and economic benefits of UES by using the CDI technology and providing theoretical support for further optimization and promotion of CDI applications in UES. Additionally, we aim to address some of the current challenges of uranium extraction using CDI by incorporating materials informatics and providing an outlook on this matter. This paper provides practical insights into the development and industrial progress of CDI technology in UES, aiming to offer valuable references for the subsequent research on CDI seawater uranium extraction to contribute to the sustainable utilization of seawater resources.
  • 加载中
    1. [1]

      (1) Yu, H. L.; Zhou, L. M.; Liu, Y. L.; Ao, X. Q.; Ouyang, J. B.; Liu, Z. R.; Adesina, A. A. Desalination 2023,564, 116773. doi: 10.1016/j.desal.2023.116773

    2. [2]

      (2) Du, W. Q.; You, W.; Xu, Z. Q. Energies2022, 15, 4310. doi: 10.3390/en15124310

    3. [3]

      (3) Cui, W. R.; Li, F. F.; Xu, R. H.; Zhang, C. R.; Chen, X. R.; Yan, R. H.; Liang, R. P.; Qiu, J. D. Angew. Chem. Int. Edit. 2020, 59, 17684. doi: 10.1002/anie.202007895

    4. [4]

      (4) Wu, Y.; Xie, Y. H.; Liu, X. L.; Li, Y.; Wang, J. Y.; Chen, Z. S.; Yang, H.; Hu, B. W.; Shen, C.; Tang, Z. W.; et al. Coordin. Chem. Rev. 2023, 483, 215097. doi: 10.1016/j.ccr.2023.215097

    5. [5]

      (5) Yuan, Y. H.; Yu, Q. H.; Wen, J.; Li, C. Y.; Guo, Z. H.; Wang, X. L.; Wang, N. Angew. Chem. Int. Edit. 2019,58, 11785. doi: 10.1002/anie.201906191

    6. [6]

      (6) Li, Y.; Zheng, Y. J.; Ahamd, Z.; Zhu, L. X.; Yang, J. J.; Chen, J. P.; Zhang, Z. P. Coordin. Chem. Rev. 2023,491, 215234. doi: 10.1016/j.ccr.2023.215234

    7. [7]

      (7) Li, N.; Yang, L.; Wang, D.; Tang, C. Y.; Deng, W. Q.; Wang, Z. N. Environ. Sci. Technol. 2021, 55, 9181. doi: 10.1021/acs.est.0c08743

    8. [8]

      (8) Zhang, D.; Lin, F.; Liu, L. J.; Zhao, B.; Hu, B. W.; Yu, S. J.; Wang, X. K. Sep. Purif. Technol. 2023, 320, 124204. doi: 10.1016/j.seppur.2023.124204

    9. [9]

      (9) Li, N.; Wu, J. K.; Su, R. D.; Zhang, N.; Zhao, J.; Wang, Z. N. Desalination 2022, 545, 116153. doi: 10.1016/j.desal.2022.116153

    10. [10]

      (10) Wang, K.; Liu, Y.; Ding, Z.; Chen, Z.; Xu, X.; Wang, M.; Lu, T.; Pan, L. Chem. Eng. J. 2022, 433, 133578. doi: 10.1016/j.cej.2021.133578

    11. [11]

      (11) Kim, M.; Xu, X.; Xin, R.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A. K.; El-Said, W. A.; Yi, J. W.; et al. ACS Appl. Mater. Inter. 2021, 13, 52034. doi: 10.1021/acsami.1c09107

    12. [12]

      (12) Chen, L.; Xu, X.; Wan, L.; Zhu, G.; Li, Y.; Lu, T.; Albaqami, M. D.; Pan, L.; Yamauchi, Y. Mater. Chem. Front. 2021, 5, 3480. doi: 10.1039/d0qm00946f

    13. [13]

      (13) Dahiya, S.; Singh, A.; Mishra, B. K. Chem. Eng. J. 2020, 417, 128129. doi: 10.1016/j.cej.2020.128129

    14. [14]

      (14) Sayed, E. T.; Olabi, A. G.;Shehata, N.; Muaz Al, R.; Majdy, O. M.; Rodriguez, C.; Atieh, M. A.; Abdelkareem M. A. Ain Shams Eng. J. 2022, 14, 102030. doi: 10.1016/j.asej.2022.102030

    15. [15]

      (15) Kalfa, A.; Shapira, B.; Shopin, A.; Cohen, I.; Avraham, E.; Aurbach, D. Chemosphere 2019, 241, 125003. doi: 10.1016/j.chemosphere.2019.125003

    16. [16]

      (16) Huang, X.; Guo, X.; Dong, Q.; Liu, L.; Tallon, R.; Chen, J. Environ. Sci.-Nano 2019, 6, 3225. doi: 10.1039/c9en00730j

    17. [17]

      (17) Wang, Y. H.; Zhang, Y. J.; Cai, N.; Xue, J. Q. J. Environ. Chem, Eng. 2022, 10, 109028. doi: 10.1016/j.jece.2022.109028

    18. [18]

      (18) Zhao, C.; Zhang, L.; Ge, R.; Zhang, A.; Zhang, C.; Chen, X. Chemosphere 2018, 217, 763. doi: 10.1016/j.chemosphere.2018.11.071

    19. [19]

      (19) He, C.; Ma, J.; Zhang, C.; Song, J.; Waite, T. D. Environ. Sci. Technol. 2018, 16, 9350. doi: 10.1021/acs.est.8b02807

    20. [20]

      (20) Kim, C.; Lee, J.; Kim, S.; Yoon, J.Desalin. Water Treat. 2016,57, 24682. doi: 10.1080/19443994.2016.1152638

    21. [21]

      (21) Yu, H. L.; Zhou, L. M.; Li, Z. Y.; Liu, Y. L.; Ao, X. Q.; Ouyang, J. B.; Le, Z. G.; Liu, Z. R.; Adesina, A. A.Sep. Purif. Technol. 2022, 302, 122169. doi: 10.1016/j.seppur.2022.122169

    22. [22]

      (22) Yan, C.; Liao, Y.; Shen, C. J.; Weng, X. F.; Lei, R. L.; Liao, C. L.; Zhou, Y. X.; Wang, M. Chem. Eng. J.2023, 461, 142012. doi: 10.1016/j.cej.2023.142012

    23. [23]

      (23) Zeng, J. J.; Wang, T.; Wang, Y.; Gao, L.; Sun, D. D.; Ge, C.; Deng, D. F.; Zhu, H. D.; Bando, Y.; Li, R. Q.; et al. J. Mater. Chem. A 2023,11, 23430. doi: 10.1039/d3ta04476a

    24. [24]

    25. [25]

    26. [26]

    27. [27]

      (27) Zhou, J.; Zhang, X. Y.; Zhang, Y. Z.; Wang, D.; Zhou, H. J.; Li, J. X. Sep. Purif. Technol. 2022, 283, 120172. doi: 10.1016/j.seppur.2021.120172

    28. [28]

      (28) Alkhadra, M. A.; Su, X.; Suss, M. E.; Tian, H. H.; Guyes, E. N.; Shocron, A. N.; Conforti, K. M.; De Souza, J. P.; Kim, N.; Tedesco, M.; et al. Chem. Rev. 2022, 122, 13547. doi: 10.1021/acs.chemrev.1c00396

    29. [29]

      (29) Taha, M. M.; Ramadan, M.; Abdelhafiz, A.; Nassar, M. Y.; Ahmed, S. S.; Khalil, M. M. H.; Allam, N. K. Desalination2023, 546, 116219. doi: 10.1016/j.desal.2022.116219

    30. [30]

      (30) Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater Sci. 2013, 58, 1388. doi: 10.1016/j.pmatsci.2013.03.005

    31. [31]

      (31) Arnold, B. B.; Murphy, G. W. J. Phys. Chem. 1961, 65, 135. doi: 10.1021/j100819a038

    32. [32]

      (32) Johnson, A. M.; Newman, J. J. Electrochem. Soc. 1971, 118, 510. doi: 10.1149/1.2408094

    33. [33]

      (33) Farmer, J. C.; Fix, D. V.; Mack, G. V.; Pekala, R. W.; Poco, J. F.J. Electrochem. Soc. 1996, 143, 159. doi: 10.1149/1.1836402

    34. [34]

      (34) Jia, B.; Zou, L. Chem. Phys. Lett. 2012, 548, 23. doi: 10.1016/j.cplett.2012.06.016

    35. [35]

      (35) Wang, X. Z.; Li, M. G.; Chen, Y. W.; Cheng, R. M.; Huang, S. M.; Pan, L. K.; Sun, Z. Electrochem. Solid. St.2006, 9, E23. doi: 10.1149/1.2213354

    36. [36]

      (36) Li, H.; Pan, L.; Lu, T.; Zhan, Y.; Nie, C.; Sun, Z. J. Electroanal. Chem. 2011, 653, 40. doi: 10.1016/j.jelechem.2011.01.012

    37. [37]

      (37) Li, L.; Zou, L.; Song, H.; Morris, G. Carbon 2009, 47, 775. doi: 10.1016/j.carbon.2008.11.012

    38. [38]

      (38) Xu, X. T.; Tan, H. B.; Wang, Z. M.; Wang, C.; Pan, L. K.; Kaneti, Y. V.; Yang, T.; Yamauchi, Y. Environ. Sci.-Nano 2019, 6, 981. doi: 10.1039/c9en00017h

    39. [39]

      (39) Xu, Y.; Zondlo, J. W.; Finklea, H. O.; Brennsteiner, A. Fuel Process. Technol. 2000, 68, 189. doi: 10.1016/s0378-3820(00)00114-4

    40. [40]

      (40) Lee, J.-B.; Park, K.-K.; Eum, H.-M.; Lee, C.-W. Desalination 2006, 196, 125. doi: 10.1016/j.desal.2006.01.011

    41. [41]

      (41) Jeon, S.-I.; Park, H.-R.; Yeo, J.-G.; Yang, S.; Cho, C. H.; Han, M. H.; Kim, D. K. Energy Environ. Sci. 2013,6, 1471. doi: 10.1039/c3ee24443a

    42. [42]

      (42) Lee, J.; Kim, S.; Kim, C.; Yoon, J. Energy Environ. Sci. 2014,7, 3683. doi: 10.1039/c4ee02378a

    43. [43]

      (43) Choi, J.; Dorji, P.; Shon, H. K.; Hong, S. Desalination 2019, 449, 118. doi: 10.1016/j.desal.2018.10.013

    44. [44]

      (44) Zhang, C. Y.; He, D.; Ma, J. X.; Tang, W. W.; Waite, T. D. Water Res. 2018, 128, 314. doi: 10.1016/j.watres.2017.10.024

    45. [45]

      (45) Chen, R.; Sheehan, T.; Ng, J. L.; Brucks, M.; Su, X. Environ. Sci-Wat. Res. 2020, 6, 258. doi: 10.1039/c9ew00945k

    46. [46]

      (46) Salari, K.; Zarafshan, P.; Khashehchi, M.; Chegini, G.; Etezadi, H.; Karami, H.; Szulzyk-Cieplak, J.; Lagod, G. Membranes-Basel 2022, 12, 459. doi: 10.3390/membranes12050459

    47. [47]

      (47) Tang, W. W.; Kovalsky, P.; He, D.; Waite, T. D. Water Res. 2015, 84, 342. doi: 10.1016/j.watres.2015.08.012

    48. [48]

      (48) Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat, Rev. Mater. 2020, 5, 517. doi: 10.1038/s41578-020-0193-1

    49. [49]

      (49) Shocron, A. N.; Atlas, I.; Suss, M. E. Curr. Opin. Colloid In. 2022, 60, 101602. doi: 10.1016/j.cocis.2022.101602

    50. [50]

      (50) Sun, K. G.; Tebyetekerwa, M.; Wang, C.; Wang, X. F.; Zhang, X. W.; Zhao, X. S. Adv. Funct. Mater. 2023, 33, 2213578. doi: 10.1002/adfm.202213578

    51. [51]

      (51) Samejo, B.; Gul, S.; Samejo, S.; Abro, N. Q.; Yenil, N.; Memon, N. Pak. J. Anal. Env. Chem. 2021, 22, 210. doi: 10.21743/pjaec/2021.12.02

    52. [52]

      (52) Zhao, X. Y.; Wei, H. X.; Zhao, H. C.; Wang, Y. F.; Tang, N.J. Electroanal. Chem. 2020,873, 114416. doi: 10.1016/j.jelechem.2020.114416

    53. [53]

      (53) Biesheuvel, P. M.; van der Wal, A. J. Membrane Sci. 2010, 346, 256. doi: 10.1016/j.memsci.2009.09.043

    54. [54]

      (54) Elewa, M. M.; El Batouti, M.; Al-Harby, N. F. Materials 2023, 16, 4872. doi: doi:10.3390/ma16134872

    55. [55]

      (55) Fritz, P. A.; Zisopoulos, F. K.; Verheggen, S.; Schroën, K.; Boom, R. M. Desalination 2018, 444, 162. doi: 10.1016/j.desal.2018.01.026

    56. [56]

      (56) Hassanvand, A.; Chen, G. Q.; Webley, P. A.; Kentish, S. E. Desalination 2019, 457, 96. doi: 10.1016/j.desal.2019.01.031

    57. [57]

      (57) Jain, A.; Kim, J.; Owoseni, O. M.; Weathers, C.; Caña, D.; Zuo, K. C.; Walker, W. S.; Li, Q. L.; Verduzco, R. Environ. Sci. Technol. 2018,52, 5859. doi: 10.1021/acs.est.7b05874

    58. [58]

      (58) Kim, Y.-J.; Choi, J.-H. Water Res. 2012, 46, 6033. doi: 10.1016/j.watres.2012.08.031

    59. [59]

      (59) Yeo, J.-H.; Choi, J.-H. Desalination

    60. [60]

      2013, 320, 10. doi: 10.1016/j.desal.2013.04.013

    61. [61]

      (60) Dryfe, R. A. W.; Griffin, J. M. Curr. Opin. Electrochem. 2022, 35, 101084. doi: 10.1016/j.coelec.2022.101084

    62. [62]

      (61) Xu, L. Q.; Tang, L.; Peng, S.; Mao, Y. F.; Wu, D. L. Chem. Eng. J. 2022, 446, 137415. doi: 10.1016/j.cej.2022.137415

    63. [63]

      (62) Köller, N.; Mankertz, L.; Finger, S.; Linnartz, C. J.; Wessling, M. Desalination 2024, 572, 117096. doi: 10.1016/j.desal.2023.117096

    64. [64]

      (63) Rommerskirchen, A.; Ohs, B.; Hepp, K. A.; Femmer, R.; Wessling, M. J. Membrane Sci. 2018, 546, 188. doi: 10.1016/j.memsci.2017.10.026

    65. [65]

      (64) Tang, K. X.; Yiacoumi, S.; Li, Y. P.; Gabitto, J.; Tsouris, C. Sep. Purif. Technol. 2020, 240, 116626. doi: 10.1016/j.seppur.2020.116626

    66. [66]

      (65) Wang, M.; Hou, S. J.; Liu, Y.; Xu, X. T.; Lu, T.; Zhao, R.; Pan, L. K. Electrochim. Acta 2016, 216, 211. doi: 10.1016/j.electacta.2016.09.026

    67. [67]

      (66) Siekierka, A. Desalination 2022,527, 115569. doi: 10.1016/j.desal.2022.115569

    68. [68]

      (67) Siekierka, A.; Bryjak, M. Desalination2019, 452, 279. doi: 10.1016/j.desal.2018.10.009

    69. [69]

      (68) Jin, J.; Li, M.; Tang, M.; Li, Y.; Liu, Y.; Cao, H.; Li, F. ACS Sustain. Chem. Eng. 2020, 8, 11424. doi: 10.1021/acssuschemeng.0c04101

    70. [70]

      (69) Ding, Z.; Xu, X.; Li, Y.; Wang, K.; Lu, T.; Pan, L. Desalination 2019, 468, 114078. doi: 10.1016/j.desal.2019.114078

    71. [71]

      (70) Gao, M.; Yang, Z.; Liang, W.; Ao, T.; Chen, W. Sep. Purif. Technol. 2023, 324, 124577. doi: 10.1016/j.seppur.2023.124577

    72. [72]

      (71) Inagaki, M.; Huang, Z.-h. New Carbon Mater. 2023, 38, 405. doi: 10.1016/S1872-5805(23)60736-X

    73. [73]

      (72) Kim, M.; Xu, X. T.; Xin, R. J.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A. K.; El-Said, W. A.; Yi, J. W.; et al.ACS. Appl. Mater. Inter. 2021, 13, 52034. doi: 10.1021/acsami.1c09107

    74. [74]

      (73) Ding, Z. B.; Xu, X. T.; Li, J. B.; Li, Y. Q.; Wang, K.; Lu, T.; Hossain, M. S. A.; Amin, M. A.; Zhang, S. H.; Pan, L. K.; et al. Chem. Eng. J.2022, 430, 133161. doi: 10.1016/j.cej.2021.133161

    75. [75]

      (74) Bao, S.; Xin, C.; Zhang, Y.; Chen, B.; Ding, W.; Luo, Y. Energies 2023, 16, 1136. doi: 10.3390/en16031136

    76. [76]

      (75) Zhang, S. H.; Xu, X. T.; Liu, X. H.; Yang, Q.; Shang, N. Z.; Zhao, X. X.; Zang, X. H.; Wang, C.; Wang, Z.; Shapter, J. G.; et al. Mater. Horiz.2022, 9, 1708. doi: 10.1039/d1mh01882e

    77. [77]

      (76) Xu, X. T.; Yang, T.; Zhang, Q. W.; Xia, W.; Ding, Z. B.; Eid, K.; Abdullah, A. M.; Hossain, M. S. A.; Zhang, S. H.; Tang, J.; et al. Chem. Eng. J.2020, 390, 124493. doi: 10.1016/j.cej.2020.124493

    78. [78]

      (77) Xu, X. T.; Allah, A. E.; Wang, C.; Tan, H. B.; Farghali, A. A.; Khedr, M. H.; Malgras, V.; Yang, T.; Yamauchi, Y. Chem. Eng. J. 2019, 362, 887. doi: 10.1016/j.cej.2019.01.098

    79. [79]

      (78) Tran, N. A. T.; Moon, J.; Kim, J. H.; Park, J. T.; Cho, Y. Sep. Purif. Technol. 2023, 324, 124519. doi: 10.1016/j.seppur.2023.124519

    80. [80]

      (79) Shreerang, D. D.; Rupali, S. M.; Nitish, K.; Vrushali, S.; Shweta, M.; Neetu, J. Desalination 2023,558, 116619. doi: 10.1016/j.desal.2023.116619

    81. [81]

      (80) Shuqian, C.; Jiarui, X.; Ling, C.; Wei, H.; Junjie, S.; Hui, G. Processes 2022, 10, 1075. doi: 10.3390/pr10061075

    82. [82]

      (81) Li, G.-X.; Hou, P.-X.; Zhao, S.-Y.; Liu, C.; Cheng, H.-M. Carbon 2016, 101, 1. doi: 10.1016/j.carbon.2015.12.095

    83. [83]

      (82) Wang, H. Y.; You, H. H.; Wu, G. Q.; Huang, L.; Yan, J.; Liu, X. J.; Ma, Y. K.; Wu, M. J.; Zeng, Y. L.; Yu, J. X.; et al. Chem. Eng. J. 2023,460, 141621. doi: 10.1016/j.cej.2023.141621

    84. [84]

      (83) Guyes, E. N.; Shocron, A. N.; Chen, Y.; Diesendruck, C. E.; Suss, M. E. NPJ Clean Water 2021, 4, 22. doi: 10.1038/s41545-021-00109-2

    85. [85]

      (84) Na, S.; Hongjian, Z.; Haimin, Z.; Yunxia, Z.; Huijun, Z.; Guozhong, W. J. Clean. Prod. 2021, 316, 128251. doi: 10.1016/j.jclepro.2021.128251

    86. [86]

      (85) Wang, L.; Dykstra, J. E.; Lin, S. H. Environ. Sci. Technol. 2019, 53, 3366. doi: 10.1021/acs.est.8b04858

    87. [87]

      (86) Datar, S. D.; Mane, R.; Jha, N. Water Environ. Res. 2022, 94, e10696. doi: 10.1002/wer.10696

    88. [88]

      (87) Al Radi, M.; Sayed, E. T.; Alawadhi, H.; Abdelkareem, M. A.Crit. Rev. Env. Sci. Tec. 2021, 52, 3080. doi: 10.1080/10643389.2021.1902698

    89. [89]

      (88) Liu, E.; Lee, L. Y.; Ong, S. L.; Ng, H. Y. Water Res. 2020, 183, 116059. doi: 10.1016/j.watres.2020.116059

    90. [90]

      (89) Wang, Z.; Gong, H.; Zhang, Y.; Liang, P.; Wang, K. Chem. Eng. J. 2017, 316, 1. doi: 10.1016/j.cej.2017.01.082

    91. [91]

      (90) Tauk, M.; Bechelany, M.; Sistat, P.; Habchi, R.; Cretin, M.; Zaviska, F. Desalination 2024, 572, 117146. doi: 10.1016/j.desal.2023.117146

    92. [92]

      (91) Xu, P.; Elson, B.; E Drewes, J. Electrosorption of Heavy Metals with Capacitive Deionization: Water Reuse, Desalination and Resources Recovery. In Desalination; 2019; pp 497–523.

    93. [93]

      (92) Ma, J.; Zhang, Y.; Collins, R. N.; Tsarev, S.; Aoyagi, N.; Kinsela, A. S.; Jones, A. M.; Waite, T. D. Environ. Sci. Technol. 2019, 53, 2739. doi: 10.1021/acs.est.8b07157

    94. [94]

      (93) Yan, C.; Liao, Y.; Shen, C.; Weng, X.; Lei, R.; Liao, C.; Zhou, Y.; Wang, M. Chem. Eng. J. 2023, 461, 142012. doi: 10.1016/j.cej.2023.142012

    95. [95]

      (94) Hu, Q.; Wang, D.; Liang, J.; Liu, Z.; Li, J. Sep. Purif. Technol. 2024, 330, 125494. doi: 10.1016/j.seppur.2023.125494

    96. [96]

      (95) Chen, L.; Tong, D. G. Sep. Purif. Technol. 2020, 250, 117175. doi: 10.1016/j.seppur.2020.117175

    97. [97]

      (96) Huang, Z. W.; Li, Z. J.; Zheng, L. R.; Zhou, L. M.; Chai, Z. F.; Wang, X. L.; Shi, W. Q. Chem. Eng. J. 2017, 328, 1066. doi: 10.1016/j.cej.2017.07.067

    98. [98]

      (97) Liu, N. J.; Liang, H.; Wei, T.; Li, C. C.; Gao, Q. Q.; Wang, N. N.; Guo, R. B.; Mo, Z. L. Colloid Surface A 2022, 649, 129367. doi: 10.1016/j.colsurfa.2022.129367

    99. [99]

      (98) Qi, R.; Hongtao, X.; Yang, W.; Jianqi, L.; Dingzhong, Y.; Yan, L.; Limin, Z.; Yang, L.; Yun, W. Sep. Purif. Technol. 2023, 330, 125292. doi: 10.1016/j.seppur.2023.125292

    100. [100]

      (99) Cao, M.; Chen, L.; Xu, W.; Gao, J.; Gui, Y.; Ma, F.; Liu, P.; Xue, Y.; Yan, Y. J. Water. Process. Eng. 2022, 48, 102930. doi: 10.1016/j.jwpe.2022.102930

    101. [101]

      (100) Yu, H.; Zhou, L.; Li, Z.; Liu, Y.; Ao, X.; Ouyang, J.; Le, Z.; Liu, Z.; Adesina, A. A. Sep. Purif. Technol. 2022, 302, 122169. doi: 10.1016/j.seppur.2022.122169

    102. [102]

      (101) Xue, Y.; Cao, M.; Gao, J.; Gui, Y.; Chen, J.; Liu, P.; Ma, F.; Yan, Y.; Qiu, M. Sep. Purif. Technol. 2021, 255, 117753. doi: 10.1016/j.seppur.2020.117753

    103. [103]

      (102) Dalla Valle, A.; Furlan, C. Technol. Forecast. Soc. 2014, 81, 143. doi: 10.1016/j.techfore.2013.04.019

    104. [104]

      (103) Zhu, K.; Lu, S.; Gao, Y.; Zhang, R.; Tan, X.; Chen, C. Appl. Surf. Sci. 2017, 396, 1726. doi: 10.1016/j.apsusc.2016.11.230

    105. [105]

      (104) Kabay, N.; Demircioglu, M.; Yayli, S.; Gunay, E.; Yuksel, M.; Saglam, M.; Streat, M. Ind. Eng. Chem. Res. 1998, 37, 1983. doi: 10.1021/ie970518k

    106. [106]

      (105) Beltrami, D.; Cote, G.; Mokhtari, H.; Courtaud, B.; Moyer, B. A.; Chagnest, A. Chem. Rev. 2014, 114, 12002. doi: 10.1021/cr5001546

    107. [107]

      (106) Zhou, C.; Ontiveros-Valencia, A.; de Saint Cyr, L. C.; Zevin, A. S.; Carey, S. E.; Krajmalnik-Brown, R.; Rittmann, B. E. Water Res. 2014,64, 255. doi: 10.1016/j.watres.2014.07.013

    108. [108]

      (107) Liu, P.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. J. Mater. Chem. A 2017, 5, 14748. doi: 10.1039/c7ta03515b

    109. [109]

      (108) Li, J.; Wang, X.; Wang, H.; Wang, S.; Hayat, T.; Alsaedi, A.; Wang, X. Environ. Sci.-Nano2017, 4, 1114. doi: 10.1039/c7en00019g

    110. [110]

      (109) Anderson, M. A.; Cudero, A. L.; Palma, J. Electrochim. Acta 2010, 55, 3845. doi: 10.1016/j.electacta.2010.02.012

    111. [111]

      (110) Jung, J.-C.; Jang, S.; Oh, S.; Park, O.-S. J. Chem. Sci. 2010, 122, 833. doi: 10.1007/s12039-010-0071-2

    112. [112]

      (111) Ma, C.-Y.; Huang, S.-C.; Chou, P.-H.; Den, W.; Hou, C.-H. Chemosphere 2016, 146, 113. doi: 10.1016/j.chemosphere.2015.12.012

    113. [113]

      (112) Patel, S. K.; Ritt, C. L.; Deshmukh, A.; Wang, Z.; Qin, M.; Epsztein, R.; Elimelech, M. Energy Environ. Sci. 2020, 13, 1694. doi: 10.1039/d0ee00341g.

    114. [114]

      (113) Thamilselvan, A.; Nesaraj, A. S.; Noel, M. Int. J. Environ. Sci. Technol. 2016,13, 2961. doi: 10.1007/s13762-016-1061-9

    115. [115]

      (114) Wu, X.; Li, K.; Ying, S.; Liu, L.; Wang, M.; Liao, Y. J. Radioanal. Nucl. Chem. 2019,321, 977. doi: 10.1007/s10967-019-06650-2

    116. [116]

      (115) Liu, Y.; Tang, X.; Zhou, L.; Liu, Z.; Ouyang, J.; Dai, Y.; Le, Z.; Adesina, A. A. Sep. Purif. Technol. 2022, 290, 120827. doi: 10.1016/j.seppur.2022.120827

    117. [117]

      (116) Tang, X.; Zhou, L.; Xi, J.; Ouyang, J.; Liu, Z.; Chen, Z.; Adesina, A. A. Sep. Purif. Technol. 2021, 274, 119005. doi: 10.1016/j.seppur.2021.119005

    118. [118]

      (117) Tang, X.; Zhou, L.; Yu, H.; Dai, Y.; Ouyang, J.; Liu, Z.; Wang, Y.; Le, Z.; Adesina, A. A. Sep. Purif. Technol. 2022, 278, 119604. doi: 10.1016/j.seppur.2021.119604

    119. [119]

      (118) Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Energy Environ. Sci. 2015, 8, 897. doi: 10.1039/c4ee03172e

    120. [120]

      (119) Liao, Y.; Yan, C.; Zeng, K.; Liao, C.; Wang, M. Chem. Eng. J. 2021, 424, 130351. doi: 10.1016/j.cej.2021.130351

    121. [121]

      (120) Liao, Y.; Lei, R.; Weng, X.; Yan, C.; Fu, J.; Wei, G.; Zhang, C.; Wang, M.; Wang, H. J. Hazard. Mater. 2023, 442, 130054. doi: 10.1016/j.jhazmat.2022.130054

    122. [122]

      (121) Tian, S.; Zhang, X.; Zhang, Z. Chem. Eng. J. 2021, 409, 128200. doi: 10.1016/j.cej.2020.128200

    123. [123]

      (122) Hussain, T.; Wang, Y.; Xiong, Z.; Yang, J.; Xie, Z.; Liu, J. J. Colloid Interface Sci.2018, 532, 343. doi: 10.1016/j.jcis.2018.07.129

    124. [124]

      (123) Yan, C.; Kanaththage, Y. W.; Short, R.; Gibson, C. T.; Zou, L. Desalination 2014,344, 274. doi: 10.1016/j.desal.2014.03.041

    125. [125]

      (124) Zhou, J.; Zhou, H.; Zhang, Y.; Wu, J.; Zhang, H.; Wang, G.; Li, J. Chem. Eng. J. 2020,398, 125460. doi: 10.1016/j.cej.2020.125460

    126. [126]

      (125) Yu, H.; Zhou, L.; Liu, Y.; Ao, X.; Ouyang, J.; Liu, Z.; Adesina, A. A. Desalination2023, 564, 116773. doi: 10.1016/j.desal.2023.116773

    127. [127]

      (126) Shuang, M.; Zhou, L.; Liu, Y.; Yu, H.; Ao, X.; Ouyang, J.; Liu, Z.; Shehzad, H.; Adesina, A. A. J. Environ. Chem, Eng. 2023, 11, 111498. doi: 10.1016/j.jece.2023.111498

    128. [128]

      (127) Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Water Res. 2019, 150, 225. doi: 10.1016/j.watres.2018.11.064

    129. [129]

      (128) Hatzell, K. B.; Hatzell, M. C.; Cook, K. M.; Boota, M.; Housel, G. M.; McBride, A.; Kumbur, E. C.; Gogotsi, Y. Environ. Sci. Technol. 2015,49, 3040. doi: 10.1021/es5055989

    130. [130]

      (129) Zhou, J.; Zhang, X.; Zhang, Y.; Wang, D.; Zhou, H.; Li, J. Sep. Purif. Technol. 2022,283, 120172. doi: 10.1016/j.seppur.2021.120172

    131. [131]

      (130) Bales, C.; Kinsela, A. S. S.; Miller, C.; Wang, Y.; Zhu, Y.; Lian, B.; Waite, T. D. Environ. Sci. Technol. 2023, 57, 11345. doi: 10.1021/acs.est.3c03477

    132. [132]

      (131) Gamaethiralalage, J. G.; Singh, K.; Sahin, S.; Yoon, J.; Elimelech, M.; Suss, M. E.; Liang, P.; Biesheuvel, P. M.; Zornitta, R. L.; de Smet, L. C. P. M. Energy Environ. Sci. 2021, 14, 1095. doi: 10.1039/d0ee03145c

    133. [133]

      (132) Rana-Madaria, P.; Nagarajan, M.; Rajagopal, C.; Garg, B. S. Ind. Eng. Chem. Res. 2005,44, 6549. doi: 10.1021/ie050321p

    134. [134]

      (133) Hou, C.-H.; Huang, C.-Y. Desalination 2013, 314, 124. doi: 10.1016/j.desal.2012.12.029

    135. [135]

      (134) Avraham, E.; Yaniv, B.; Soffer, A.; Aurbach, D. J. Phys. Chem. C 2008, 112, 7385. doi: 10.1021/jp711706z

    136. [136]

      (135) Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J. J. Hazard. Mater. 2016, 302, 323. doi: 10.1016/j.jhazmat.2015.09.064

    137. [137]

      (136) Kumar, S.; Aldaqqa, N. M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Edit. 2023,62, e202302180. doi: 10.1002/anie.202302180

    138. [138]

      (137) Han, B.; Cheng, G.; Wang, Y.; Wang, X. Chem. Eng. J. 2018, 360, 364. doi: 10.1016/j.cej.2018.11.236

    139. [139]

      (138) Liu, Q.; Wang, N.; Xie, B.; Xiao, D. Sep. Purif. Technol. 2023, 308, 122866. doi: 10.1016/j.seppur.2022.122866

    140. [140]

      (139) Zhang, Y.; Zhou, J.; Wang, D.; Cao, R.; Li, J. Chem. Eng. J. 2022, 430, 132702. doi: 10.1016/j.cej.2021.132702

    141. [141]

      (140) Wang, D.; Zhou, J.; Zhang, Y.; Zhang, J.; Liang, J.; Zhang, J.; Li, J. Chem. Eng. J. 2023,463, 142413. doi: 10.1016/j.cej.2023.142413

    142. [142]

      (141) Xiang, S.; Mao, H.; Geng, W.; Xu, Y.; Zhou, H. J. Hazard. Mater. 2022, 431, 128591. doi: 10.1016/j.jhazmat.2022.128591

    143. [143]

      (142) Liu, C.; Hsu, P.-C.; Xie, J.; Zhao, J.; Wu, T.; Wang, H.; Liu, W.; Zhang, J.; Chu, S.; Cui, Y. Nat. Energy 2017, 2, 17007. doi: 10.1038/nenergy.2017.7

    144. [144]

      (143) Liao, Y.; Wang, M.; Chen, D. Appl. Surf. Sci. 2019, 484, 83. doi: 10.1016/j.apsusc.2019.04.103

    145. [145]

      (144) Yuan, Y.; Yu, Q.; Cao, M.; Feng, L.; Feng, S.; Liu, T.; Feng, T.; Yan, B.; Guo, Z.; Wang, N. Nat. Sustain. 2021, 4, 708. doi: 10.1038/s41893-021-00709-3

    146. [146]

      (145) Wongsawaeng, D.; Wongjaikham, W.; Hosemann, P.; Swantomo, D.; Basuki, K. T. Int. J. EnergyRes. 2020, 45, 1748. doi: 10.1002/er.5845

    147. [147]

      (146) Ma, C.; Gao, J.; Wang, D.; Yuan, Y.; Wen, J.; Yan, B.; Zhao, S.; Zhao, X.; Sun, Y.; Wang, X.; et al. Adv. Sci. 2019,6, 1900085. doi: 10.1002/advs.201900085

    148. [148]

      (147) Lindner, H.; Schneider, E. Energy Econ. 2015, 49, 9. doi: 10.1016/j.eneco.2015.01.016

    149. [149]

      (148) Zhu, W.; Li, X.; Wang, D.; Fu, F.; Liang, Y. Nanomaterials 2023, 13, 2005. doi: 10.3390/nano13132005

    150. [150]

      (149) Li, P.; Wang, Y.; Wang, J.; Dong, L.; Zhang, W.; Lu, Z.; Liang, J.; Pan, D.; Fan, Q. Chem. Eng. J. 2021, 414, 128810. doi: 10.1016/j.cej.2021.128810

    151. [151]

      (150) Feng, L.; Wang, H.; Feng, T.; Yan, B.; Yu, Q.; Zhang, J.; Guo, Z.; Yuan, Y.; Ma, C.; Liu, T.; et al. Angew. Chem. Int. Edit. 2022,61, e202101015. doi: 10.1002/anie.202101015

    152. [152]

      (151) Gan, J. L.; Zhang, L. Y.; Wang, Q. L.; Xin, Q.; Hu, E.; Lei, Z. W.; Wang, H. Q. Desalination2023, 545, 116154. doi: 10.1016/j.desal.2022.116154

    153. [153]

      (152) Qin, X. D.; Yang, W. T.; Yang, W. K.; Ma, Y.; Li, M. L.; Chen, C.; Pan, Q. H. Micropor. Mesopor. Mat. 2021, 323, 111231. doi: 10.1016/j.micromeso.2021.111231

    154. [154]

      (153) Xu, H. B.; Bai, Z. Y.; Zhang, M. L.; Wang, J.; Yan, Y. D.; Qiu, M.; Chen, J. M. Dalton Trans. 2020, 49, 7535. doi: 10.1039/d0dt00618a

    155. [155]

      (154) Chen, T.; Yu, K. F.; Dong, C. X.; Yuan, X.; Gong, X.; Lian, J.; Cao, X.; Li, M. Z.; Zhou, L.; Hu, B. W.; et al. Coordin. Chem. Rev. 2022,467, 214615. doi: 10.1016/j.ccr.2022.214615

    156. [156]

      (155) Liu, X. L.; Xie, Y. H.; Hao, M. J.; Chen, Z. S.; Yang, H.; Waterhouse, G. I. N.; Ma, S. Q.; Wang, X. K. Adv. Sci. 2022, 9, 2201735. doi: 10.1002/advs.202201735

    157. [157]

      (156) Pu, Y. D.; Qiang, T. T.; Ren, L. F. Int. J. Biol. Macromol. 2022, 206, 699. doi: 10.1016/j.ijbiomac.2022.03.019

    158. [158]

      (157) Wu, R. Z.; Han, Z.; Chen, H. Y.; Cao, G.; Shen, T. T.; Cheng, X.; Tang, Y. Y. ACS ES&T Water 2021, 1, 980. doi: 10.1021/acsestwater.0c00262

    159. [159]

      (158) Zhang, Y. F.; Gao, J.; Deng, Z. Q.; Li, Z. M.; Wang, F. J.; Chen, S. S.; Deng, P. Y. Adv. Sustain. Syst. 2023, 7, 2300393.

    160. [160]

      doi: 10.1002/adsu.202300393

    161. [161]

      (159) Das, A.; Gupta, J.; Gupta, N.; Banerjee, R. H.; Anitha, M.; Singh, D. K. Inorg. Chem. Commun. 2023, 156, 111284. doi: 10.1016/j.inoche.2023.111284

    162. [162]

      (160) Zhao, Z. W.; Lei, R. C.; Zhang, Y. Z.; Cai, T. T.; Han, B. J. Mol. Liq. 2022, 367, 120514. doi: 10.1016/j.molliq.2022.120514

    163. [163]

      (161) Yu, K.;Pan, H. Y.;Jiang, Y. F.;Zhang, T. R.; Zhang, H. G.; Ma, F.; Song, H.; Yang, Y.; Pan, J. M. Desalination2023, 566, 116893. doi: 10.1016/j.desal.2023.116893

    164. [164]

      (162) Lin, K.; Su, W. Y.; Feng, L. J.; Wang, H.; Feng, T. T.; Zhang, J. C.; Cao, M.; Zhao, S. L.; Yuan, Y. H.; Wang, N. Chem. Eng. J. 2021, 430, 133121. doi: 10.1016/j.cej.2021.133121

    165. [165]

      (163) Chen, S. P.; Luo, Q.; Wang, W.; Li, L. Q.; Li, Y. L.; Wang, N. Sep. Purif. Technol. 2023, 336, 126170. doi: 10.1016/j.seppur.2023.126170

    166. [166]

      (164) Liu, X.; Yang, J.-L.; Rittschof, D.; Maki, J. S.; Gu, J.-D. Trends. Ecol. Evol. 2022,37, 469. doi: 10.1016/j.tree.2022.02.009

    167. [167]

      (165) Pu, Y.; Qiang, T.; Ren, L. Desalination 2022, 531, 115721. doi: 10.1016/j.desal.2022.115721

    168. [168]

      (166) Shi, S.; Wu, R.; Meng, S.; Xiao, G.; Ma, C.; Yang, G.; Wang, N.J. Hazard. Mater. 2022, 436, 128983. doi: 10.1016/j.jhazmat.2022.128983

    169. [169]

      (167) Sun, Y.; Liu, R.; Wen, S.; Wang, J.; Chen, L.; Yan, B.; Peng, S.; Ma, C.; Cao, X.; Ma, C.; et al. Acs. Appl. Mater. Inter. 2021, 13, 21272. doi: 10.1021/acsami.1c02882

    170. [170]

      (168) Qi, L.; Hu, Y.; Liu, Z.; An, X.; Bar-Zeev, E. Environ. Sci. Technol. 2018, 52, 9684. doi: 10.1021/acs.est.7b06382

    171. [171]

      (169) Wei, Q.; Wu, C.; Zhang, J.; Cui, Z.; Jiang, T.; Li, J. React. Funct. Polym. 2021, 169, 105068. doi: 10.1016/j.reactfunctpolym.2021.105068

    172. [172]

      (170) Lei, J.; Yu, F.; Xie, H.; Ma, J. Chem. Sci. 2023, 14, 3610. doi: 10.1039/d2sc06946f

    173. [173]

      (171) Jin, D. H.; Wang, Y.; Song, D. L.; Zhu, J. H.; Yu, J.; Liu, Q.; Liu, J. R.; Li, R. M.; Liu, P. L.; Wang, J. Sep. Purif. Technol. 2023, 330, 125186. doi: 10.1016/j.seppur.2023.125186

    174. [174]

      (172) Jiao, G. J.;Ma, J. L.; Zhang, J. Q.; Li, Y. C.; Liu, K. N.; Sun, R. C. Sep. Purif. Technol.2022, 287, 120571. doi: 10.1016/j.seppur.2022.120571

    175. [175]

      (173) Mei, D.; Liu, L.; Li, H.; Wang, Y.; Ma, F.; Zhang, C.; Dong, H.J. Hazard. Mater. 2021, 422, 126872. doi: 10.1016/j.jhazmat.2021.126872

    176. [176]

      (174) Herzberg, M.; Pandit, S.; Mauter, M. S.; Oren, Y. J. Membrane Sci. 2020, 596, 117564. doi: 10.1016/j.memsci.2019.117564

    177. [177]

      (175) Liu, P.; An, M. Y.; He, T.; Li, P.; Ma, F. Q. Materials 2023, 16, 6451. doi: 10.3390/ma16196451

    178. [178]

      (176) Pandit, S.; Shanbhag, S.; Mauter, M.; Oren, Y.; Herzberg, M. Environ. Sci. Technol. 2017,51, 10022. doi: 10.1021/acs.est.6b06339

    179. [179]

      (177) Jiang, Y.; Jin, L.; Wei, D.; Alhassan, S. I.; Wang, H.; Chai, L. Int. J. Env. Res. Pub. He.2022, 19, 10599. doi: 10.3390/ijerph191710599

    180. [180]

      (178) Liu, M.; He, M.; Han, J.; Sun, Y.; Jiang, H.; Li, Z.; Li, Y.; Zhang, H. Sustainability2022, 14, 14429. doi: 10.3390/su142114429

    181. [181]

      (179) Liu, Y.; Gao, X.; Zhang, L.; Du, X.; Dou, X.; Shen, X.; Zhu, H.; Yuan, X. Curr. Nanosci. 2022, 18, 2. doi: 10.2174/1573413716666210101120710

    182. [182]

      (180) Xu, Y.; Zhong, Z.; Zeng, X.; Zhao, Y.; Deng, W.; Chen, Y. Appl.Sci.-Basel. 2023, 13, 5635. doi: 10.3390/app13095635

    183. [183]

      (181) Zhang, B.; Boretti, A.; Castelletto, S. Chem. Eng. J. 2022, 435, 134959. doi: 10.1016/j.cej.2022.134959

    184. [184]

      (182) Suss, M. E.; Presser, V. Joule 2018, 2, 10. doi: 10.1016/j.joule.2017.12.010

    185. [185]

      (183) Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Energy Environ. Sci. 2015, 8, 2296. doi: 10.1039/c5ee00519a

    186. [186]

      (184) Mahmood, A.; Wang, J.-L. Energy Environ. Sci. 2021, 14, 90. doi: 10.1039/d0ee02838j

    187. [187]

      (185) Ramakrishna, S.; Zhang, T.-Y.; Lu, W.-C.; Qian, Q.; Low, J. S. C.; Yune, J. H. R.; Tan, D. Z. L.; Bressan, S.; Sanvito, S.; Kalidindi, S. R. J. Intell. Manuf. 2019,30, 2307. doi: 10.1007/s10845-018-1392-0

    188. [188]

      (186) Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Adv. Mater. 2022, 34, 2107212. doi: 10.1002/adma.202107212

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    4. [4]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    10. [10]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    11. [11]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    16. [16]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    17. [17]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    20. [20]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

Metrics
  • PDF Downloads(1)
  • Abstract views(517)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return