Citation: Ke Li, Chuang Liu, Jingping Li, Guohong Wang, Kai Wang. Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240300. doi: 10.3866/PKU.WHXB202403009 shu

Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water

  • Corresponding author: Guohong Wang, wanggh2003@163.com Kai Wang, wangkai@hbnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 12 March 2024
    Revised Date: 8 April 2024
    Accepted Date: 8 April 2024
    Available Online: 11 April 2024

    Fund Project: the National Natural Science Foundation of China 22378104the National Natural Science Foundation of China 52104254the Open Subject of Engineering Research Center for Clean Production of Textile Printing and Dyeing, Ministry of Education 2023GCZX008

  • Hydrogen peroxide (H2O2) plays a significant role as an industrial chemical and potential energy carrier. However, common H2O2 photosynthesis catalysts face challenges such as limited solar spectrum absorption, severe agglomeration, and difficulty in reuse, hindering their widespread application. In this study, an inorganic/organic heterojunction photocatalyst comprising g-C3N4 nanosheets and Bi4Ti3O12 nanofibers is synthesized using electrospinning assisted self-assembly methods. The Bi4Ti3O12/g-C3N4 heterojunction exhibits significantly enhanced H2O2 yield of 1650 μmol∙g−1∙h−1 and efficient H2O2 photosynthesis directly from pure water. The improved performance is attributed to enhanced visible light absorption, charge separation efficiency, and boosting redox properties of photoinduced carriers in S-scheme heterojunctions. Additionally, the utilization of in situ X-ray photoelectron spectroscopy (ISXPS) enables the investigation of the S-scheme mechanism and dynamics of inorganic/organic Bi4Ti3O12/g-C3N4 heterojunctions. This research presents a novel approach for designing inorganic/organic heterojunction photocatalysts for solar-driven H2O2 production.
  • 加载中
    1. [1]

      Liu, W.; Wang, P.; Chen, J.; Gao, X.; Che, H.; Liu, B.; Ao, Y. Adv. Funct. Mater. 2022, 32, 2205119. doi: 10.1002/adfm.202205119  doi: 10.1002/adfm.202205119

    2. [2]

      Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi: 10.1007/s12274-021-3733-0  doi: 10.1007/s12274-021-3733-0

    3. [3]

      Zheng, D.; Su, Y.; Wen, D.; Zhang, Z.; Yang, P.; Ma, X.; Chen, Y.; Deng, L.; Zhou, S.; Meng, S. J. Catal. . 2023, 428, 115180. doi: 10.1016/j.jcat.2023.115180  doi: 10.1016/j.jcat.2023.115180

    4. [4]

      Wen, D.; Su, Y.; Fang, J.; Zheng, D.; Yu, Y.; Zhou, S.; Meng, A.; Han, P.; Wong, C. Nano Energy 2023, 117, 108917. doi: 10.1016/j.nanoen.2023.108917  doi: 10.1016/j.nanoen.2023.108917

    5. [5]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    6. [6]

      Wang, K.; Li, J.; Liu, X.; Cheng, Q.; Du, Y.; Li, D.; Wang, G.; Liu, B. Appl. Catal. B 2024, 342, 123349. doi: 10.1016/j.apcatb.2023.123349  doi: 10.1016/j.apcatb.2023.123349

    7. [7]

      Che, H.; Ao, Y. Chin. J. Struc. Chem. 2022, 41, 2205093. doi: 10.14102/j.cnki.0254-5861.2022-0107  doi: 10.14102/j.cnki.0254-5861.2022-0107

    8. [8]

      Tang, X.; Li, F.; Li, F.; Jiang, Y.; Yu, C. Chin. J. Catal. 2023, 52, 79. doi: 10.1016/s1872-2067(23)64498-5  doi: 10.1016/s1872-2067(23)64498-5

    9. [9]

      Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z.; Su, C. Acta Phys.-Chim. Sin. 2023, 39, 2301001. doi: 10.3866/PKU.WHXB202301001  doi: 10.3866/PKU.WHXB202301001

    10. [10]

      Li, F; Tang, X.; Hu, Z.; Li, X.; Li, F; Xie, Y.; Jiang, Y.; Yu, C. Chin. J. Catal. 2023, 55, 253. doi: 10.1016/s1872-2067(23)64555-3  doi: 10.1016/s1872-2067(23)64555-3

    11. [11]

      Liu, F.; Zhou, P.; Hou, Y.; Tan, H.; Liang, Y.; Liang, J.; Zhang, Q.; Guo, S.; Tong, M.; Ni, J. Nat. Commun. 2023, 14, 4344. doi: 10.1038/s41467-023-40007-4  doi: 10.1038/s41467-023-40007-4

    12. [12]

      Zhang, P; Li, Y. J.; Li, X. Chin. J. Catal. 2023, 44, 4. doi: 10.1016/s1872-2067(22)64185-8  doi: 10.1016/s1872-2067(22)64185-8

    13. [13]

      Xu, X.; Sui, Y.; Chen, W.; Huang, W; Li, X.; Li, Y.; Liu, D.; Gao, S.; Wu, W.; Pan, C.; et al. Appl. Catal. B 2024, 341, 123271. doi: 10.1016/j.apcatb.2023.123271  doi: 10.1016/j.apcatb.2023.123271

    14. [14]

      Shen, X.; Wang, Z.; Guo, H.; Lei, Z.; Liu, Z.; Wang, L. Small 2023, 19, 2303156. doi: 10.1002/smll.202303156  doi: 10.1002/smll.202303156

    15. [15]

      Li, Y.; Liu, Y.; Wang, Z.; Wang, P; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Chin. J. Catal. 2023, 45, 132. doi: 10.1016/s1872-2067(22)64163-9  doi: 10.1016/s1872-2067(22)64163-9

    16. [16]

      Liu, T; Pan, Z.; Vequizo, J.; Kato, K; Wu, B.; Yamakata, A.; Katayama, K.; Chen, B.; Chu, C.; Domen, K. Nat. Commun. 2022, 13, 1034. doi: 10.1038/s41467-022-28686-x  doi: 10.1038/s41467-022-28686-x

    17. [17]

      Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/s1872-2067(21)63832-9  doi: 10.1016/s1872-2067(21)63832-9

    18. [18]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    19. [19]

      He, B.; Luo, C.; Wang, Z.; Zhang, L.; Yu, J. Appl. Catal. B 2023, 323, 122200. doi: 10.1016/j.apcatb.2022.122200  doi: 10.1016/j.apcatb.2022.122200

    20. [20]

      Xu, Y.; Tai, W.; Wang, Z.; Zhang, L.; Wang, D.; Liao, J. Sci. China-Mater. 2024, 67, 153. doi: 10.1007/s40843-023-2659-9  doi: 10.1007/s40843-023-2659-9

    21. [21]

      Shen, S.; Li, X.; Zhou, Y.; Han, L.; Xie, Y.; Deng, F.; Huang, J.; Chen, Z.; Feng, Z.; Xu, J.; Dong, F. J. Mater. Sci. Technol. 2023, 155, 148. doi: 10.1016/j.jmst.2023.03.006  doi: 10.1016/j.jmst.2023.03.006

    22. [22]

      Wu, Y; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/s1872-2067(23)64514-0  doi: 10.1016/s1872-2067(23)64514-0

    23. [23]

      Shao, C.; He, Q.; Zhang, M.; Jia, L.; Ji, Y.; Hu, Y.; Li, Y.; Huang, W.; Li, Y. Chin. J. Catal. 2023, 46, 28. doi: 10.1016/s1872-2067(22)64205-0  doi: 10.1016/s1872-2067(22)64205-0

    24. [24]

      Zhang, H.; Liu, J.; Zhang, Y; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    25. [25]

      Zhou, S.; Hu, H.; Hu, H.; Jiang, Q.; Xie, H.; Li, C.; Gao, S.; Kong, Y.; Hu, Y. Sci. China-Mater. 2023, 66, 1837. doi: 10.1007/s40843-022-2337-7  doi: 10.1007/s40843-022-2337-7

    26. [26]

      Yong, Z.; Ma, T. Angew. Chem. Int. Ed. 2023, 62, e202308980. doi: 10.1002/anie.202308980  doi: 10.1002/anie.202308980

    27. [27]

      Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    28. [28]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys.-Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037  doi: 10.3866/PKU.WHXB202112037

    29. [29]

      Che, H.; Gao, X.; Chen, J.; Hou, J.; Ao, Y.; Wang, P. Angew. Chem. Int. Ed. 2021, 60, 25546. doi: 10.1002/anie.202111769  doi: 10.1002/anie.202111769

    30. [30]

      Li, H.; Zhu, B.; Cheng, B.; Luo, G.; Xu, J.; Cao, S. J. Mater. Sci. Technol. 2023, 161, 192. doi: 10.1016/j.jmst.2023.03.039  doi: 10.1016/j.jmst.2023.03.039

    31. [31]

      You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J; Wang, Y.; Deng, S.; Yu, G. Appl. Catal. B 2023, 321, 121941. doi: 10.1016/j.apcatb.2022.121941  doi: 10.1016/j.apcatb.2022.121941

    32. [32]

      Xie, L.; Wang, X.; Zhang, Z.; Ma, Y.; Du, T.; Wang, R.; Wang, J. Small 2023, 19, 2301007. doi: 10.1002/smll.202301007  doi: 10.1002/smll.202301007

    33. [33]

      Wang, C.; Chen, F.; Hu, C.; Ma, T.; Zhang, Y.; Huang, H. Chem. Eng. J. 2022, 431, 133930. doi: 10.1016/j.cej.2021.133930  doi: 10.1016/j.cej.2021.133930

    34. [34]

      Shi, H.; Tan, H.; Zhu, W.; Sun, Z.; Ma, Y.; Wang, E. J. Mater. Chem. A 2015, 3, 6586. doi: 10.1039/c4ta06736c  doi: 10.1039/c4ta06736c

    35. [35]

      Xiao, Y.; Yao, C.; Su, C.; Liu, B. EcoEnergy 2023, 1, 60. doi: 10.1002/ece2.6  doi: 10.1002/ece2.6

    36. [36]

      Wang, K.; Qin, H.; Li, J.; Cheng, Q.; Zhu, Y.; Hu, H.; Peng, J.; Chen, S.; Wang, G.; Chou, S.; Dou, S.; Xiao, Y. Appl. Catal. B 2023, 332, 122763. doi: 10.1016/j.apcatb.2023.122763  doi: 10.1016/j.apcatb.2023.122763

    37. [37]

      Wang, K.; Du, Y.; Li, Y.; Wu, X.; Hu, H.; Wang, G.; Xiao, Y; Chou, S.; Zhang, G. Carbon Energy 2022, 5, e264. doi: 10.1002/cey2.264  doi: 10.1002/cey2.264

    38. [38]

      Hou, W., Guo, H., Wu, M.; Wang, L. ACS Nano 2023, 17, 20560. doi: 10.1021/acsnano.3c07411  doi: 10.1021/acsnano.3c07411

    39. [39]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi: 10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    40. [40]

      Hou, H.; Zeng, X.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 17356. doi: 10.1002/anie.201911609  doi: 10.1002/anie.201911609

    41. [41]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys.-Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    42. [42]

      Wang, K.; Feng, X.; Shangguan, Y.; Wu, X.; Chen, H. Chin. J. Catal. 2022, 43, 246. doi: 10.1016/s1872-2067(21)63819-6  doi: 10.1016/s1872-2067(21)63819-6

    43. [43]

      Wang, K.; Qin, H.; Shao, X.; Jiang, L.; Li, K.; Wang, J.; Zhou, L.; Cheng, Q.; Wang, G.; Wang, H. Solar RRL 2022, 7, 2200963. doi: 10.1002/solr.202200963  doi: 10.1002/solr.202200963

    44. [44]

      Li, S.; Wang, C.; Liu, Y.; Liu, Y.; Cai, M.; Zhao, W.; Duan, X. Chem. Eng. J. 2023, 455, 140943. doi: 10.1016/j.cej.2022.140943  doi: 10.1016/j.cej.2022.140943

    45. [45]

      Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2022, 43, 2548. doi: 10.1016/S1872-2067(22)64111-1  doi: 10.1016/S1872-2067(22)64111-1

    46. [46]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys.-Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    47. [47]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8  doi: 10.1016/s1872-2067(22)64106-8

    48. [48]

      Li, X.; Kang, B.; Dong, F., Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z., Xu, J.; Peng, B.; Wang, Z. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    49. [49]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys.-Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    50. [50]

      Yu, Z.; Guan, C.; Yue, X.; Xiang, Q. Chin. J. Catal. 2023, 50, 361. doi: 10.1016/s1872-2067(23)64448-1  doi: 10.1016/s1872-2067(23)64448-1

    51. [51]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    52. [52]

      Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powd. Mater. 2024, 3, 100140. doi: 10.1016/j.apmate.2023.100140  doi: 10.1016/j.apmate.2023.100140

    53. [53]

      Wageh, S.; Al-Ghamdi, A.; Al-Hartomy, O.; Alotaibi, M.; Wang, L. Chin. J. Catal. 2022, 43, 586. doi: 10.1016/s1872-2067(21)63925-6  doi: 10.1016/s1872-2067(21)63925-6

    54. [54]

      Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/s1872-2067(23)64496-1  doi: 10.1016/s1872-2067(23)64496-1

    55. [55]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    56. [56]

      Shao, X.; Wang, K., Peng, L.; Li, K.; Wen, H.; Le, X.; Wu, X.; Wang, G. Colloids Surfaces A 2022, 652, 129846. doi: 10.1016/j.colsurfa.2022.129846  doi: 10.1016/j.colsurfa.2022.129846

    57. [57]

      Wang, K.; Cheng, Q.; Hou, W.; Guo, H.; Wu, X.; Wang, J.; Li, J.; Liu, Z.; Wang, L. Adv. Funct. Mater. 2023, 34, 2309603. doi: 10.1002/adfm.202309603  doi: 10.1002/adfm.202309603

    58. [58]

      Yu, W.; Bie, C. Acta Phys.-Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    59. [59]

      Shao, X.; Li, K.; Li, J.; Cheng, Q.; Wang, G.; Wang, K. Chin. J. Catal. 2023, 51, 193. doi: 10.1016/s1872-2067(23)64478-x  doi: 10.1016/s1872-2067(23)64478-x

    60. [60]

      Zhang, Y.; Zhang, L.; Zeng, D.; Wang, W.; Wang, J.; Wang, W.; Wang, W. Chin. J. Catal. 2022, 43, 2690. doi: 10.1016/s1872-2067(22)64114-7  doi: 10.1016/s1872-2067(22)64114-7

    61. [61]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi: 10.1016/j.jmst.2023.03.045  doi: 10.1016/j.jmst.2023.03.045

    62. [62]

      Wang, J.; Guo, C.; Jiang, Y.; Wan, J.; Zheng, B.; Li, Y.; Jiang, B. Sci. China-Mater. 2023, 66, 1053. doi: 10.1007/s40843-022-2218-7  doi: 10.1007/s40843-022-2218-7

    63. [63]

      Zhang, Y.; Cao, N.; Liu, X.; He, F.; Zheng, B.; Zhao, C.; Wang, Y. Sci. China-Mater. 2023, 66, 2274. doi: 10.1007/s40843-022-2345-1  doi: 10.1007/s40843-022-2345-1

    64. [64]

      Wan, S.; Xu, J.; Cao, S.; Yu, J. Interdiscip. Mater. 2022, 1, 294. doi: 10.1002/idm2.12024  doi: 10.1002/idm2.12024

    65. [65]

      Wang, K.; Shao, X.; Zhang, K.; Wang, J.; Wu, X.; Wang, H. Appl. Surf. Sci. 2022, 596, 153444. doi: 10.1016/j.apsusc.2022.153444  doi: 10.1016/j.apsusc.2022.153444

    66. [66]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    67. [67]

      Gu, M.; Yang, Y.; Zhang, L.; Zhu, B.; Liang, G.; Yu, J. Appl. Catal. B 2023, 324, 122227. doi: 10.1016/j.apcatb.2022.122227  doi: 10.1016/j.apcatb.2022.122227

    68. [68]

      Li, F.; Yue, X.; Liao, Y.; Qiao, L.; Lv, K.; Xiang, Q. Nat. Commun. 2023, 14, 3901. doi: 10.1038/s41467-023-39578-z  doi: 10.1038/s41467-023-39578-z

    69. [69]

      Xu, F.; Meng, K.; Cao, S.; Jiang, C.; Chen, T.; Xu, J.; Yu, J. ACS Catal. 2022, 12, 164. doi: 10.1021/acscatal.1c04903  doi: 10.1021/acscatal.1c04903

    70. [70]

      Luo, J.; Wei, X.; Qiao, Y.; Wu, C.; Li, L.; Chen, L.; Shi, J. Adv. Mater. 2023, 35, 2210110. doi: 10.1002/adma.202210110  doi: 10.1002/adma.202210110

    71. [71]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    72. [72]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    73. [73]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    74. [74]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    75. [75]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1021/acs.jpclett.3c00811  doi: 10.1021/acs.jpclett.3c00811

  • 加载中
    1. [1]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    18. [18]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(10)
  • Abstract views(445)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return