Citation: Yangrui Xu, Yewei Ren, Xinlin Liu, Hongping Li, Ziyang Lu. NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240303. doi: 10.3866/PKU.WHXB202403032 shu

NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction

  • Corresponding author: Xinlin Liu, liuxl@ujs.edu.cn Ziyang Lu, luziyang126@126.com
  • Received Date: 28 March 2024
    Revised Date: 2 May 2024
    Accepted Date: 6 May 2024
    Available Online: 13 May 2024

    Fund Project: the National Natural Science Foundation of China 22278190Zhenjiang Carbon Emissions Peak/Carbon Neutrality Science and Technology Innovation Special Fund Project CQ2022009Open Project of State Key Laboratory of Structural Chemistry 20230022Qing Lan Project of Jiangsu Province 2023Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Project of Research on Educational Reform and Talent Development of School of Emergency Management of Jiangsu University JG-03-11the Special Scientific Research Project of School of Emergency Management of Jiangsu University KY-C-12

  • Increasing the CO2 concentration on the surface of the photocatalysts helps to increase the reaction dynamic rate of the photocatalytic CO2 reduction. However, the low solubility and poor mass transfer of CO2 in aqueous phase seriously hinder the adsorption and conversion of CO2 at the active site. In this work, the porous liquid photocatalyst (NH2-UIO-66 PL) with strong hydrophobicity has been synthesized by grafting the hydrophobic liquid end long-chain (PDMS) onto the amino site of metal-organic framework (NH2-UIO-66). It is found that the NH2-UIO-66 PL with permanent porosity causes a large amount of CO2 to be concentrated in the porous liquid cavity for transporting and diffusing CO2 onto the photocatalyst surface rapidly, and then the CO2 affinity surface with high positive potential and key intermediates for activation reduction reactions are formed with the grafting of hydrophobic PDMS, leading to stronger electron enrichment Zr active sites for enhancement of the overall CO2 reduction ability. As a result, NH2-UIO-66 PL achieved CO2 photoreduction with a CO yield of 24.70 μmol∙g−1∙h−1 and CH4 yield of 7.93 μmol∙g−1∙h−1, which is 2.3-fold and 2.7-fold compared to hydrophilic NH2-UIO-66, respectively. This research provides a novel design of hydrophobic porous liquids to provide industrial possibilities for high CO2 adsorption and reduction.
  • 加载中
    1. [1]

      He, F.; Lu, Z.; Song, M.; Liu, X.; Tang, H.; Huo, P.; Fan, W.; Dong, H.; Wu, X.; Han, S. Chem. Eng. J. 2019, 360, 750. doi: 10.1016/j.cej.2018.12.034  doi: 10.1016/j.cej.2018.12.034

    2. [2]

      Lu, Z.; Peng, J.; Song, M.; Liu, Y.; Liu, X.; Huo, P.; Dong, H.; Yuan, S.; Ma, Z.; Han, S. Chem. Eng. J. 2019, 360, 1262. doi: 10.1016/j.cej.2018.10.200  doi: 10.1016/j.cej.2018.10.200

    3. [3]

      Sun, Y.; Wei, J.; Fu, Z.; Zhang, M.; Zhao, S.; Xu, G.; Li, C.; Zhang, J.; Zhou, T. Adv. Mater. 2023, 35, 2208625. doi: 10.1002/adma.202208625  doi: 10.1002/adma.202208625

    4. [4]

      Rong, Y.; Sang, J.; Che, L.; Gao, D.; Wang, G. Acta Phys.-Chim. Sin. 2023, 39, 2212027. doi: 10.3866/PKU.WHXB202212027  doi: 10.3866/PKU.WHXB202212027

    5. [5]

      Liu, Y.; Kou, Q.; Wang, D.; Chen, L.; Sun, Y.; Lu, Z.; Zhang, Y.; Wang, Y.; Yang, J.; Xing, S.G. J. Mater. Sci. 2017, 52, 10163. doi: 10.1007/s10853-017-1200-9  doi: 10.1007/s10853-017-1200-9

    6. [6]

      Zhao, X.; Lu, Z.; Ji, R.; Zhang, M.; Yi, C.; Yan, Y. Catal. Commun. 2018, 112, 49. doi: 10.1016/j.catcom.2018.04.003  doi: 10.1016/j.catcom.2018.04.003

    7. [7]

      Yang, T.; Deng, P.; Wang, L.; Hu, J.; Liu, Q.; Tang, H. Chin. J. Struct. Chem. 2022, 41, 2206023. doi: 10.14102/j.cnki.0254-5861.2022-0062  doi: 10.14102/j.cnki.0254-5861.2022-0062

    8. [8]

      Yu, X.; Gao, X.; Lu, Z.; Liu, X.; Huo, P.; Liu, X.; Wu, D.; Yan, Y. RSC Adv. 2013, 3, 14807. doi: 10.1039/C3RA00124E  doi: 10.1039/C3RA00124E

    9. [9]

      Lu, Z.; He, M.; Yang, L.; Ma, Z.; Yang, L.; Wang, D.; Yan, Y.; Shi, W.; Liu, Y.; Hua, Z. RSC Adv. 2015, 5, 47820. doi: 10.1039/C5RA08795C  doi: 10.1039/C5RA08795C

    10. [10]

      Shen, Y.; Xu, H.; Zheng, Y.; Wang, Y.; Zhang, L.; Zhang, Z.; Zhong, L.; He, Z. Surf. Interfaces 2023, 42, 103483. doi: 10.1016/j.surfin.2023.103483  doi: 10.1016/j.surfin.2023.103483

    11. [11]

      Li, J.; Guo, J.; Zhang, J.; Sun, Z.; Gao, J. Surf. Interfaces 2022, 34, 102308. doi: 10.1016/j.surfin.2022.102308  doi: 10.1016/j.surfin.2022.102308

    12. [12]

      Lu, Z.; Zhou, G.; Li, B.; Xu, Y.; Wang, P.; Yan, H.; Song, M.; Ma, C.; Han, S.; Liu, X. Appl. Catal. B 2022, 301, 120787. doi: 10.1016/j.apcatb.2021.120787  doi: 10.1016/j.apcatb.2021.120787

    13. [13]

      Xu, Y.; Zhu, X.; Yan, H.; Wang, P.; Song, M.; Ma, C.; Chen, Z.; Chu, J.; Liu, X.; Lu, Z. Chin. J. Catal. 2022, 43, 1111. doi: 10.1016/S1872-2067(21)63930-X  doi: 10.1016/S1872-2067(21)63930-X

    14. [14]

      Lin, H.; Liu, Y.; Wang, Z.; Ling, L.; Huang, H.; Li, Q.; Cheng, L.; Li, Y.; Zhou, J.; Wu, K.; et al. Angew. Chem. Int. Ed. 2022, 61, doi: 10.1002/anie.202214142  doi: 10.1002/anie.202214142

    15. [15]

      Deng, X.; Wen, Z.; Li, X.; Macyk, W.; Yu, J.; Xu, F. Small 2024, 20, 2305410. doi: 10.1002/smll.202305410  doi: 10.1002/smll.202305410

    16. [16]

      Zhao, F.; Zhu, B.; Wang, L.; Yu, J. J. Colloid Interface Sci. 2024, 659, 486. doi: 10.1016/j.jcis.2023.12.173  doi: 10.1016/j.jcis.2023.12.173

    17. [17]

      Lu, Z.; Zhou, G.; Song, M.; Liu, X.; Tang, H.; Dong, H.; Huo, P.; Yan, F.; Du, P.; Xing, G. Appl. Catal. B 2020, 268, 118433. doi: 10.1016/j.apcatb.2019.118433  doi: 10.1016/j.apcatb.2019.118433

    18. [18]

      Lu, Z.; Zhou, G.; Song, M.; Wang, D.; Huo, P.; Fan, W.; Dong, H.; Tang, H.; Yanf, F.; Xing, G. J. Mater. Chem. A 2019, 7, 13986. doi: 10.1039/C9TA01863H  doi: 10.1039/C9TA01863H

    19. [19]

      Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J. Chin. J. Struct. Chem. 2023, 42, 100194. doi: 10.1016/j.cjsc.2023.100194  doi: 10.1016/j.cjsc.2023.100194

    20. [20]

      Park, S. H.; Kim, T.; Kadam, A. N.; Bathula, C.; Ghfar, A. A.; Kim, H.; Lee, S. W. Surf. Interfaces 2022, 30, 101910. doi: 10.1016/j.surfin.2022.101910  doi: 10.1016/j.surfin.2022.101910

    21. [21]

      He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi: 10.1021/acscatal.4c00026  doi: 10.1021/acscatal.4c00026

    22. [22]

      Zhang, Y.; Xia, B.; Ran, J.; Davey, K.; Qiao, S.Z. Adv. Energy Mater. 2020, 10, 1903879. doi: 10.1002/aenm.201903879  doi: 10.1002/aenm.201903879

    23. [23]

      Dong, H.; Zhang, X.; Lu, Y.; Yang, Y.; Zhang, Y. P.; Tang, H. L.; Zhang, F. M.; Yang, Z. D.; Sun, X.; Feng, Y. Appl. Catal. B 2020, 276, 119173. doi: 10.1016/j.apcatb.2020.119173  doi: 10.1016/j.apcatb.2020.119173

    24. [24]

      Wang, Y.; Chen, E.; Tang, J. ACS Catal. 2022, 12, 7300. doi: 10.1021/acscatal.2c01012  doi: 10.1021/acscatal.2c01012

    25. [25]

      Liu, Y.; Shen, D.; Zhang, Q.; Lin, Y.; Peng, F. Appl. Catal. B 2021, 283, 119630. doi: 10.1016/j.apcatb.2020.119630  doi: 10.1016/j.apcatb.2020.119630

    26. [26]

      Ren, Y.; Zhou, G.; Lu, Z. Chin. J. Struct. Chem. 2023, 42, 100045. doi: 10.1016/j.cjsc.2023.100045  doi: 10.1016/j.cjsc.2023.100045

    27. [27]

      Liu, C.; Liu, H.; Jimmy, C.Y.; Wu, L.; Li, Z. Chin. J. Catal. 2023, 55, 1. doi: 10.1016/S1872-2067(23)64556-5  doi: 10.1016/S1872-2067(23)64556-5

    28. [28]

      Lu, Z.; Yu, Z.; Dong, J.; Song, M.; Liu, Y.; Liu, X.; Ma, Z.; Su, H.; Yan, Y.; Huo, P. Chem. Eng. J. 2018, 337, 228. doi: 10.1016/j.cej.2017.12.115  doi: 10.1016/j.cej.2017.12.115

    29. [29]

      Lu, Z.; Chen, F.; He, M.; Song, M.; Ma, Z.; Shi, W.; Yan, Y.; Lan, J.; Li, F. Xiao, P. Chem. Eng. J. 2014, 249, 15. doi: 10.1016/j.cej.2014.03.077  doi: 10.1016/j.cej.2014.03.077

    30. [30]

      Suo, X.; Huang, Y.; Li, Z.; Pan, H.; Cui, X.; Xing, H. Sci. China Mater. 2022, 65, 1068. doi: 10.1007/s40843-021-1845-3  doi: 10.1007/s40843-021-1845-3

    31. [31]

      Wu, D.; Huo, P.; Lu, Z.; Gao, X.; Liu, X.; Shi, W.; Yan, Y. Appl. Surf. Sci. 2012, 258, 7008. doi: 10.1016/j.apsusc.2012.03.154  doi: 10.1016/j.apsusc.2012.03.154

    32. [32]

      Xing, W.; Ni, L.; Liu, X.; Luo, Y.; Lu, Z.; Yan, Y.; Huo, P. RSC Adv. 2013, 3, 26334. doi: 10.1039/C3RA44855J  doi: 10.1039/C3RA44855J

    33. [33]

      Sun, R.; Hu, X.; Shu, C.; Zheng, L.; Wang, S.; Wang, X.; Tan, B. Chin. J. Catal. 2023, 55, 159. doi: 10.1016/S1872-2067(23)64552-8  doi: 10.1016/S1872-2067(23)64552-8

    34. [34]

      Rodrigues, A. P.; Santos, P. M.; Veiga, J. P.; Casimiro, M. H.; Ferreira, L. M. Materials 2023, 16, 489. doi: 10.3390/ma16020489  doi: 10.3390/ma16020489

    35. [35]

      Volkov, D. S.; Rogova, O. B.; Proskurnin, M. A. Agronomy 2021, 11, 1822. doi: 10.3390/agronomy11091822  doi: 10.3390/agronomy11091822

    36. [36]

      Cheng, Y.; Jin, J.; Yan, H.; Zhou, G.; Xu, Y.; Tang, L.; Liu, X.; Li, H.; Zhang, K.; Lu, Z. Angew. Chem., Int. Ed. 2024, 63, e202400857. doi: 10.1002/ange.202400857  doi: 10.1002/ange.202400857

    37. [37]

      Kürkçüoğlu, G. S.; Kavlak, I.; Kınık, B.; Şahin, O. J. Mol. Struct. 2020, 1199, 126892. doi: 10.1016/j.molstruc.2019.126892  doi: 10.1016/j.molstruc.2019.126892

    38. [38]

      He, F.; Lu, Z.; Song, M.; Liu, X.; Tang, H.; Huo, P.; Fan, W.; Dong, H.; Wu, X.; Xing, G. Appl. Surf. Sci. 2019, 483, 453. doi: 10.1016/j.apsusc.2019.03.311  doi: 10.1016/j.apsusc.2019.03.311

    39. [39]

      Zhao, X.; Lu, Z.; Ma, W.; Zhang, M.; Ji, R.; Yi, C.; Yan, Y. Chem. Phys. Lett. 2018, 706, 440. doi: 10.1016/j.cplett.2018.05.056  doi: 10.1016/j.cplett.2018.05.056

    40. [40]

      Wu, L.; Liang, Q.; Zhao, J.; Zhu, J.; Jia, H.; Zhang, W.; Cai, P.; Luo, W. Chin. J. Catal. 2023, 55, 182. doi: 10.1016/S1872-2067(23)64554-1  doi: 10.1016/S1872-2067(23)64554-1

    41. [41]

      Zhou, G.; Xu, Y.; Wang, P.; Tang, L.; Cheng, Y.; Jin, J.; Ma, Z.; Liu, X.; Li, C.; Lu, Z. Chem. Eng. J. 2024, 486, 150163. doi: 10.1016/j.cej.2024.150163  doi: 10.1016/j.cej.2024.150163

    42. [42]

      Chen, R.; Xia, J.; Chen, Y.; Shi, H. Acta Phys.-Chim. Sin. 2022, 39, 2209012. doi: 10.3866/PKU.WHXB202209012  doi: 10.3866/PKU.WHXB202209012

    43. [43]

      Wang, A.; Chen, J.; Zhang, P.; Tang, S.; Feng, Z.; Yao, T.; Li, C. Acta Phys.-Chim. Sin. 2023, 39, 2301023. doi: 10.3866/PKU.WHXB202301023  doi: 10.3866/PKU.WHXB202301023

    44. [44]

      Cheng, Y.; Li, B.; Wei, B.; Wang, Y.; Xu, Y.; Zhou, G.; Tang, L.; Liu, X.; Jin, J.; Lu, Z. Surf. Interfaces 2023, 41, 103303. doi: 10.1016/j.surfin.2023.103303  doi: 10.1016/j.surfin.2023.103303

    45. [45]

      Lu, Z.; He, F.; Hsieh, C. Y.; Wu, X.; Song, M.; Liu, X.; Liu, Y.; Yuan, S.; Dong, H.; Han, S. ACS Appl. Nano Mater. 2019, 2, 1664. doi: 10.1021/acsanm.9b00113  doi: 10.1021/acsanm.9b00113

    46. [46]

      Jiang, W.; An, X.; Xiao, J.; Yang, Z.; Liu, J.; Chen, H.; Li, H.; Zhu, W.; Li, H.; Dai, S. ACS Catal. 2022, 12, 8623. doi: 10.1021/acscatal.2c01329  doi: 10.1021/acscatal.2c01329

    47. [47]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys.-Chim. Sin. 2023, 39, 2209016. doi: 10.3866/pku.Whxb202209016  doi: 10.3866/pku.Whxb202209016

    48. [48]

      Xu, Y.; Ren, Y.; Zhou, G.; Feng, S.; Yang, Z.; Dai, S.; Lu, Z.; Zhou, T. Adv. Funct. Mater. 2024, 2313695. doi: 10.1002/adfm.202313695  doi: 10.1002/adfm.202313695

    49. [49]

      Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi: 10.1016/S1872-2067(22)64108-1  doi: 10.1016/S1872-2067(22)64108-1

    50. [50]

      Zhou, G.; Xu, Y.; Cheng, Y.; Yu, Z.; Wei, B.; Liu, X.; Chen, Z.; Li, C.; Lu, Z. Appl. Catal. B 2023, 335, 122892. doi: 10.1016/j.apcatb.2023.122892  doi: 10.1016/j.apcatb.2023.122892

    51. [51]

      Wan, L.; Han, J.; Tian, W.; Li, N.; Chen, D.; Lu, J. Chem. Eng. J. 2023, 462, 142324. doi: 10.1016/j.cej.2023.142324  doi: 10.1016/j.cej.2023.142324

    52. [52]

      Lei, G.; Zheng, Y.; Cao, Y.; Shen, L.; Wang, S.; Liang, S.; Zhan, Y.; Jiang, L. Acta Phys.-Chim. Sin. 2023, 39, 2210038. doi: 10.3866/PKU.WHXB202210038  doi: 10.3866/PKU.WHXB202210038

    53. [53]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys.-Chim. Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    54. [54]

      Wang, J.; Qiao, X.; Shi, W.; He, J.; Chen, J.; Zhang, W. Acta Phys.-Chim. Sin. 2023, 39, 2210003. doi: 10.3866/PKU.WHXB202210003  doi: 10.3866/PKU.WHXB202210003

    55. [55]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

  • 加载中
    1. [1]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    3. [3]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    4. [4]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    12. [12]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    15. [15]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    20. [20]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

Metrics
  • PDF Downloads(12)
  • Abstract views(413)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return