In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution
- Corresponding author: Ruihua Gao, Wei-Lin Dai, wldai@fudan.edu.cn
Citation:
Qin Li, Huihui Zhang, Huajun Gu, Yuanyuan Cui, Ruihua Gao, Wei-Lin Dai. In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica,
;2025, 41(4): 240201.
doi:
10.3866/PKU.WHXB202402016
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48(7), 2109. doi: 10.1039/C8CS00542G
doi: 10.1039/C8CS00542G
Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645
doi: 10.1021/cr1001645
Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0
doi: 10.1038/238037a0
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
doi: 10.1038/nmat2317
Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145
doi: 10.1126/science.aaa3145
Song, Y.; Li, Z.; Zhu, Y.; Feng, X.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141 (31), 12219. doi: 10.1021/jacs.9b05964
doi: 10.1021/jacs.9b05964
Kumar, D.P.; Hong, S.; Reddy, D. A.; Kim, T. K. Appl. Catal. B-Environ. 2017, 212, 7. doi: 10.1016/j.apcatb.2017.04.065
doi: 10.1016/j.apcatb.2017.04.065
Zhang, Q.; Wang, X.; Zhang, J.; Li, L.; Gu, H.; Dai, W. -L. J. Colloid Interface Sci. 2021, 590, 632. doi: 10.1016/j.jcis.2021.01.083
doi: 10.1016/j.jcis.2021.01.083
Zhang, L.; Ding, N.; Lou, L.; Iwasaki, K.; Wu, H.; Luo, Y.; Li, D.; Nakata, K.; Fujishima, A.; Meng, Q. Adv. Funct. Mater. 2019, 29 (3), 1806774. doi: 10.1002/adfm.201806774
doi: 10.1002/adfm.201806774
Zhang, L.; Cui, Y.; Yang, F.; Zhang, Q.; Zhang, J.; Cao, M.; Dai, W. -L. J. Mater. Sci. Technol. 2020, 45, 176. doi: 10.1016/j.jmst.2019.11.020
doi: 10.1016/j.jmst.2019.11.020
Wang, J.; Shen, Y.; Liu, S.; Zhang, Y. Appl. Catal. B-Environ. 2020, 270, 118885. doi: 10.1016/j.apcatb.2020.118885
doi: 10.1016/j.apcatb.2020.118885
Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. Appl. Surf. Sci. 2019, 463, 445. doi: 10.1016/j.apsusc.2018.08.250
doi: 10.1016/j.apsusc.2018.08.250
Cadiau, A.; Kolobov, N.; Srinivasan, S.; Goesten, M. G.; Haspel, H.; Bavykina, A. V.; Tchalala, M. R.; Maity, P.; Goryachev, A.; Poryvaev, A. S.; et al. Angew. Chem. -Int. Ed. 2020, 59 (32), 13468. doi: 10.1002/anie.202000158
doi: 10.1002/anie.202000158
Zhu, Y. -P.; Yin, J.; Abou-Hamad, E.; Liu, X.; Chen, W.; Yao, T.; Mohammed, O. F.; Alshareef, H. N. Adv. Mater. 2020, 32 (16), 1906368. doi: 10.1002/adma.v32.1610.1002/adma.201906368
doi: 10.1002/adma.v32.1610.1002/adma.201906368
Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249
doi: 10.1002/adma.201904249
Ruan, D.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2020, 264, 118541. doi: 10.1016/j.apcatb.2019.118541
doi: 10.1016/j.apcatb.2019.118541
Tian, L.; Min, S.; Wang, F. Appl. Catal. B-Environ. 2019, 259, 118029. doi: 10.1016/j.apcatb.2019.118029
doi: 10.1016/j.apcatb.2019.118029
Yue, X.; Yi, S. Wang, R.; Zhang, Z.; Qiu, S. Appl. Catal. B-Environ. 2018, 224, 17. doi: 10.1016/j.apcatb.2017.10.010
doi: 10.1016/j.apcatb.2017.10.010
Luo, Z.; Zhao, X.; Zhang, H.; Jiang, Y. Appl. Catal. A-Gen. 2019, 582, 117115. doi: 10.1016/j.apcata.2019.117115
doi: 10.1016/j.apcata.2019.117115
Huang, H. -B.; Fang, Z. -B.; Yu, K.; Lü, J.; Cao, R. J. Mater. Chem. A 2020, 8 (7), 3882. doi: 10.1039/C9TA13836F
doi: 10.1039/C9TA13836F
Li, Q.; Meng, H.; Zhou, P.; Zheng, Y.; Wang, J.; Yu, J. ; Gong, J. ACS Catal. 2013, 3 (5), 882. doi: 10.1021/cs4000975
doi: 10.1021/cs4000975
Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. -Int. Ed. 2013, 52 (13), 3621. doi: 10.1002/anie.201210294
doi: 10.1002/anie.201210294
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Min, H.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23 (37), 4248. doi: 10.1002/adma.201102306
doi: 10.1002/adma.201102306
Zhang, Q.; Lai, H.; Fan, R.; Ji, P.; Fu, X.; Li, H. ACS Nano2021, 15 (3), 5249. doi: 10.1021/acsnano.0c10671
doi: 10.1021/acsnano.0c10671
Zhang, Q.; Fan, R.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Lai, H.; Fu, X.; Zhang, C.; Li, H. Adv. Sci. 2022, 9 (28), 2202748. doi: 10.1002/advs.202202748
doi: 10.1002/advs.202202748
Zhang, Q.; Zhang, Z.; Zhao, D.; Wang, L.; Li, H.; Zhang, F.; Huo, Y.; Li, H. Appl. Catal. B-Environ. 2023, 320, 122009. doi: 10.1016/j.apcatb.2022.122009
doi: 10.1016/j.apcatb.2022.122009
Tang, X.; Zhou, D., Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. Adv. Mater. 2020, 32 (4), 1906739. doi: 10.1002/adma.201906739
doi: 10.1002/adma.201906739
Zhang, Q.; He, J.; Fu, X.; Xie, S.; Fan, R.; Lai, H.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Zhu, W.; Li, H. Chem. Eng. J. 2022, 430, 132950. doi: 10.1016/j.cej.2021.132950
doi: 10.1016/j.cej.2021.132950
Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C. B.; Zauscher, S.; Gogotsi, Y.; Glass, J. T.; Cao, C. ACS Nano 2020, 14 (3), 3576. doi: 10.1021/acsnano.9b10066
doi: 10.1021/acsnano.9b10066
Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. Appl. Catal. B-Environ. 2019, 246, 12. doi: 10.1016/j.apcatb.2019.01.051
doi: 10.1016/j.apcatb.2019.01.051
Wu, Y.; Li, X.; Yang, Q.; Wang, D.; Yao, F.; Cao, J.; Chen, Z.; Huang, X.; Yang, Y.; Li, X. Chem. Eng. J. 2020, 390, 124519. doi: 10.1016/j.cej.2020.124519
doi: 10.1016/j.cej.2020.124519
Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020, 267, 118379. doi: 10.1016/j.apcatb.2019.118379
doi: 10.1016/j.apcatb.2019.118379
Shao, M.; Shao, Y.; Chai, J.; Qu, Y.; Yang, M.; Wang, Z.; Yang, M.; Ip, W. F.; Kwok, C. T.; Shi, X.; et al. J. Mater. Chem. A 2017, 5, 16748. doi: 10.1039/C7TA04122E
doi: 10.1039/C7TA04122E
Kwon, N. H.; Shin, S. -J.; Jin, X.; Jung, Y.; Hwang, G. -S.; Kim, H.; Hwang, S. -J. Appl. Catal. B-Environ. 2020, 277, 19191. doi: 10.1016/j.apcatb.2020.119191
doi: 10.1016/j.apcatb.2020.119191
Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028. doi: 10.3866/PKU.WHXB202108028
doi: 10.3866/PKU.WHXB202108028
Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43 (8), 2111. doi: 10.1016/S1872-2067(22)64096-8
doi: 10.1016/S1872-2067(22)64096-8
Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209037. doi: 10.3866/PKU.WHXB202209037
doi: 10.3866/PKU.WHXB202209037
Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003
doi: 10.1016/j.jmst.2023.03.003
Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470
doi: 10.1002/adfm.202214470
Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4
doi: 10.1016/S1872-2067(23)64444-4
Li, Y. -H.; Zhang, F.; Chen, Y.; Li, J. -Y.; Xu, Y. -J. Green. Chem. 2020, 22, 163. doi: 10.1039/c9gc03332g
doi: 10.1039/c9gc03332g
Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11 (14), 8510. doi: 10.1021/acscatal.1c02018
doi: 10.1021/acscatal.1c02018
Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Chang, S.; Huang, Y.; Gao, L.; Cui, Y.; Liu, R.; Dai, W. -L. Appl. Catal. B-Environ. 2023, 328, 122537. doi: 10.1016/j.apcatb.2023.122537
doi: 10.1016/j.apcatb.2023.122537
Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. Chem. Eng. J. 2021, 406, 127177. doi: 10.1016/j.cej.2020.127177
doi: 10.1016/j.cej.2020.127177
Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B-Environ. 2020, 268, 118382. doi: 10.1016/j.apcatb.2019.118382
doi: 10.1016/j.apcatb.2019.118382
Saini, B.; Laishram, H. K. D.; Krishnapriya, R.; Singhal, R.; Sharma, R. K. ACS Appl. Nano Mater. 2022, 5 (7), 9319. doi: 10.1021/acsanm.2c01639
doi: 10.1021/acsanm.2c01639
Zhu, S. -C.; Li, S.; Tang, B.; Liang, H.; Liu, B. -J.; Xiao, G.; Xiao, F. -X. J. Catal. 2021, 404, 56. doi: 10.1016/j.jcat.2021.09.001
doi: 10.1016/j.jcat.2021.09.001
Zhu, S. -C.; Wang, Z. -C.; Tang, B.; Liang, H.; Liu, B. -J.; Li, S.; Chen, Z.; Cheng, N. C.; Xiao, F. -X. J. Mater. Chem. A 2022, 10, 11926. doi: 10.1039/D2TA02755K
doi: 10.1039/D2TA02755K
He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B- Environ. 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006
doi: 10.1016/j.apcatb.2020.119006
Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028
doi: 10.1016/j.jmst.2021.12.028
Huang, W. -X.; Li, Z. -P.; Li, D. -D.; Hu, Z. -H.; Wu, C.; Lv, K. -L.; Li, Q. Rare Met. 2022, 41, 3268. doi: 10.1007/s12598-022-02058-2
doi: 10.1007/s12598-022-02058-2
Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Chin. J. Catal. 2022, 43 (2), 461. doi: 10.1016/S1872-2067(21)63915-3
doi: 10.1016/S1872-2067(21)63915-3
Guan, C.; Yue, X.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43 (10), 2484. doi: 10.1016/S1872-2067(22)64102-0
doi: 10.1016/S1872-2067(22)64102-0
You, Z.; Liao, Y.; Li, X.; Fan, J.; Xiang, Q. Nanoscale 2021, 13, 9463. doi: 10.1039/D1NR02224E
doi: 10.1039/D1NR02224E
Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715
doi: 10.1002/advs.202103715
Yu, J.; Zhang, J.; Jaroniec, M. Green Chem. 2010, 12, 1611. doi: 10.1039/c0gc00236d
doi: 10.1039/c0gc00236d
Sun, Q. -M.; Xu, J. -J.; Tao, F. -F.; Ye, W.; Zhou, C.; He, J. -H.; Lu, J. -M. Angew. Chem. -Int. Ed. 2022, 61, e202200872. doi: 10.1002/anie.202200872
doi: 10.1002/anie.202200872
Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9
doi: 10.1016/S1872-2067(23)64438-9
Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. -Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688
doi: 10.1002/anie.202218688
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019