Citation: Lubing Qin, Fang Sun, Meiyin Li, Hao Fan, Likai Wang, Qing Tang, Chundong Wang, Zhenghua Tang. Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100008. doi: 10.3866/PKU.WHXB202403008 shu

Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy

  • Corresponding author: Qing Tang, qingtang@cqu.edu.cn Zhenghua Tang, zhht@scut.edu.cn
  • Lubing Qin and Fang Sun contributed equally to this work.
  • Received Date: 11 March 2024
    Revised Date: 25 April 2024
    Accepted Date: 25 April 2024

    Fund Project: the funding from Guangdong Natural Science Funds 2023A0505050107the Chongqing Science and Technology Commission cstc2020jcyj-msxmX0382

  • Electrochemical nitrate reduction reaction (eNO3RR) to synthesize NH3 is a sustainable method to convert environmental contaminants into valuables. Pd based bimetallic nanocatalysts have demonstrated great promise as efficient catalysts, yet modulating the composition and configuration to improve the catalytic performance and achieve comprehensive mechanistic understanding remains challenging. Herein, by employing two ligands with different electron functional groups, we successfully prepared two atomically precise (AgPd)27 bimetallic clusters of Ag18Pd9(C8H4F)24 (Ag18Pd9) and Ag22Pd5(C9H10O2)26 (Ag22Pd5). The two clusters possess markedly different metal core composition and configuration, where Ag18Pd9 has a sandwich metal core structure with 9 Pd atoms located in the middle layer and Ag22Pd5 has a rod-shaped metal core structure composed of the M13 configuration with 5 Pd atoms located at the center and vertices of the M13 configuration. Unexpectedly, Ag22Pd5 exhibited remarkably superior eNO3RR performance than Ag18Pd9. Specifically, the highest Faradaic efficiency of NH3 (FENH3) and its yield rate can reach 94.42% and 1.41 mmol∙h−1∙mg−1 at −0.6 V vs. RHE for Ag22Pd5, but the largest FENH3 and NH3 yield rate is only 43.86% and 0.41 mmol∙h−1∙mg−1 at −0.5 V vs. RHE for Ag18Pd9. The in situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) test provides the experimental evidence of the reaction intermediates hence revealing the reaction pathway, also shows that Ag22Pd5 has stronger capability for NO3 adsorption and NH3 desorption than that of Ag18Pd9. Theoretical calculations indicate that the de-ligated clusters can expose the available AgPd bimetallic sites, synergistically serving as effective active sites and the different configurations result in significantly different catalytic activities, where the active sites in Ag22Pd5 are more favorable for NO3 adsorption and NH3 desorption to accelerate the catalytic process.
  • 加载中
    1. [1]

      Min, B.; Gao, Q.; Yan, Z.; Han, X.; Hosmer, K.; Campbell, A.; Zhu, H. Ind. Eng. Chem. Res. 2021, 60, 14635. doi: 10.1021/acs.iecr.1c03072  doi: 10.1021/acs.iecr.1c03072

    2. [2]

      van Langevelde, P. H.; Katsounaros, I.; Koper, M. T. M. Joule 2021, 5, 290. doi: 10.1016/j.joule.2020.12.025  doi: 10.1016/j.joule.2020.12.025

    3. [3]

      Wang, Y.; Wang, C.; Li, M.; Yu, Y.; Zhang, B. Chem. Soc. Rev. 2021, 50, 6720. doi: 10.1039/D1CS00116G  doi: 10.1039/D1CS00116G

    4. [4]

      Lv, C.; Liu, J.; Lee, C.; Zhu, Q.; Xu, J.; Pan, H.; Xue, C.; Yan, Q. ACS Nano 2022, 16, 15512. doi: 10.1021/acsnano.2c07260  doi: 10.1021/acsnano.2c07260

    5. [5]

      Teng, M.; Ye, J.; Wan, C.; He, G.; Chen, H. Ind. Eng. Chem. Res. 2022, 61, 14731. doi: 10.1021/acs.iecr.2c02495  doi: 10.1021/acs.iecr.2c02495

    6. [6]

      Flores, K.; Cerrón-Calle, G. A.; Valdes, C.; Atrashkevich, A.; Castillo, A.; Morales, H.; Parsons, J. G.; Garcia-Segura, S.; Gardea-Torresdey, J. L. ACS EST Engg. 2022, 2, 746. doi: 10.1021/acsestengg.2c00052  doi: 10.1021/acsestengg.2c00052

    7. [7]

      Gu, L.; Luo, H.; Zhang, Y.; Cong, Y.; Kuang, M.; Yang, J. Mater. Chem. Front. 2024, 8, 1015. doi: 10.1039/D3QM01038D  doi: 10.1039/D3QM01038D

    8. [8]

      Wu, Q.; Zhu, F.; Wallace, G.; Yao, X.; Chen, J. Chem. Soc. Rev. 2024, 53, 557. doi: 10.1039/D3CS00714F  doi: 10.1039/D3CS00714F

    9. [9]

      Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. Joule 2020, 4, 142. doi: 10.1016/j.joule.2019.10.006  doi: 10.1016/j.joule.2019.10.006

    10. [10]

      Liu, S.; Qian, T.; Wang, M.; Ji, H.; Shen, X.; Wang, C.; Yan, C. Nat. Catal. 2021, 4, 322. doi: 10.1038/s41929-021-00599-w  doi: 10.1038/s41929-021-00599-w

    11. [11]

      Han, M.; Guo, M.; Yun, Y.; Xu, Y.; Sheng, H.; Chen, Y.; Du, Y.; Ni, K.; Zhu, Y.; Zhu, M. Adv. Funct. Mater. 2022, 32, 2202820. doi: 10.1002/adfm.202202820  doi: 10.1002/adfm.202202820

    12. [12]

      Chen, G.-F.; Yuan, Y.; Jiang, H.; Ren, S.-Y.; Ding, L.-X.; Ma, L.; Wu, T.; Lu, J.; Wang, H. Nat. Energy 2020, 5, 605. doi: 10.1038/s41560-020-0654-1  doi: 10.1038/s41560-020-0654-1

    13. [13]

      He, D.; Ooka, H.; Li, Y.; Kim, Y.; Yamaguchi, A.; Adachi, K.; Hashizume, D.; Yoshida, N.; Toyoda, S.; Kim, S. H.; et al. Nat. Catal. 2022, 5, 798. doi: 10.1038/s41929-022-00833-z  doi: 10.1038/s41929-022-00833-z

    14. [14]

      Fu, X.; Niemann, V. A.; Zhou, Y.; Li, S.; Zhang, K.; Pedersen, J. B.; Saccoccio, M.; Andersen, S. Z.; Enemark-Rasmussen, K.; Benedek, P.; et al. Nat. Mater. 2023, 23, 101. doi: 10.1038/s41563-023-01702-1  doi: 10.1038/s41563-023-01702-1

    15. [15]

      Hao, R.; Tian, L.; Wang, C.; Wang, L.; Liu, Y.; Wang, G.; Li, W.; Ozin, G. A. Chem. Catal. 2022, 2, 622. doi: 10.1016/j.checat.2022.01.022  doi: 10.1016/j.checat.2022.01.022

    16. [16]

      Tang, Y.; Qin, L.; Liu, Y.; Qiao, L.; Chi, K.; Tang, Z. Catal. Sci. Technol. 2024, 14, 241. doi: 10.1039/D3CY01441J  doi: 10.1039/D3CY01441J

    17. [17]

      Kim, Y.; Ko, J.; Shim, M.; Park, J.; Shin, H.-H.; Kim, Z. H.; Jung, Y.; Byon, H. R. Chem. Sci. 2024, 15, 2578. doi: 10.1039/D3SC05793C  doi: 10.1039/D3SC05793C

    18. [18]

      Jiang, M.; Zhu, M.; Wang, M.; He, Y.; Luo, X.; Wu, C.; Zhang, L.; Jin, Z. ACS Nano 2023, 17, 3209. doi: 10.1021/acsnano.2c11046  doi: 10.1021/acsnano.2c11046

    19. [19]

      Hu, Q.; Qi, S.; Huo, Q.; Zhao, Y.; Sun, J.; Chen, X.; Lv, M.; Zhou, W.; Feng, C.; Chai, X.; et al. J. Am. Chem. Soc. 2023, 146, 2967. doi: 10.1021/jacs.3c06904  doi: 10.1021/jacs.3c06904

    20. [20]

      Cang, C.; Zheng, H. Chin. J. Struct. Chem. 2023, 42, 100143. doi: 10.1016/j.cjsc.2023.100143  doi: 10.1016/j.cjsc.2023.100143

    21. [21]

      Gao, Q.; Pillai, H. S.; Huang, Y.; Liu, S.; Mu, Q.; Han, X.; Yan, Z.; Zhou, H.; He, Q.; Xin, H.; Zhu, H. Nat. Commun. 2022, 13, 2338. doi: 10.1038/s41467-022-29926-w  doi: 10.1038/s41467-022-29926-w

    22. [22]

      Chen, K.; Ma, Z.; Li, X.; Kang, J.; Ma, D.; Chu, K. Adv. Funct. Mater. 2023, 33, 2209890. doi: 10.1002/adfm.202209890  doi: 10.1002/adfm.202209890

    23. [23]

      Xie, M.; Tang, S.; Li, Z.; Wang, M.; Jin, Z.; Li, P.; Zhan, X.; Zhou, H.; Yu, G. J. Am. Chem. Soc. 2023, 145, 13957. doi: 10.1021/jacs.3c03432  doi: 10.1021/jacs.3c03432

    24. [24]

      Ren, T. L.; Sheng, Y. W.; Wang, M. Z.; Ren, K. L.; Wang, L. L.; Xu, Y. Chin. J. Struct. Chem. 2022, 41, 2212089. doi: 10.14102/j.cnki.0254-5861.2022-0201  doi: 10.14102/j.cnki.0254-5861.2022-0201

    25. [25]

      Kang, X.; Li, Y.; Zhu, M.; Jin, R. Chem. Soc. Rev. 2020, 49, 6443. doi: 10.1039/c9cs00633h  doi: 10.1039/c9cs00633h

    26. [26]

      Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Chem. Rev. 2020, 120, 526. doi: 10.1021/acs.chemrev.8b00726  doi: 10.1021/acs.chemrev.8b00726

    27. [27]

      Li, Y.; Zhou, M.; Jin, R. Adv. Mater. 2021, 33, 2006591. doi: 10.1002/adma.202006591  doi: 10.1002/adma.202006591

    28. [28]

      Ghosh, A.; Mohammed, O. F.; Bakr, O. M. Acc. Chem. Res. 2018, 51, 3094. doi: 10.1021/acs.accounts.8b00412  doi: 10.1021/acs.accounts.8b00412

    29. [29]

      Zou, X.; Kang, X.; Zhu, M. Chem. Soc. Rev. 2023, 52, 5892. doi: 10.1039/D2CS00876A  doi: 10.1039/D2CS00876A

    30. [30]

      Liu, X.; Cai, X.; Zhu, Y. Acc. Chem. Res. 2023, 56, 1528. doi: 10.1021/acs.accounts.3c00118  doi: 10.1021/acs.accounts.3c00118

    31. [31]

      Yang, D.; Wang, J.; Wang, Q.; Yuan, Z.; Dai, Y.; Zhou, C.; Wan, X.; Zhang, Q.; Yang, Y. ACS Nano 2022, 16, 15681. doi: 10.1021/acsnano.2c06059  doi: 10.1021/acsnano.2c06059

    32. [32]

      Guan, Z.-J.; Li, J.-J.; Hu, F.; Wang, Q.-M. Angew. Chem. Int. Ed. 2022, 61, e2022097. doi: 10.1002/anie.202209725  doi: 10.1002/anie.202209725

    33. [33]

      Cai, X.; Li, G.; Hu, W.; Zhu, Y. ACS Catal. 2022, 12, 10638. doi: 10.1021/acscatal.2c02595  doi: 10.1021/acscatal.2c02595

    34. [34]

      Zhao, S.; Jin, R.; Jin, R. ACS Energy Lett. 2018, 3, 452. doi: 10.1021/acsenergylett.7b01104  doi: 10.1021/acsenergylett.7b01104

    35. [35]

      Yao, Q.; Yuan, X.; Chen, T.; Leong, D. T.; Xie, J. Adv. Mater. 2018, 30, 1802751. doi: 10.1002/adma.201802751  doi: 10.1002/adma.201802751

    36. [36]

      Yao, Q.; Chen, T.; Yuan, X.; Xie, J. Acc. Chem. Res. 2018, 51, 1338. doi: 10.1021/acs.accounts.8b00065  doi: 10.1021/acs.accounts.8b00065

    37. [37]

      Wu, Z.; Yao, Q.; Liu, Z.; Xu, H.; Guo, P.; Liu, L.; Han, Y.; Zhang, K.; Lu, Z.; Li, X.; et al. Adv. Mater. 2021, 33, 2006459. doi: 10.1002/adma.202006459  doi: 10.1002/adma.202006459

    38. [38]

      Qin, L.; Sun, F.; Gong, Z.; Ma, G.; Chen, Y.; Tang, Q.; Qiao, L.; Wang, R.; Liu, Z. Q.; Tang, Z. ACS Nano 2023, 17, 12747. doi: 10.1021/acsnano.3c03692  doi: 10.1021/acsnano.3c03692

    39. [39]

      Shan, H.; Shi, J.; Chen, T.; Cao, Y.; Yao, Q.; An, H.; Yang, Z.; Wu, Z.; Jiang, Z.; Xie, J. ACS Nano 2023, 17, 2368. doi: 10.1021/acsnano.2c09238  doi: 10.1021/acsnano.2c09238

    40. [40]

      Hu, F.; Li, J. J.; Guan, Z. J.; Yuan, S. F.; Wang, Q. M. Angew. Chem. Int. Ed. 2020, 59, 5312. doi: 10.1002/anie.201915168  doi: 10.1002/anie.201915168

    41. [41]

      Li, X.; Takano, S.; Tsukuda, T. J. Phys. Chem. C 2021, 125, 23226. doi: 10.1021/acs.jpcc.1c08197  doi: 10.1021/acs.jpcc.1c08197

    42. [42]

      Qian, H.; Jiang, D.-e.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. J. Am. Chem. Soc. 2012, 134, 16159. doi: 10.1021/ja307657a  doi: 10.1021/ja307657a

    43. [43]

      Suyama, M.; Takano, S.; Nakamura, T.; Tsukuda, T. J. Am. Chem. Soc. 2019, 141, 14048. doi: 10.1021/jacs.9b06254  doi: 10.1021/jacs.9b06254

    44. [44]

      Takano, S.; Ito, S.; Tsukuda, T. J. Am. Chem. Soc. 2019, 141, 15994. doi: 10.1021/jacs.9b08055  doi: 10.1021/jacs.9b08055

    45. [45]

      Liu, X.; Yuan, J.; Chen, J.; Yang, J.; Wu, Z. Part. Part. Syst. Char. 2019, 36, 1900003. doi: 10.1002/ppsc.201900003  doi: 10.1002/ppsc.201900003

    46. [46]

      Barik, S. K.; Chiu, T. H.; Liu, Y. C.; Chiang, M. H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Nanoscale 2019, 11, 14581. doi: 10.1039/c9nr05068j  doi: 10.1039/c9nr05068j

    47. [47]

      Yan, J.; Su, H.; Yang, H.; Malola, S.; Lin, S.; Hakkinen, H.; Zheng, N. J. Am. Chem. Soc. 2015, 137, 11880. doi: 10.1021/jacs.5b07186  doi: 10.1021/jacs.5b07186

    48. [48]

      Liu, X.; Yuan, J.; Yao, C.; Chen, J.; Li, L.; Bao, X.; Yang, J.; Wu, Z. J. Phys. Chem. C 2017, 121, 13848. doi: 10.1021/acs.jpcc.7b01730  doi: 10.1021/acs.jpcc.7b01730

    49. [49]

      Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883. doi: 10.1021/ja801173r  doi: 10.1021/ja801173r

    50. [50]

      Ito, S.; Koyasu, K.; Takano, S.; Tsukuda, T. J. Phys. Chem. Lett. 2021, 12, 10417. doi: 10.1021/acs.jpclett.1c02906  doi: 10.1021/acs.jpclett.1c02906

    51. [51]

      Qin, L.; Sun, F.; Ma, X.; Ma, G.; Tang, Y.; Wang, L.; Tang, Q.; Jin, R.; Tang, Z. Angew. Chem. Int. Ed. 2021, 60, 26136. doi: 10.1002/anie.202110330  doi: 10.1002/anie.202110330

    52. [52]

      Wang, Y.; Su, H.; Ren, L.; Malola, S.; Lin, S.; Teo, B. K.; Hakkinen, H.; Zheng, N. Angew. Chem. Int. Ed. 2016, 55, 15152. doi: 10.1002/anie.201609144  doi: 10.1002/anie.201609144

    53. [53]

      Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. Chem. Sci. 2021, 12, 12819. doi: 10.1039/D1SC03679C  doi: 10.1039/D1SC03679C

    54. [54]

      Zhang, F.; Gao, Y.; Lu, P.; Zhong, Y.; Liu, Y.; Bao, X.; Xu, Z.; Lu, M.; Wu, Y.; Chen, P.; et al. Nano Lett. 2023, 23, 1582. doi: 10.1021/acs.nanolett.3c00068  doi: 10.1021/acs.nanolett.3c00068

    55. [55]

      Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. J. Am. Chem. Soc. 2021, 143, 6048. doi: 10.1021/jacs.1c02098  doi: 10.1021/jacs.1c02098

    56. [56]

      Cao, M.; Wang, S.; Hu, J. H.; Lu, B. H.; Wang, Q. Y.; Zang, S. Q. Adv. Sci. 2022, 9, e2103721. doi: 10.1002/advs.202103721  doi: 10.1002/advs.202103721

    57. [57]

      Qu, M.; Li, H.; Xie, L. H.; Yan, S. T.; Li, J. R.; Wang, J. H.; Wei, C. Y.; Wu, Y. W.; Zhang, X. M. J. Am. Chem. Soc. 2017, 139, 12346. doi: 10.1021/jacs.7b05243  doi: 10.1021/jacs.7b05243

    58. [58]

      Zhang, S. S.; Alkan, F.; Su, H. F.; Aikens, C. M.; Tung, C. H.; Sun, D. J. Am. Chem. Soc. 2019, 141, 4460. doi: 10.1021/jacs.9b00703  doi: 10.1021/jacs.9b00703

    59. [59]

      Yuan, S. F.; Guan, Z. J.; Wang, Q. M. J. Am. Chem. Soc. 2022, 144, 11405. doi: 10.1021/jacs.2c04156  doi: 10.1021/jacs.2c04156

    60. [60]

      Zeng, J. L.; Guan, Z. J.; Du, Y.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. J. Am. Chem. Soc. 2016, 138, 7848. doi: 10.1021/jacs.6b04471  doi: 10.1021/jacs.6b04471

    61. [61]

      Yue, X.; Zhao, W. X.; Wang, S. Y.; Zou, Y. Q. Chin. J. Struct. Chem. 2022, 41, 2205063. doi: 10.14102/j.cnki.0254-5861.2022-0074  doi: 10.14102/j.cnki.0254-5861.2022-0074

    62. [62]

      Miyajima, S.; Hossain, S.; Ikeda, A.; Kosaka, T.; Kawawaki, T.; Niihori, Y.; Iwasa, T.; Taketsugu, T.; Negishi, Y. Commun. Chem. 2023, 6, 57. doi: 10.1038/s42004-023-00854-0  doi: 10.1038/s42004-023-00854-0

    63. [63]

      Liu, H.; Lang, X.; Zhu, C.; Timoshenko, J.; Ruscher, M.; Bai, L.; Guijarro, N.; Yin, H.; Peng, Y.; Li, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202202556. doi: 10.1002/anie.202202556  doi: 10.1002/anie.202202556

    64. [64]

      Jiang, M.; Su, J.; Song, X.; Zhang, P.; Zhu, M.; Qin, L.; Tie, Z.; Zuo, J. L.; Jin, Z. Nano Lett. 2022, 22, 2529. doi: 10.1021/acs.nanolett.2c00446  doi: 10.1021/acs.nanolett.2c00446

    65. [65]

      Zhang, N.; Zhang, G.; Shen, P.; Zhang, H.; Ma, D.; Chu, K. Adv. Funct. Mater. 2023, 33, 2211537. doi: 10.1002/adfm.202211537  doi: 10.1002/adfm.202211537

    66. [66]

      Yao, C.; Guo, N.; Xi, S.; Xu, C. Q.; Liu, W.; Zhao, X.; Li, J.; Fang, H.; Su, J.; Chen, Z.; et al. Nat. Commun. 2020, 11, 4389. doi: 10.1038/s41467-020-18080-w  doi: 10.1038/s41467-020-18080-w

    67. [67]

      Luo, Y.; Chen, G.-F.; Ding, L.; Chen, X.; Ding, L.-X.; Wang, H. Joule 2019, 3, 279. doi: 10.1016/j.joule.2018.09.011  doi: 10.1016/j.joule.2018.09.011

    68. [68]

      Wang, Y. M.; Cai, J.; Wang, Q. Y.; Li, Y.; Han, Z.; Li, S.; Gong, C. H.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Angew. Chem. Int. Ed. 2022, 61, e202114538. doi: 10.1002/anie.202114538  doi: 10.1002/anie.202114538

    69. [69]

      Ma, X.-Y.; Zhang, W.-Y.; Ye, K.; Jiang, K.; Cai, W.-B. Anal. Chem. 2022, 94, 11337. doi: 10.1021/acs.analchem.2c02092  doi: 10.1021/acs.analchem.2c02092

    70. [70]

      Jiang, K.; Ma, X.-Y.; Back, S.; Zhao, J.; Jiang, F.; Qin, X.; Zhang, J.; Cai, W.-B. CCS Chem. 2021, 3, 241. doi: 10.31635/ccschem.020.202000667  doi: 10.31635/ccschem.020.202000667

    71. [71]

      Wang, Y.; Xu, Y.; Cheng, C.; Zhang, B.; Zhang, B.; Yu, Y. Angew. Chem. Int. Ed. 2023, 63, e202315109. doi: 10.1002/anie.202315109  doi: 10.1002/anie.202315109

    72. [72]

      Huang, L.; Cheng, L.; Ma, T.; Zhang, J.-J.; Wu, H.; Su, J.; Song, Y.; Zhu, H.; Liu, Q.; Zhu, M.; et al. Adv. Mater. 2023, 35, 2211856. doi: 10.1002/adma.202211856  doi: 10.1002/adma.202211856

    73. [73]

      Kuang, S.; Xiao, T.; Chi, H.; Liu, J.; Mu, C.; Liu, H.; Wang, S.; Yu, Y.; Meyer, T. J.; Zhang, S.; Ma, X. Angew. Chem. Int. Ed. 2024, 63, e202316772. doi: 10.1002/anie.202316772  doi: 10.1002/anie.202316772

    74. [74]

      Wu, J.; Xu, L.; Kong, Z.; Gu, K.; Lu, Y.; Wu, X.; Zou, Y.; Wang, S. Angew. Chem. Int. Ed. 2023, 62, e202311196. doi: 10.1002/anie.202311196  doi: 10.1002/anie.202311196

    75. [75]

      Guo, C.; Zhou, W.; Lan, X.; Wang, Y.; Li, T.; Han, S.; Yu, Y.; Zhang, B. J. Am. Chem. Soc. 2022, 144, 16006. doi: 10.1021/jacs.2c05660  doi: 10.1021/jacs.2c05660

    76. [76]

      Li, Y.; Zheng, S.; Liu, H.; Xiong, Q.; Yi, H.; Yang, H.; Mei, Z.; Zhao, Q.; Yin, Z.-W.; Huang, M.; et al. Nat. Commun. 2024, 15, 176. doi: 10.1038/s41467-023-44131-z  doi: 10.1038/s41467-023-44131-z

    77. [77]

      Liao, W.; Wang, J.; Ni, G.; Liu, K.; Liu, C.; Chen, S.; Wang, Q.; Chen, Y.; Luo, T.; Wang, X.; et al. Nat. Commun. 2024, 15, 1264. doi: 10.1038/s41467-024-45534-2  doi: 10.1038/s41467-024-45534-2

    78. [78]

      Ma, X.; Sun, F.; Qin, L.; Liu, Y.; Kang, X.; Wang, L.; Jiang, D.-E.; Tang, Q.; Tang, Z. Chem. Sci. 2022, 13, 10149. doi: 10.1039/D2SC02886G  doi: 10.1039/D2SC02886G

    79. [79]

      Ma, G.; Sun, F.; Qiao, L.; Shen, Q.; Wang, L.; Tang, Q.; Tang, Z. Nano Res. 2023, 16, 10867. doi: 10.1007/s12274-023-5885-6  doi: 10.1007/s12274-023-5885-6

    80. [80]

      Bootharaju, M. S.; Lee, C. W.; Deng, G.; Kim, H.; Lee, K.; Lee, S.; Chang, H.; Lee, S.; Sung, Y.-E.; Yoo, J. S.; et al. Adv. Mater. 2023, 35, 2207765. doi: 10.1002/adma.202207765  doi: 10.1002/adma.202207765

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    4. [4]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Qian Peng Pengfei Yao Zicong Wang Xiufang Xu Hongwei Sun . Promote the Training of Top Talents by Optimizing the Theoretical Computational Chemistry Curriculum System. University Chemistry, 2025, 40(5): 261-267. doi: 10.12461/PKU.DXHX202408012

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Hui Li Jia Nie Zhongyuan Lü Hujun Qian Youliang Zhu Fuquan Bai Zexing Qu Ronglin Zhong . Developing a Lecture Mode for Theoretical and Computational Chemistry Curriculum under the “Modernization of Chinese Education” Initiative. University Chemistry, 2025, 40(3): 1-9. doi: 10.3866/PKU.DXHX202402007

    13. [13]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    17. [17]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(0)
  • Abstract views(273)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return