Citation:
Lubing Qin, Fang Sun, Meiyin Li, Hao Fan, Likai Wang, Qing Tang, Chundong Wang, Zhenghua Tang. 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 240300.
doi:
10.3866/PKU.WHXB202403008
-
电化学硝酸根还原反应(eNO3-RR)合成氨是一种可持续的将环境污染物转化为高附加值产品的方法。钯基双金属纳米催化剂作为高效催化剂已显示出巨大的前景,但调控其组成和构型以提高催化性能并实现深入的机理理解仍然很有挑战。通过使用不同供/吸电子官能团的两个配体,我们成功地制备了两个原子精确的(AgPd)27双金属团簇,即Ag18Pd9(C8H4F)24(简称Ag18Pd9)和Ag22Pd5(C9H10O2)26 (简称Ag22Pd5)。两个团簇的金属核具有明显不同组成和构型,其中Ag18Pd9为中间层是9个Pd原子的“三明治”型金属核结构,Ag22Pd5为M13构型组成的棒状金属核结构,而5个钯原子位于M13构型的顶点和中心位置。出乎意料的是,Ag22Pd5表现出明显优于Ag18Pd9的eNO-3RR性能。具体表现来说,Ag22Pd5在-0.6 V时NH3的法拉第效率和产生速率达到最高,分别为94.42%和1.41 mmol·h-1·mg-1,但Ag18Pd9的NH3的最高法拉第效率和产生速率只有在-0.5 V时的43.86%和0.41 mmol·h-1·mg-1。原位衰减全反射表面增强红外光谱(ATR-SEIRAS)测试提供了反应中间体的实验证据,从而揭示了反应途径,也表明Ag22Pd5比Ag18Pd9具有更强的NO3-吸附和NH3脱附能力。理论计算表明,配体脱落的团簇可以暴露AgPd双金属位点,Ag-Pd位点为协同催化活性位点,不同构型的AgPd活性位点有显著差异,其中Ag22Pd5中的活性位点更有利于NO-3吸附和NH3脱附,从而加速催化过程。
-
-
-
[1]
(1) Min, B.; Gao, Q.; Yan, Z.; Han, X.; Hosmer, K.; Campbell, A.; Zhu, H. Ind. Eng. Chem. Res. 2021, 60, 14635. doi: 10.1021/acs.iecr.1c03072
-
[2]
(2) van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Joule 2021, 5, 290. doi: 10.1016/j.joule.2020.12.025
-
[3]
(3) Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Chem. Soc. Rev. 2021, 50, 6720. doi: 10.1039/D1CS00116G
-
[4]
(4) Lv, C.; Liu, J.; Lee, C.; Zhu, Q.; Xu, J.; Pan, H.; Xue, C.; Yan, Q. ACS Nano 2022, 16, 15512. doi: 10.1021/acsnano.2c07260
-
[5]
(5) Teng, M.; Ye, J.; Wan, C.; He, G.; Chen, H. Ind. Eng. Chem. Res. 2022, 61, 14731. doi: 10.1021/acs.iecr.2c02495
-
[6]
(6) Flores, K.; Cerrón-Calle, G. A.; Valdes, C.; Atrashkevich, A.; Castillo, A.; Morales, H.; Parsons, J. G.; Garcia-Segura, S.; Gardea-Torresdey, J. L. ACS EST Engg. 2022, 2, 746. doi: 10.1021/acsestengg.2c00052
-
[7]
(7) Gu, L.; Luo, H.; Zhang, Y.; Cong, Y.; Kuang, M.; Yang, J. Mater. Chem. Front. 2024, 8, 1015. doi: 10.1039/D3QM01038D
-
[8]
(8) Wu, Q.; Zhu, F.; Wallace, G.; Yao, X.; Chen, J. Chem. Soc. Rev. 2024, 53, 557. doi: 10.1039/D3CS00714F
-
[9]
(9) Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. Joule 2020, 4, 142. doi:10.1016/j.joule.2019.10.006
-
[10]
(10) Liu, S.; Qian, T.; Wang, M.; Ji, H.; Shen, X.; Wang, C.; Yan, C. Nat. Catal. 2021, 4, 322. doi: 10.1038/s41929-021-00599-w
-
[11]
(11) Han, M.; Guo, M.; Yun, Y.; Xu, Y.; Sheng, H.; Chen, Y.; Du, Y.; Ni, K.; Zhu, Y.; Zhu, M. Adv. Funct. Mater. 2022, 32, 2202820. doi: 10.1002/adfm.202202820
-
[12]
(12) Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Nat. Energy 2020, 5, 605. doi: 10.1038/s41560-020-0654-1
-
[13]
(13) He, D.; Ooka, H.; Li, Y.; Kim, Y.; Yamaguchi, A.; Adachi, K.; Hashizume, D.; Yoshida, N.; Toyoda, S.; Kim, S. H.; et al. Nat. Catal. 2022, 5, 798. doi: 10.1038/s41929-022-00833-z
-
[14]
(14) Fu, X.; Niemann, V. A.; Zhou, Y.; Li, S.; Zhang, K.; Pedersen, J. B.; Saccoccio, M.; Andersen, S. Z.; Enemark-Rasmussen, K.; Benedek, P.; et al. Nat. Mater. 2023, 23, 101. doi: 10.1038/s41563-023-01702-1
-
[15]
(15) Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y.; Wang, G.; Li, W.; Ozin, G. A. Chem. Catal. 2022, 2, 622. doi: 10.1016/j.checat.2022.01.022
-
[16]
(16) Tang, Y.; Qin, L.; Liu, Y.; Qiao, L.; Chi, K.; Tang, Z. Catal. Sci. Technol. 2024, 14, 241. doi: 10.1039/D3CY01441J
-
[17]
(17) Kim, Y.; Ko, J.; Shim, M.; Park, J.; Shin, H.-H.; Kim, Z. H.; Jung, Y.; Byon, H. R. Chem. Sci. 2024, 15, 2578. doi: 10.1039/D3SC05793C
-
[18]
(18) Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. ACS Nano 2023, 17, 3209. doi: 10.1021/acsnano.2c11046
-
[19]
(19) Hu, Q.; Qi, S.; Huo, Q.; Zhao, Y.; Sun, J.; Chen, X.; Lv, M.; Zhou, W.; Feng, C.; Chai, X.; et al. J. Am. Chem. Soc. 2023, 146, 2967. doi: 10.1021/jacs.3c06904
-
[20]
(20) Cang, C.; Zheng, H. Chin. J. Struct. Chem. 2023, 42, 100143. doi: 10.1016/j.cjsc.2023.100143
-
[21]
(21) Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S.; Mu, Q.; Han, X.; Yan, Z.; Zhou, H.; He, Q.; Xin, H.; Zhu, H. Nat. Commun. 2022, 13, 2338. doi: 10.1038/s41467-022-29926-w
-
[22]
(22) Chen, K.; Ma, Z.; Li, X.; Kang, J.; Ma, D.; Chu, K. Adv. Funct. Mater. 2023, 33, 2209890. doi: 10.1002/adfm.202209890
-
[23]
(23) Xie, M.; Tang, S.; Li, Z.; Wang, M.; Jin, Z.; Li, P.; Zhan, X.; Zhou, H.; Yu, G. J. Am. Chem. Soc. 2023, 145, 13957. doi: 10.1021/jacs.3c03432
-
[24]
(24) Ren, T. L.; Sheng, Y. W.; Wang, M. Z.; Ren, K. L.; Wang, L. L.; Xu, Y. Chin. J. Struct. Chem. 2022, 41, 2212089. doi: 10.14102/j.cnki.0254-5861.2022-0201
-
[25]
(25) Kang, X.; Li, Y.; Zhu, M.; Jin, R. Chem. Soc. Rev. 2020, 49, 6443. doi: 10.1039/c9cs00633h
-
[26]
(26) Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Chem. Rev. 2020, 120, 526. doi: 10.1021/acs.chemrev.8b00726
-
[27]
(27) Li, Y.; Zhou, M.; Jin, R. Adv. Mater. 2021, 33, 2006591. doi: 10.1002/adma.202006591
-
[28]
(28) Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Acc. Chem. Res. 2018, 51, 3094. doi: 10.1021/acs.accounts.8b00412
-
[29]
(29) Zou, X.; Kang, X.; Zhu, M. Chem. Soc. Rev. 2023, 52, 5892. doi: 10.1039/D2CS00876A
-
[30]
(30) Liu, X.; Cai, X.; Zhu, Y. Acc. Chem. Res. 2023, 56, 1528. doi: 10.1021/acs.accounts.3c00118
-
[31]
(31) Yang, D.; Wang, J.; Wang, Q.; Yuan, Z.; Dai, Y.; Zhou, C.; Wan, X.; Zhang, Q.; Yang, Y. ACS Nano 2022, 16, 15681. doi: 10.1021/acsnano.2c06059
-
[32]
(32) Guan, Z.-J.; Li, J.-J.; Hu, F.; Wang, Q.-M. Angew. Chem. Int. Ed. 2022, 61, e2022097. doi: 10.1002/anie.202209725
-
[33]
(33) Cai, X.; Li, G.; Hu, W.; Zhu, Y. ACS Catal. 2022, 12, 10638. doi: 10.1021/acscatal.2c02595
-
[34]
(34) Zhao, S.; Jin, R.; Jin, R. ACS Energy Lett. 2018, 3, 452. doi: 10.1021/acsenergylett.7b01104
-
[35]
(35) Yao, Q.; Yuan, X.; Chen, T.; Leong, D. T.; Xie, J. Adv. Mater. 2018, 30, 1802751. doi: 10.1002/adma.201802751
-
[36]
(36) Yao, Q.; Chen, T.; Yuan, X.; Xie, J. Acc. Chem. Res. 2018, 51, 1338. doi: 10.1021/acs.accounts.8b00065
-
[37]
(37) Wu, Z.; Yao, Q.; Liu, Z.; Xu, H.; Guo, P.; Liu, L.; Han, Y.; Zhang, K.; Lu, Z.; Li, X.; et al. Adv. Mater. 2021, 33, 2006459. doi: 10.1002/adma.202006459
-
[38]
(38) Qin, L.; Sun, F.; Gong, Z.; Ma, G.; Chen, Y.; Tang, Q.; Qiao, L.; Wang, R.; Liu, Z. Q.; Tang, Z. ACS Nano 2023, 17, 12747. doi: 10.1021/acsnano.3c03692
-
[39]
(39) Shan, H.; Shi, J.; Chen, T.; Cao, Y.; Yao, Q.; An, H.; Yang, Z.; Wu, Z.; Jiang, Z.; Xie, J. ACS Nano 2023, 17, 2368. doi: 10.1021/acsnano.2c09238
-
[40]
(40) Hu, F.; Li, J. J.; Guan, Z. J.; Yuan, S. F.; Wang, Q. M. Angew. Chem. Int. Ed. 2020, 59, 5312. doi: 10.1002/anie.201915168
-
[41]
(41) Li, X.; Takano, S.; Tsukuda, T. J. Phys. Chem. C 2021, 125, 23226. doi: 10.1021/acs.jpcc.1c08197
-
[42]
(42) Qian, H.; Jiang, D.-e.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. J. Am. Chem. Soc. 2012, 134, 16159. doi: 10.1021/ja307657a
-
[43]
(43) Suyama, M.; Takano, S.; Nakamura, T.; Tsukuda, T. J. Am. Chem. Soc. 2019, 141, 14048. doi: 10.1021/jacs.9b06254
-
[44]
(44) Takano, S.; Ito, S.; Tsukuda, T. J. Am. Chem. Soc. 2019, 141, 15994. doi: 10.1021/jacs.9b08055
-
[45]
(45) Liu, X.; Yuan, J.; Chen, J.; Yang, J.; Wu, Z. Part. Part. Syst. Char. 2019, 36, 1900003. doi: 10.1002/ppsc.201900003
-
[46]
(46) Barik, S. K.; Chiu, T. H.; Liu, Y. C.; Chiang, M. H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Nanoscale 2019, 11, 14581. doi: 10.1039/c9nr05068j
-
[47]
(47) Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Hakkinen, H.; Zheng, N. J. Am. Chem. Soc. 2015, 137, 11880. doi: 10.1021/jacs.5b07186
-
[48]
(48) Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. J. Phys. Chem. C 2017, 121, 13848. doi: 10.1021/acs.jpcc.7b01730
-
[49]
(49) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r
-
[50]
(50) Ito, S.; Koyasu, K.; Takano, S.; Tsukuda, T. J. Phys. Chem. Lett. 2021, 12, 10417. doi: 10.1021/acs.jpclett.1c02906
-
[51]
(51) Qin, L.; Sun, F.; Ma, X.; Ma, G.; Tang, Y.; Wang, L.; Tang, Q.; Jin, R.; Tang, Z. Angew. Chem. Int. Ed. 2021, 60, 26136. doi: 10.1002/anie.202110330
-
[52]
(52) Wang, Y.; Su, H.; Ren, L.; Malola, S.; Lin, S.; Teo, B. K.; Hakkinen, H.; Zheng, N. Angew. Chem. Int. Ed. 2016, 55, 15152. doi: 10.1002/anie.201609144
-
[53]
(53) Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. Chem. Sci. 2021, 12, 12819. doi: 10.1039/D1SC03679C
-
[54]
(54) Zhang, F.; Gao, Y.; Lu, P.; Zhong, Y.; Liu, Y.; Bao, X.; Xu, Z.; Lu, M.; Wu, Y.; Chen, P.; et al. Nano Lett. 2023, 23, 1582. doi: 10.1021/acs.nanolett.3c00068
-
[55]
(55) Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. J. Am. Chem. Soc. 2021, 143, 6048. doi: 10.1021/jacs.1c02098
-
[56]
(56) Cao, M.; Wang, S.; Hu, J. H.; Lu, B. H.; Wang, Q. Y.; Zang, S. Q. Adv. Sci. 2022, 9, e2103721. doi: 10.1002/advs.202103721
-
[57]
(57) Qu, M.; Li, H.; Xie, L. H.; Yan, S. T.; Li, J. R.; Wang, J. H.; Wei, C. Y.; Wu, Y. W.; Zhang, X. M. J. Am. Chem. Soc. 2017, 139, 12346. doi: 10.1021/jacs.7b05243
-
[58]
(58) Zhang, S. S.; Alkan, F.; Su, H. F.; Aikens, C. M.; Tung, C. H.; Sun, D. J. Am. Chem. Soc. 2019, 141, 4460. doi: 10.1021/jacs.9b00703
-
[59]
(59) Yuan, S. F.; Guan, Z. J.; Wang, Q. M. J. Am. Chem. Soc. 2022, 144, 11405. doi: 10.1021/jacs.2c04156
-
[60]
(60) Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. J. Am. Chem. Soc. 2016, 138, 7848. doi: 10.1021/jacs.6b04471
-
[61]
(61) Yue, X.; Zhao, W. X.; Wang, S. Y.; Zou, Y. Q. Chin. J. Struct. Chem. 2022, 41, 2205063. doi: 10.14102/j.cnki.0254-5861.2022-0074
-
[62]
(62) Miyajima, S.; Hossain, S.; Ikeda, A.; Kosaka, T.; Kawawaki, T.; Niihori, Y.; Iwasa, T.; Taketsugu, T.; Negishi, Y. Commun. Chem. 2023, 6, 57. doi: 10.1038/s42004-023-00854-0
-
[63]
(63) Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Ruscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202202556. doi: 10.1002/anie.202202556
-
[64]
(64) Jiang, M.; Su, J.; Song, X.; Zhang, P.; Zhu, M.; Qin, L.; Tie, Z.; Zuo, J. L.; Jin, Z. Nano Lett. 2022, 22, 2529. doi: 10.1021/acs.nanolett.2c00446
-
[65]
(65) Zhang, N.; Zhang, G.; Shen, P.; Zhang, H.; Ma, D.; Chu, K. Adv. Funct. Mater. 2023, 33, 2211537. doi: 10.1002/adfm.202211537
-
[66]
(66) Yao, C.; Guo, N.; Xi, S.; Xu, C. Q.; Liu, W.; Zhao, X.; Li, J.; Fang, H.; Su, J.; Chen, Z.; et al. Nat. Commun. 2020, 11, 4389. doi: 10.1038/s41467-020-18080-w
-
[67]
(67) Luo, Y.; Chen, G.-F.; Ding, L.; Chen, X.; Ding, L.-X.; Wang, H. Joule 2019, 3, 279. doi: 10.1016/j.joule.2018.09.011
-
[68]
(68) Wang, Y. M.; Cai, J.; Wang, Q. Y.; Li, Y.; Han, Z.; Li, S.; Gong, C. H.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Angew. Chem. Int. Ed. 2022, 61, e202114538. doi: 10.1002/anie.202114538
-
[69]
(69) Ma, X.-Y.; Zhang, W.-Y.; Ye, K.; Jiang, K.; Cai, W.-B. Anal. Chem. 2022, 94, 11337. doi: 10.1021/acs.analchem.2c02092
-
[70]
(70) Jiang, K.; Ma, X.-Y.; Back, S.; Zhao, J.; Jiang, F.; Qin, X.; Zhang, J.; Cai, W.-B. CCS Chem. 2021, 3, 241. doi: 10.31635/ccschem.020.202000667
-
[71]
(71) Wang, Y.; Xu, Y.; Cheng, C.; Zhang, B.; Zhang, B.; Yu, Y. Angew. Chem. Int. Ed. 2023, 63, e202315109. doi: 10.1002/anie.202315109
-
[72]
(72) Huang, L.; Cheng, L.; Ma, T.; Zhang, J.-J.; Wu, H.; Su, J.; Song, Y.; Zhu, H.; Liu, Q.; Zhu, M.; et al. Adv. Mater. 2023, 35, 2211856. doi: 10.1002/adma.202211856
-
[73]
(73) Kuang, S.; Xiao, T.; Chi, H.; Liu, J.; Mu, C.; Liu, H.; Wang, S.; Yu, Y.; Meyer, T. J.; Zhang, S.; Ma, X. Angew. Chem. Int. Ed. 2024, 63, e202316772. doi: 10.1002/anie.202316772
-
[74]
(74) Wu, J.; Xu, L.; Kong, Z.; Gu, K.; Lu, Y.; Wu, X.; Zou, Y.; Wang, S. Angew. Chem. Int. Ed. 2023, 62, e202311196. doi: 10.1002/anie.202311196
-
[75]
(75) Guo, C.; Zhou, W.; Lan, X.; Wang, Y.; Li, T.; Han, S.; Yu, Y.; Zhang, B. J. Am. Chem. Soc. 2022, 144, 16006. doi: 10.1021/jacs.2c05660
-
[76]
(76) Li, Y.; Zheng, S.; Liu, H.; Xiong, Q.; Yi, H.; Yang, H.; Mei, Z.; Zhao, Q.; Yin, Z.-W.; Huang, M.; et al. Nat. Commun. 2024, 15, 176. doi: 10.1038/s41467-023-44131-z
-
[77]
(77) Liao, W.; Wang, J.; Ni, G.; Liu, K.; Liu, C.; Chen, S.; Wang, Q.; Chen, Y.; Luo, T.; Wang, X.; et al. Nat. Commun. 2024, 15, 1264. doi: 10.1038/s41467-024-45534-2
-
[78]
(78) Ma, X.; Sun, F.; Qin, L.; Liu, Y.; Kang, X.; Wang, L.; Jiang, D.-E.; Tang, Q.; Tang, Z. Chem. Sci. 2022, 13, 10149. doi: 10.1039/D2SC02886G
-
[79]
(79) Ma, G.; Sun, F.; Qiao, L.; Shen, Q.; Wang, L.; Tang, Q.; Tang, Z. Nano Res. 2023, 16, 10867. doi: 10.1007/s12274-023-5885-6
-
[80]
(80) Bootharaju, M. S.; Lee, C. W.; Deng, G.; Kim, H.; Lee, K.; Lee, S.; Chang, H.; Lee, S.; Sung, Y.-E.; Yoo, J. S.; et al. Adv. Mater. 2023, 35, 2207765. doi: 10.1002/adma.202207765
-
[1]
-
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[3]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[4]
Hua Hou , Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045
-
[5]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[6]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[7]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[8]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[9]
Qian Peng , Pengfei Yao , Zicong Wang , Xiufang Xu , Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012
-
[10]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[11]
Hui Li , Jia Nie , Zhongyuan Lü , Hujun Qian , Youliang Zhu , Fuquan Bai , Zexing Qu , Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007
-
[12]
Tingting XU , Wenjing ZHANG , Yongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229
-
[13]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[15]
Jiying Liu , Zehua Li , Wenjing Zhang , Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085
-
[16]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[17]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[18]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[19]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[20]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(194)
- HTML views(56)