Citation: Qin Li,  Huihui Zhang,  Huajun Gu,  Yuanyuan Cui,  Ruihua Gao,  Wei-Lin Dai. In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100031. doi: 10.3866/PKU.WHXB202402016 shu

In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution

  • Corresponding author: Ruihua Gao,  Wei-Lin Dai, 
  • Received Date: 19 February 2024
    Revised Date: 3 April 2024
    Accepted Date: 3 April 2024

    Fund Project: This work was financially supported by the National Key Research and Development Program of China (2021YFA1501404), Natural Science Foundation of Shanghai (22ZR1404200), National Natural Science Foundation of China (21373054), and Natural Science Foundation of Shanghai Science and Technology Committee (19DZ2270100).

  • Against the backdrop of energy scarcities and ecological concerns, the process of photocatalytic hydrogen evolution emerges as a critical method for transforming solar energy into chemical energy. Central to this technology is the crafting of photocatalysts that are not only efficient and durable but also economically viable. The key to creating photocatalysts that boast superior hydrogen production capabilities lies in enhancing the separation and transfer of photo-generated electrons and holes. This study introduces a binary heterojunction photocatalyst, featuring a combination of Cd0.5Zn0.5S and Ti3C2 MXene, synthesized via an in situ hydrothermal method. In the composite, slender Cd0.5Zn0.5S nanorods are uniformly coated over the surface of single layer Ti3C2 nanosheets, forming a Schottky heterojunction at the material interface. This structure enhances the separation efficiency of photo-generated electrons and holes, thereby improving the utilization of light. With 0.5 wt% (mass fraction) of Ti3C2 MXene incorporated, we observed a peak photocatalytic H2 generation rate of 15.56 mmol∙g−1∙h−1, outperforming the baseline Cd0.5Zn0.5S by 2.56 times. Notably, the photocatalytic efficiency remained largely unchanged after five cycles. This composite achieved the highest apparent quantum efficiency (AQE) of 18.4% when exposed to 350 nm UV light. Various characterization techniques, including in situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption (fs-TA) spectroscopy, along with density functional theory (DFT) calculations, have further substantiated that the formation of a Schottky heterojunction at the interface is crucial for enhancing the photocatalytic hydrogen evolution performance of the composite material. This paper demonstrates the effectiveness of the novel carbon based material MXene as a co-catalyst for improving the performance of photocatalysts and offers a viable approach for the construction of MXene-containing photocatalytic hydrogen evolution catalysts.
  • 加载中
    1. [1]

      (1) Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48(7), 2109. doi: 10.1039/C8CS00542G

    2. [2]

      (2) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010,110 (11), 6503. doi: 10.1021/cr1001645

    3. [3]

      (3) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37. doi: 10.1038/238037a0

    4. [4]

      (4) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/ nmat2317

    5. [5]

      (5) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Science 2015, 347 (6225), 970. doi: 10.1126/science.aaa3145

    6. [6]

      (6) Song, Y.; Li, Z.; Zhu, Y.; Feng, X.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141 (31), 12219. doi: 10.1021/jacs.9b05964

    7. [7]

      (7) Kumar, D.P.; Hong, S.; Reddy, D. A.; Kim, T. K. Appl. Catal. B-Environ. 2017, 212, 7. doi: 10.1016/j.apcatb.2017.04.065

    8. [8]

      (8) Zhang, Q.; Wang, X.; Zhang, J.; Li, L.; Gu, H.; Dai, W.-L. J. Colloid Interface Sci. 2021, 590, 632. doi: 10.1016/j.jcis.2021.01.083

    9. [9]

      (9) Zhang, L.; Ding, N.; Lou, L.; Iwasaki, K.; Wu, H.; Luo, Y.; Li, D.; Nakata, K.; Fujishima, A.; Meng, Q. Adv. Funct. Mater. 2019, 29 (3), 1806774. doi: 10.1002/ adfm.201806774

    10. [10]

      (10) Zhang, L.; Cui, Y.; Yang, F.; Zhang, Q.; Zhang, J.; Cao, M.; Dai, W.-L. J. Mater. Sci. Technol. 2020, 45, 176. doi: 10.1016/j. jmst.2019.11.020

    11. [11]

      (11) Wang, J.; Shen, Y.; Liu, S.; Zhang, Y. Appl. Catal. B-Environ.2020, 270, 118885. doi: 10.1016/j.apcatb.2020.118885

    12. [12]

      (12) Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. Appl. Surf. Sci. 2019, 463, 445. doi: 10.1016/j.apsusc.2018.08.250

    13. [13]

      (13) Cadiau, A.; Kolobov, N.; Srinivasan, S.; Goesten, M. G.; Haspel, H.; Bavykina, A. V.; Tchalala, M. R.; Maity, P.; Goryachev, A.; Poryvaev, A. S.; et al.Angew. Chem.-Int. Ed. 2020, 59 (32), 13468. doi: 10.1002/anie.202000158

    14. [14]

      (14) Zhu, Y.-P.; Yin, J.; Abou-Hamad, E.; Liu, X.; Chen, W.; Yao, T.; Mohammed, O. F.; Alshareef, H. N. Adv. Mater. 2020, 32 (16), 1906368. doi: 10.1002/adma.v32.1610.1002/adma.201906368

    15. [15]

      (15) Zhou, P.; Zhang, Q.; Xu, Z.; Shang, Q.; Wang, L.; Chao, Y.; Li, Y.; Chen, H.; Lv, F.; Zhang, Q.; et al. Adv. Mater. 2020, 32 (7), 1904249. doi: 10.1002/adma.201904249

    16. [16]

      (16) Ruan, D.; Fujitsuka, M.; Majima, T. Appl. Catal. B-Environ. 2020,264, 118541. doi: 10.1016/j.apcatb.2019.118541

    17. [17]

      (17) Tian, L.; Min, S.; Wang, F. Appl. Catal. B-Environ. 2019,259, 118029. doi: 10.1016/j. apcatb.2019.118029

    18. [18]

      (18) Yue, X.; Yi, S. Wang, R.; Zhang, Z.; Qiu, S. Appl. Catal. B-Environ. 2018, 224, 17. doi: 10.1016/j.apcatb.2017.10.010

    19. [19]

      (19) Luo, Z.; Zhao, X.; Zhang, H.; Jiang, Y. Appl. Catal. A-Gen.2019, 582, 117115. doi: 10.1016/j.apcata.2019.117115

    20. [20]

      (20) Huang, H.-B.; Fang, Z.-B.; Yu, K.; Lü, J.; Cao, R. J. Mater. Chem. A 2020, 8 (7), 3882. doi: 10.1039/C9TA13836F

    21. [21]

      (21) Li, Q.; Meng, H.; Zhou, P.; Zheng, Y.; Wang, J.; Yu, J.; Gong, J. ACS Catal. 2013, 3 (5), 882. doi: 10.1021/cs4000975

    22. [22]

      (22) Hou, Y.; Laursen, A. B.; Zhang, J.; Zhang, G.; Zhu, Y.; Wang, X.; Dahl, S.; Chorkendorff, I. Angew. Chem.-Int. Ed. 2013, 52 (13), 3621. doi: 10.1002/anie.201210294

    23. [23]

      (23) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Min, H.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Adv. Mater. 2011, 23 (37), 4248. doi: 10.1002/adma.201102306

    24. [24]

      (24) Zhang, Q.; Lai, H.; Fan, R.; Ji, P.; Fu, X.; Li, H. ACS Nano2021, 15 (3), 5249. doi: 10.1021/acsnano.0c10671

    25. [25]

      (25) Zhang, Q.; Fan, R.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Lai, H.; Fu, X.; Zhang, C.; Li, H. Adv. Sci. 2022, 9 (28), 2202748.

    26. [26]

      doi: 10.1002/advs.202202748

    27. [27]

      (26) Zhang, Q.; Zhang, Z.; Zhao, D.; Wang, L.; Li, H.; Zhang, F.; Huo, Y.; Li, H. Appl. Catal. B-Environ. 2023, 320, 122009. doi: 10.1016/j.apcatb.2022.122009

    28. [28]

      (27) Tang, X.; Zhou, D., Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. Adv. Mater. 2020, 32 (4), 1906739. doi: 10.1002/adma.201906739

    29. [29]

      (28) Zhang, Q.; He, J.; Fu, X.; Xie, S.; Fan, R.; Lai, H.; Cheng, W.; Ji, P.; Sheng, J.; Liao, Q.; Zhu, W.; Li, H. Chem. Eng. J. 2022, 430, 132950. doi: 10.1016/j.cej.2021.132950

    30. [30]

      (29) Zhou, Y.; Maleski, K.; Anasori, B.; Thostenson, J.O.; Pang, Y.; Feng, Y.; Zeng, K.; Parker, C. B.; Zauscher, S.; Gogotsi, Y.; Glass, J. T.; Cao, C. ACS Nano 2020, 14 (3), 3576. doi: 10.1021/acsnano.9b10066

    31. [31]

      (30) Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. Appl. Catal. B-Environ. 2019, 246, 12. doi: 10.1016/j.apcatb.2019.01.051

    32. [32]

      (31) Wu, Y.; Li, X.; Yang, Q.; Wang, D.; Yao, F.; Cao, J.; Chen, Z.; Huang, X.; Yang, Y.; Li, X. Chem. Eng. J. 2020, 390, 124519. doi: 10.1016/j.cej.2020.124519

    33. [33]

      (32) Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020,267, 118379. doi: 10.1016/j.apcatb.2019.118379

    34. [34]

      (33) Shao, M.; Shao, Y.; Chai, J.; Qu, Y.; Yang, M.; Wang, Z.; Yang, M.; Ip, W. F.; Kwok, C. T.; Shi, X.; et al. J. Mater. Chem. A 2017,5, 16748. doi: 10.1039/C7TA04122E

    35. [35]

      (34) Kwon, N. H.; Shin, S.-J.; Jin, X.; Jung, Y.; Hwang, G.-S.; Kim, H.; Hwang, S.-J. Appl. Catal. B-Environ. 2020, 277, 19191. doi: 10.1016/j.apcatb.2020.119191

    36. [36]

      (35) Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys.-Chim. Sin. 2022, 38 (7), 2108028. doi: 10.3866/PKU.WHXB202108028

    37. [37]

      (36) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022,43 (8), 2111. doi: 10.1016/S1872-2067(22)64096-8

    38. [38]

      (37) Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin.2023, 39 (6), 2209037. doi: 10.3866/PKU.WHXB202209037

    39. [39]

      (38) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003

    40. [40]

      (39) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    41. [41]

      (40) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023,49, 42. doi: 10.1016/S1872-2067(23)64444-4

    42. [42]

      (41) Li, Y.-H.; Zhang, F.; Chen, Y.; Li, J.-Y.; Xu, Y.-J. Green. Chem. 2020, 22, 163. doi: 10.1039/c9gc03332g

    43. [43]

      (42) Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021,11 (14), 8510. doi: 10.1021/acscatal.1c02018

    44. [44]

      (43) Gu, H.; Zhang, H.; Wang, X.; Li, Q.; Chang, S.; Huang, Y.; Gao, L.; Cui, Y.; Liu, R.; Dai, W.-L. Appl. Catal. B-Environ. 2023, 328, 122537. doi: 10.1016/j.apcatb.2023.122537

    45. [45]

      (44) Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. Chem. Eng. J. 2021, 406, 127177. doi: 10.1016/ j.cej.2020.127177

    46. [46]

      (45) Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B-Environ. 2020, 268, 118382. doi: 10.1016/j.apcatb.2019.118382

    47. [47]

      (46) Saini, B.; Laishram, H. K. D.; Krishnapriya, R.; Singhal, R.; Sharma, R. K. ACS Appl. Nano Mater. 2022, 5 (7), 9319. doi: 10.1021/acsanm.2c01639

    48. [48]

      (47) Zhu, S.-C.; Li, S.; Tang, B.; Liang, H.; Liu, B.-J.; Xiao, G.; Xiao, F.-X. J. Catal. 2021, 404, 56. doi: 10.1016/j.jcat.2021.09.001

    49. [49]

      (48) Zhu, S.-C.; Wang, Z.-C.; Tang, B.; Liang, H.; Liu, B.-J.; Li, S.; Chen, Z.; Cheng, N. C.; Xiao, F.-X. J. Mater. Chem. A 2022, 10, 11926. doi: 10.1039/D2TA02755K

    50. [50]

      (49) He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B- Environ. 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006

    51. [51]

      (50) Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028

    52. [52]

      (51) Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Rare Met. 2022, 41, 3268. doi: 10.1007/s12598-022-02058-2

    53. [53]

      (52) Li, H.; Sun, B.; Gao, T.; Li, H.; Ren, Y.; Zhou, G. Chin. J. Catal. 2022, 43 (2), 461. doi: 10.1016/S1872-2067(21)63915-3

    54. [54]

      (53) Guan, C.; Yue, X.; Fan, J.; Xiang, Q. Chin. J. Catal. 2022,43 (10), 2484. doi: 10.1016/S1872-2067(22)64102-0

    55. [55]

      (54) You, Z.; Liao, Y.; Li, X.; Fan, J.; Xiang, Q. Nanoscale 2021,13, 9463. doi: 10.1039/D1NR02224E

    56. [56]

      (55) Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715

    57. [57]

      (56) Yu, J.; Zhang, J.; Jaroniec, M. Green Chem. 2010, 12, 1611. doi: 10.1039/c0gc00236d

    58. [58]

      (57) Sun, Q.-M.; Xu, J.-J.; Tao, F.-F.; Ye, W.; Zhou, C.; He, J.-H.; Lu, J.-M. Angew. Chem.-Int. Ed. 2022, 61, e202200872. doi: 10.1002/anie.202200872

    59. [59]

      (58) Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023,49, 5. doi: 10.1016/S1872-2067(23)64438-9

    60. [60]

      (59) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem.-Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688

  • 加载中
    1. [1]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(1)
  • Abstract views(393)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return