Citation: Qin Li, Huihui Zhang, Huajun Gu, Yuanyuan Cui, Ruihua Gao, Wei-Lin Dai. In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 240201. doi: 10.3866/PKU.WHXB202402016 shu

In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

  • Corresponding author: Ruihua Gao,  Wei-Lin Dai, wldai@fudan.edu.cn
  • Received Date: 19 February 2024
    Revised Date: 3 April 2024
    Accepted Date: 3 April 2024

    Fund Project: the National Key Research and Development Program of China 2021YFA1501404Natural Science Foundation of Shanghai 22ZR1404200National Natural Science Foundation of China 21373054Natural Science Foundation of Shanghai Science and Technology Committee 19DZ2270100

  • Against the backdrop of energy scarcities and ecological concerns, the process of photocatalytic hydrogen evolution emerges as a critical method for transforming solar energy into chemical energy. Central to this technology is the crafting of photocatalysts that are not only efficient and durable but also economically viable. The key to creating photocatalysts that boast superior hydrogen production capabilities lies in enhancing the separation and transfer of photo-generated electrons and holes. This study introduces a binary heterojunction photocatalyst, featuring a combination of Cd0.5Zn0.5S and Ti3C2 MXene, synthesized via an in situ hydrothermal method. In the composite, slender Cd0.5Zn0.5S nanorods are uniformly coated over the surface of single layer Ti3C2 nanosheets, forming a Schottky heterojunction at the material interface. This structure enhances the separation efficiency of photo-generated electrons and holes, thereby improving the utilization of light. With 0.5 wt% (mass fraction) of Ti3C2 MXene incorporated, we observed a peak photocatalytic H2 generation rate of 15.56 mmol∙g−1∙h−1, outperforming the baseline Cd0.5Zn0.5S by 2.56 times. Notably, the photocatalytic efficiency remained largely unchanged after five cycles. This composite achieved the highest apparent quantum efficiency (AQE) of 18.4% when exposed to 350 nm UV light. Various characterization techniques, including in situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption (fs-TA) spectroscopy, along with density functional theory (DFT) calculations, have further substantiated that the formation of a Schottky heterojunction at the interface is crucial for enhancing the photocatalytic hydrogen evolution performance of the composite material. This paper demonstrates the effectiveness of the novel carbon based material MXene as a co-catalyst for improving the performance of photocatalysts and offers a viable approach for the construction of MXene-containing photocatalytic hydrogen evolution catalysts.
  • 加载中
    1. [1]

      Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48(7), 2109. doi: 10.1039/C8CS00542G  doi: 10.1039/C8CS00542G

    2. [2]

      Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645  doi: 10.1021/cr1001645

    3. [3]

      Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    4. [4]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    5. [5]

      Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. -T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145  doi: 10.1126/science.aaa3145

    6. [6]

      Song, Y.; Li, Z.; Zhu, Y.; Feng, X.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141 (31), 12219. doi: 10.1021/jacs.9b05964  doi: 10.1021/jacs.9b05964

    7. [7]

      Kumar, D.P.; Hong, S.; Reddy, D. A.; Kim, T. K. Appl. Catal. B-Environ. 2017, 212, 7. doi: 10.1016/j.apcatb.2017.04.065  doi: 10.1016/j.apcatb.2017.04.065

    8. [8]

      Zhang, Q.; Wang, X.; Zhang, J.; Li, L.; Gu, H.; Dai, W. -L. J. Colloid Interface Sci. 2021, 590, 632. doi: 10.1016/j.jcis.2021.01.083  doi: 10.1016/j.jcis.2021.01.083

    9. [9]

      Zhang, L.; Ding, N.; Lou, L.; Iwasaki, K.; Wu, H.; Luo, Y.; Li, D.; Nakata, K.; Fujishima, A.; Meng, Q. Adv. Funct. Mater. 2019, 29 (3), 1806774. doi: 10.1002/adfm.201806774  doi: 10.1002/adfm.201806774

    10. [10]

      Zhang, L.; Cui, Y.; Yang, F.; Zhang, Q.; Zhang, J.; Cao, M.; Dai, W. -L. J. Mater. Sci. Technol. 2020, 45, 176. doi: 10.1016/j.jmst.2019.11.020  doi: 10.1016/j.jmst.2019.11.020

    11. [11]

      Wang, J.; Shen, Y.; Liu, S.; Zhang, Y. Appl. Catal. B-Environ. 2020, 270, 118885. doi: 10.1016/j.apcatb.2020.118885  doi: 10.1016/j.apcatb.2020.118885

    12. [12]

      Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. Appl. Surf. Sci. 2019, 463, 445. doi: 10.1016/j.apsusc.2018.08.250  doi: 10.1016/j.apsusc.2018.08.250

    13. [13]

      Cadiau, A.; Kolobov, N.; Srinivasan, S.; Goesten, M. G.; Haspel, H.; Bavykina, A. V.; Tchalala, M. R.; Maity, P.; Goryachev, A.; Poryvaev, A. S.; et al. Angew. Chem. -Int. Ed. 2020, 59 (32), 13468. doi: 10.1002/anie.202000158  doi: 10.1002/anie.202000158

    14. [14]

      Zhu, Y. -P.; Yin, J.; Abou-Hamad, E.; Liu, X.; Chen, W.; Yao, T.; Mohammed, O. F.; Alshareef, H. N. Adv. Mater. 2020, 32 (16), 1906368. doi: 10.1002/adma.v32.1610.1002/adma.201906368  doi: 10.1002/adma.v32.1610.1002/adma.201906368

    15. [15]

      Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249  doi: 10.1002/adma.201904249

    16. [16]

      Ruan, D.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2020, 264, 118541. doi: 10.1016/j.apcatb.2019.118541  doi: 10.1016/j.apcatb.2019.118541

    17. [17]

      Tian, L.; Min, S.; Wang, F. Appl. Catal. B-Environ. 2019, 259, 118029. doi: 10.1016/j.apcatb.2019.118029  doi: 10.1016/j.apcatb.2019.118029

    18. [18]

      Yue, X.; Yi, S. Wang, R.; Zhang, Z.; Qiu, S. Appl. Catal. B-Environ. 2018, 224, 17. doi: 10.1016/j.apcatb.2017.10.010  doi: 10.1016/j.apcatb.2017.10.010

    19. [19]

      Luo, Z.; Zhao, X.; Zhang, H.; Jiang, Y. Appl. Catal. A-Gen. 2019, 582, 117115. doi: 10.1016/j.apcata.2019.117115  doi: 10.1016/j.apcata.2019.117115

    20. [20]

      Huang, H. -B.; Fang, Z. -B.; Yu, K.; Lü, J.; Cao, R. J. Mater. Chem. A 2020, 8 (7), 3882. doi: 10.1039/C9TA13836F  doi: 10.1039/C9TA13836F

    21. [21]

      Li, Q.; Meng, H.; Zhou, P.; Zheng, Y.; Wang, J.; Yu, J. ; Gong, J. ACS Catal. 2013, 3 (5), 882. doi: 10.1021/cs4000975  doi: 10.1021/cs4000975

    22. [22]

      Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem. -Int. Ed. 2013, 52 (13), 3621. doi: 10.1002/anie.201210294  doi: 10.1002/anie.201210294

    23. [23]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Min, H.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23 (37), 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    24. [24]

      Zhang, Q.; Lai, H.; Fan, R.; Ji, P.; Fu, X.; Li, H. ACS Nano2021, 15 (3), 5249. doi: 10.1021/acsnano.0c10671  doi: 10.1021/acsnano.0c10671

    25. [25]

      Zhang, Q.; Fan, R.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Lai, H.; Fu, X.; Zhang, C.; Li, H. Adv. Sci. 2022, 9 (28), 2202748. doi: 10.1002/advs.202202748  doi: 10.1002/advs.202202748

    26. [26]

      Zhang, Q.; Zhang, Z.; Zhao, D.; Wang, L.; Li, H.; Zhang, F.; Huo, Y.; Li, H. Appl. Catal. B-Environ. 2023, 320, 122009. doi: 10.1016/j.apcatb.2022.122009  doi: 10.1016/j.apcatb.2022.122009

    27. [27]

      Tang, X.; Zhou, D., Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. Adv. Mater. 2020, 32 (4), 1906739. doi: 10.1002/adma.201906739  doi: 10.1002/adma.201906739

    28. [28]

      Zhang, Q.; He, J.; Fu, X.; Xie, S.; Fan, R.; Lai, H.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Zhu, W.; Li, H. Chem. Eng. J. 2022, 430, 132950. doi: 10.1016/j.cej.2021.132950  doi: 10.1016/j.cej.2021.132950

    29. [29]

      Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C. B.; Zauscher, S.; Gogotsi, Y.; Glass, J. T.; Cao, C. ACS Nano 2020, 14 (3), 3576. doi: 10.1021/acsnano.9b10066  doi: 10.1021/acsnano.9b10066

    30. [30]

      Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. Appl. Catal. B-Environ. 2019, 246, 12. doi: 10.1016/j.apcatb.2019.01.051  doi: 10.1016/j.apcatb.2019.01.051

    31. [31]

      Wu, Y.; Li, X.; Yang, Q.; Wang, D.; Yao, F.; Cao, J.; Chen, Z.; Huang, X.; Yang, Y.; Li, X. Chem. Eng. J. 2020, 390, 124519. doi: 10.1016/j.cej.2020.124519  doi: 10.1016/j.cej.2020.124519

    32. [32]

      Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020, 267, 118379. doi: 10.1016/j.apcatb.2019.118379  doi: 10.1016/j.apcatb.2019.118379

    33. [33]

      Shao, M.; Shao, Y.; Chai, J.; Qu, Y.; Yang, M.; Wang, Z.; Yang, M.; Ip, W. F.; Kwok, C. T.; Shi, X.; et al. J. Mater. Chem. A 2017, 5, 16748. doi: 10.1039/C7TA04122E  doi: 10.1039/C7TA04122E

    34. [34]

      Kwon, N. H.; Shin, S. -J.; Jin, X.; Jung, Y.; Hwang, G. -S.; Kim, H.; Hwang, S. -J. Appl. Catal. B-Environ. 2020, 277, 19191. doi: 10.1016/j.apcatb.2020.119191  doi: 10.1016/j.apcatb.2020.119191

    35. [35]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7), 2108028. doi: 10.3866/PKU.WHXB202108028  doi: 10.3866/PKU.WHXB202108028

    36. [36]

      Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43 (8), 2111. doi: 10.1016/S1872-2067(22)64096-8  doi: 10.1016/S1872-2067(22)64096-8

    37. [37]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    38. [38]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    39. [39]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    40. [40]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4  doi: 10.1016/S1872-2067(23)64444-4

    41. [41]

      Li, Y. -H.; Zhang, F.; Chen, Y.; Li, J. -Y.; Xu, Y. -J. Green. Chem. 2020, 22, 163. doi: 10.1039/c9gc03332g  doi: 10.1039/c9gc03332g

    42. [42]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11 (14), 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    43. [43]

      Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Chang, S.; Huang, Y.; Gao, L.; Cui, Y.; Liu, R.; Dai, W. -L. Appl. Catal. B-Environ. 2023, 328, 122537. doi: 10.1016/j.apcatb.2023.122537  doi: 10.1016/j.apcatb.2023.122537

    44. [44]

      Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. Chem. Eng. J. 2021, 406, 127177. doi: 10.1016/j.cej.2020.127177  doi: 10.1016/j.cej.2020.127177

    45. [45]

      Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B-Environ. 2020, 268, 118382. doi: 10.1016/j.apcatb.2019.118382  doi: 10.1016/j.apcatb.2019.118382

    46. [46]

      Saini, B.; Laishram, H. K. D.; Krishnapriya, R.; Singhal, R.; Sharma, R. K. ACS Appl. Nano Mater. 2022, 5 (7), 9319. doi: 10.1021/acsanm.2c01639  doi: 10.1021/acsanm.2c01639

    47. [47]

      Zhu, S. -C.; Li, S.; Tang, B.; Liang, H.; Liu, B. -J.; Xiao, G.; Xiao, F. -X. J. Catal. 2021, 404, 56. doi: 10.1016/j.jcat.2021.09.001  doi: 10.1016/j.jcat.2021.09.001

    48. [48]

      Zhu, S. -C.; Wang, Z. -C.; Tang, B.; Liang, H.; Liu, B. -J.; Li, S.; Chen, Z.; Cheng, N. C.; Xiao, F. -X. J. Mater. Chem. A 2022, 10, 11926. doi: 10.1039/D2TA02755K  doi: 10.1039/D2TA02755K

    49. [49]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B- Environ. 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    50. [50]

      Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028  doi: 10.1016/j.jmst.2021.12.028

    51. [51]

      Huang, W. -X.; Li, Z. -P.; Li, D. -D.; Hu, Z. -H.; Wu, C.; Lv, K. -L.; Li, Q. Rare Met. 2022, 41, 3268. doi: 10.1007/s12598-022-02058-2  doi: 10.1007/s12598-022-02058-2

    52. [52]

      Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Chin. J. Catal. 2022, 43 (2), 461. doi: 10.1016/S1872-2067(21)63915-3  doi: 10.1016/S1872-2067(21)63915-3

    53. [53]

      Guan, C.; Yue, X.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022, 43 (10), 2484. doi: 10.1016/S1872-2067(22)64102-0  doi: 10.1016/S1872-2067(22)64102-0

    54. [54]

      You, Z.; Liao, Y.; Li, X.; Fan, J.; Xiang, Q. Nanoscale 2021, 13, 9463. doi: 10.1039/D1NR02224E  doi: 10.1039/D1NR02224E

    55. [55]

      Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715  doi: 10.1002/advs.202103715

    56. [56]

      Yu, J.; Zhang, J.; Jaroniec, M. Green Chem. 2010, 12, 1611. doi: 10.1039/c0gc00236d  doi: 10.1039/c0gc00236d

    57. [57]

      Sun, Q. -M.; Xu, J. -J.; Tao, F. -F.; Ye, W.; Zhou, C.; He, J. -H.; Lu, J. -M. Angew. Chem. -Int. Ed. 2022, 61, e202200872. doi: 10.1002/anie.202200872  doi: 10.1002/anie.202200872

    58. [58]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

    59. [59]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. -Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

  • 加载中
    1. [1]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    2. [2]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1)
  • Abstract views(735)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return