Citation: Jizhou Liu, Chenbin Ai, Chenrui Hu, Bei Cheng, Jianjun Zhang. Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240200. doi: 10.3866/PKU.WHXB202402006 shu

Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation

  • Corresponding author: Jianjun Zhang, zhangjianjun@cug.edu.cn
  • Received Date: 5 February 2024
    Revised Date: 28 February 2024
    Accepted Date: 28 February 2024
    Available Online: 4 March 2024

    Fund Project: the National Natural Science Foundation of China 52073223the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 52202375Natural Science Foundation of Hubei Province of China 2022CFA001

  • Organic-inorganic halide perovskite solar cells (PSCs) have received widespread attention due to their outstanding photovoltaic performance and straightforward preparation process. However, charge recombination at the interface is a crucial factor limiting further enhancement of the power conversion efficiency (PCE) of the PSCs. In this study, we report the interfacial modification between the electron transport layer and the perovskite film (PSK) using ammonium hexachlorostannate (AH) crystals synthesized via the room temperature spin-coating method. AH as an inorganic tin-based perovskite material, can passivate defects in the PSK and establish a better lattice match, thereby enhancing the quality and crystallinity of the PSK. Kelvin probe force microscopy results confirm that AH promotes the directional migration of photogenerated electrons. Femtosecond transient absorption spectroscopy results verify that AH effectively shortens the lifetime of electron extraction and facilitates interfacial electron transfer. Based on the benefits of AH modification, AH-based PSCs exhibit higher PCE and reduced hysteresis effect.
  • 加载中
    1. [1]

      Meng, X.; Xing, Z.; Hu, X.; Huang, Z.; Hu, T.; Tan, L.; Li, F.; Chen, Y. Angew. Chem. Int. Ed. 2020, 59 (38), 16602. doi: 10.1002/anie.202003813  doi: 10.1002/anie.202003813

    2. [2]

      Wu, Y.; Chen, W.; Chen, G.; Liu, L.; He, Z.; Liu, R. Nanomaterials 2018, 8 (6), 356. doi: 10.3390/nano8060356  doi: 10.3390/nano8060356

    3. [3]

      Xiao, X.; Hu, J.; Tang, S.; Yan, K.; Gao, B.; Chen, H.; Zou, D. Adv. Mater. Technol. 2020, 5 (6), 1900914. doi: 10.1002/admt.201900914  doi: 10.1002/admt.201900914

    4. [4]

      Li, Y.; Ji, L.; Liu, R.; Zhang, C.; Mak, C.; Zou, X.; Shen, H.; Leu, S.; Hsu, H. J. Mater. Chem. A. 2018, 6 (27), 12842. doi: 10.1039/c8ta04120b  doi: 10.1039/c8ta04120b

    5. [5]

      Kim, H.; Lee, C.; Im, J.; Lee, K.; Moehl, T.; Marchioro, A.; Moon, S.; Humphry-Baker, R.; Yum, J.; Moser, J.; Grätzel, M.; Park, N. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    6. [6]

      Certified best cell efficiency from NREL. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev230819.pdf (accessed: December 2023).

    7. [7]

      Liu, B.; Wang, Y.; Wu, Y.; Dong, B.; Song, H. J. Mater. Sci. Technol. 2023, 140, 33. doi: 10.1016/j.jmst.2022.06.055  doi: 10.1016/j.jmst.2022.06.055

    8. [8]

      Lin, F.; Yang, Y.; Zhu, C.; Chen, T.; Ma, S.; Luo, Y.; Zhu, L.; Guo, X. Acta Phys.-Chim. Sin. 2022, 38 (4), 2005007. doi: 10.3866/PKU.WHXB202005007  doi: 10.3866/PKU.WHXB202005007

    9. [9]

      Li, M.; Begum, R.; Fu, J.; Xu, Q.; Koh, T.; Veldhuis, S.; Grätzel, M.; Mathews, N.; Mhaisalkar, S.; Sum, T. Nat. Commun. 2018, 9, 4197. doi: 10.1038/s41467-018-06596-1  doi: 10.1038/s41467-018-06596-1

    10. [10]

      Wang, K.; Olthof, S.; Subhani, W.; Jiang, X.; Cao, Y.; Duan, L.; Wang, H.; Du, M.; Liu, S. Nano Energy 2020, 68, 104289. doi: 10.1016/j.nanoen.2019.104289  doi: 10.1016/j.nanoen.2019.104289

    11. [11]

      Ge, Y.; Mu, X.; Lu, Y.; Sui, M. Acta Phys.-Chim. Sin. 2020, 36 (8), 1905039. doi: 10.3866/PKU.WHXB201905039  doi: 10.3866/PKU.WHXB201905039

    12. [12]

      Liu, Y.; Akin, S.; Hinderhofer, A.; Eickemeyer, F.; Zhu, H.; Seo, J.; Zhang, J.; Schreiber, F.; Zhang, H.; Zakeeruddin, S.; et al. Angew. Chem. Int. Ed. 2020, 59 (36), 15688. doi: 10.1002/anie.202005211  doi: 10.1002/anie.202005211

    13. [13]

      Lu, Y.; Ge, Y.; Sui, M. Acta Phys.-Chim. Sin. 2022, 38 (5), 2007088. doi: 10.3866/PKU.WHXB202007088  doi: 10.3866/PKU.WHXB202007088

    14. [14]

      De Bastiani, M.; Aydin, E.; Allen, T.; Walter, D.; Fell, A.; Peng, J.; Gasparini, N.; Troughton, J.; Baran, D.; Weber, K.; et al. Adv. Electron. Mater. 2019, 5 (1), 1800500. doi: 10.1002/aelm.201800500  doi: 10.1002/aelm.201800500

    15. [15]

      Cao, Z.; Li, C.; Deng, X.; Wang, S.; Yuan, Y.; Chen, Y.; Wang, Z.; Liu, Y.; Ding, L.; Hao, F. J. Mater. Chem. A 2020, 8 (38), 19768. doi: 10.1039/d0ta07282f  doi: 10.1039/d0ta07282f

    16. [16]

      Chen, B.; Rao, H.; Li, W.; Xu, Y.; Chen, H.; Kuang, D.; Su, C. J. Mater. Chem. A 2016, 4 (15), 5647. doi: 10.1039/c6ta00989a  doi: 10.1039/c6ta00989a

    17. [17]

      Giordano, F.; Abate, A.; Baena, J.; Saliba, M.; Matsui, T.; Im, S.; Zakeeruddin, S.; Nazeeruddin, M.; Hagfeldt, A.; Graetzel, M. Nat. Commun. 2016, 7, 10379. doi: 10.1038/ncomms10379  doi: 10.1038/ncomms10379

    18. [18]

      Kumar, M.; Yantara, N.; Dharani, S.; Graetzel, M.; Mhaisalkar, S.; Boix, P.; Mathews, N. Chem. Commun. 2013, 49 (94), 11089. doi: 10.1039/c3cc46534a  doi: 10.1039/c3cc46534a

    19. [19]

      Zhang, J.; Juárez-Pérez, E.; Mora-Seró, I.; Viana, B.; Pauporté, T. J. Mater. Chem. A 2015, 3 (9), 4909. doi: 10.1039/c4ta06416j  doi: 10.1039/c4ta06416j

    20. [20]

      Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. J. Am. Chem. Soc. 2015, 137 (21), 6730. doi: 10.1021/jacs.5b01994  doi: 10.1021/jacs.5b01994

    21. [21]

      Yang, G.; Lei, H.; Tao, H.; Zheng, X.; Ma, J.; Liu, Q.; Ke, W.; Chen, Z.; Xiong, L.; Qin, P.; et al. Small 2017, 13 (2), 1601769. doi: 10.1002/smll.201601769  doi: 10.1002/smll.201601769

    22. [22]

      Altinkaya, C.; Aydin, E.; Ugur, E.; Isikgor, F.; Subbiah, A.; De Bastiani, M.; Liu, J.; Babayigit, A.; Allen, T.; Laquai, F.; et al. Adv. Mater. 2021, 33 (15), 2005504. doi: 10.1002/adma.202005504  doi: 10.1002/adma.202005504

    23. [23]

      Gao, W.; Chen, C.; Ran, C.; Zheng, H.; Dong, H.; Xia, Y.; Chen, Y.; Huang, W. Adv. Funct. Mater. 2020, 30 (34), 2000794. doi: 10.1002/adfm.202000794  doi: 10.1002/adfm.202000794

    24. [24]

      Parida, B.; Yoon, S.; Jeong, S.; Cho, J.; Kim, J.; Kang, D. Sol. Energy Mater. Sol. Cells 2020, 204, 110212. doi: 10.1016/j.solmat.2019.110212  doi: 10.1016/j.solmat.2019.110212

    25. [25]

      Zhang, J.; Wang, L.; Jiang, C.; Cheng, B.; Chen, T.; Yu, J. Adv. Sci. 2021, 8 (21), 2102648. doi: 10.1002/advs.202102648  doi: 10.1002/advs.202102648

    26. [26]

      Kim, M.; Jeong, J.; Lu, H.; Lee, T.; Eickemeyer, F.; Liu, Y.; Choi, I.; Choi, S.; Jo, Y.; Kim, H.; et al. Science 2022, 375 (6578), 302. doi: 10.1126/science.abh1885  doi: 10.1126/science.abh1885

    27. [27]

      Ge, Y.; Ye, F.; Xiao, M.; Wang, H.; Wang, C.; Liang, J.; Hu, X.; Guan, H.; Cui, H.; Ke, W.; Tao, C.; Fang, G. Adv. Energy Mater. 2022, 12 (19), 2200361. doi: 10.1002/aenm.202200361  doi: 10.1002/aenm.202200361

    28. [28]

      Yi, H.; Wang, D.; Mahmud, M.; Haque, F.; Upama, M.; Xu, C.; Duan, L.; Uddin, A. ACS Appl. Energy Mater. 2018, 1 (11), 6027. doi: 10.1021/acsaem.8b01076  doi: 10.1021/acsaem.8b01076

    29. [29]

      Rui, Y.; Li, T.; Li, B.; Wang, Y.; Müller-Buschbaum, P. J. Mater. Chem. C 2022, 10 (34), 12392. doi: 10.1039/d2tc02452g  doi: 10.1039/d2tc02452g

    30. [30]

      Zhou, C.; Lin, H.; Tian, Y.; Yuan, Z.; Clark, R.; Chen, B.; van de Burgt, L.; Wang, J.; Zhou, Y.; Hanson, K.; et al. Chem. Sci. 2018, 9 (3), 586. doi: 10.1039/c7sc04539e  doi: 10.1039/c7sc04539e

    31. [31]

      Song, G.; Li, M.; Yang, Y.; Liang, F.; Huang, Q.; Liu, X.; Gong, P.; Xia, Z.; Lin, Z. J. Phys. Chem. Lett. 2020, 11 (5), 1808. doi: 10.1021/acs.jpclett.0c00096  doi: 10.1021/acs.jpclett.0c00096

    32. [32]

      Li, Z.; Zhang, C.; Li, B.; Lin, C.; Li, Y.; Wang, L.; Xie, R. Chem. Eng. J. 2021, 420, 129740. doi: 10.1016/j.cej.2021.129740  doi: 10.1016/j.cej.2021.129740

    33. [33]

      Li, Z.; Li, Q.; Cao, M.; Zhou, L.; Zhao, X.; Gong, X. J. Phys. Chem. C 2023, 127 (19), 9354. doi: 10.1021/acs.jpcc.3c01455  doi: 10.1021/acs.jpcc.3c01455

    34. [34]

      Aydin, E.; De Bastiani, M.; De Wolf, S. Adv. Mater. 2019, 31 (25), 1900428. doi: 10.1002/adma.201900428  doi: 10.1002/adma.201900428

    35. [35]

      Zhang, J.; Meng, Z.; Guo, D.; Zou, H.; Yu, J.; Fan, K. Appl. Surf. Sci. 2018, 430, 531. doi: 10.1016/j.apsusc.2017.07.238  doi: 10.1016/j.apsusc.2017.07.238

    36. [36]

      Zha, W.; Zhang, L.; Wen, L.; Kang, J.; Luo, Q.; Chen, Q.; Yang, S.; Ma, C. Acta Phys.-Chim. Sin. 2022, 38 (3), 2003022. doi: 10.3866/PKU.WHXB202003022  doi: 10.3866/PKU.WHXB202003022

    37. [37]

      Li, Y.; Wu, H.; Qi, W.; Zhou, X.; Li, J.; Cheng, J.; Zhao, Y.; Li, Y.; Zhang, X. Nano Energy 2020, 77, 105237. doi: 10.1016/j.nanoen.2020.105237  doi: 10.1016/j.nanoen.2020.105237

    38. [38]

      Baek, D.; Park, G.; Cha, J.; Na, H.; Ham, D.; Kim, M. J. Mater. Sci. Technol. 2023, 165, 161. doi: 10.1016/j.jmst.2023.04.065  doi: 10.1016/j.jmst.2023.04.065

    39. [39]

      Li, W.; Cheng, B.; Xiao, P.; Chen, T.; Zhang, J.; Yu, J. Small 2022, 18 (49), 2205097. doi: 10.1002/smll.202205097  doi: 10.1002/smll.202205097

    40. [40]

      Zhang, J.; Li, X.; Wang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. Appl. Surf. Sci. 2021, 564, 150464. doi: 10.1016/j.apsusc.2021.150464  doi: 10.1016/j.apsusc.2021.150464

    41. [41]

      Shi, J.; Li, Y.; Li, Y.; Li, D.; Luo, Y.; Wu, H.; Meng, Q. Joule 2018, 2 (5), 879. doi: 10.1016/j.joule.2018.04.010  doi: 10.1016/j.joule.2018.04.010

    42. [42]

      Wang, L.; McCleese, C.; Kovalsky, A.; Zhao, Y.; Burda, C. J. Am. Chem. Soc. 2014, 136 (35), 12205. doi: 10.1021/ja504632z  doi: 10.1021/ja504632z

    43. [43]

      Sum, T.; Mathews, N.; Xing, G.; Lim, S.; Chong, W.; Giovanni, D.; Dewi, H. Acc. Chem. Res. 2016, 49 (2), 294. doi: 10.1021/acs.accounts.5b00433  doi: 10.1021/acs.accounts.5b00433

    44. [44]

      Qiao, L.; Fang, W.; Long, R.; Prezhdo, O. J. Phys. Chem. Lett. 2020, 11 (17), 7066. doi: 10.1021/acs.jpclett.0c01687  doi: 10.1021/acs.jpclett.0c01687

    45. [45]

      Peng, J.; Chen, Y.; Zheng, K.; Pullerits, T.; Liang, Z. Chem. Soc. Rev. 2017, 46 (19), 5714. doi: 10.1039/c6cs00942e  doi: 10.1039/c6cs00942e

    46. [46]

      Wageh, S.; Al-Ghamdi, A.; Zhao, L. Acta Phys.-Chim. Sin. 2022, 38 (7), 2111009. doi: 10.3866/PKU.WHXB202111009  doi: 10.3866/PKU.WHXB202111009

    47. [47]

      Xing, G.; Mathews, N.; Sun, S.; Lim, S.; Lam, Y.; Grätzel, M.; Mhaisalkar, S.; Sum, T. Science 2013, 342 (6156), 344. doi: 10.1126/science.1243167  doi: 10.1126/science.1243167

    48. [48]

      Guo, Z.; Wan, Y.; Yang, M.; Snaider, J.; Zhu, K.; Huang, L. Science 2017, 356 (6333), 59. doi: 10.1126/science.aam7744  doi: 10.1126/science.aam7744

    49. [49]

      Ye, X.; Cai, H.; Su, J.; Yang, J.; Ni, J.; Li, J.; Zhang, J. J. Mater. Sci. Technol. 2021, 61, 213. doi: 10.1016/j.jmst.2020.05.029  doi: 10.1016/j.jmst.2020.05.029

    50. [50]

      Zhang, J.; Tong, T.; Zhang, L.; Li, X.; Zou, H.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6 (7), 8631. doi: 10.1021/acssuschemeng.8b00938  doi: 10.1021/acssuschemeng.8b00938

    51. [51]

      Zhang, J.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. Solar RRL 2020, 4 (11), 2000502. doi: 10.1002/solr.202000502  doi: 10.1002/solr.202000502

    52. [52]

      Noh, Y.; Jin, I.; Park, S.; Jung, J. J. Mater. Sci. Technol. 2020, 42, 38. doi: 10.1016/j.jmst.2019.11.008  doi: 10.1016/j.jmst.2019.11.008

    53. [53]

      Li, Y.; Ding, B.; Yang, G.; Li, C.; Li, C. J. Mater. Sci. Technol. 2018, 34 (8), 1405. doi: 10.1016/j.jmst.2017.11.003  doi: 10.1016/j.jmst.2017.11.003

    54. [54]

      Li, T.; Rui, Y.; Wang, X.; Shi, J.; Wang, Y.; Yang, J.; Zhang, Q. ACS Appl. Energy Mater. 2021, 4 (7), 7002. doi: 10.1021/acsaem.1c01055  doi: 10.1021/acsaem.1c01055

    55. [55]

      Yang, S.; Xu, Y.; Hao, Z.; Qin, S.; Zhang, R.; Han, Y.; Du, L.; Zhu, Z.; Du, A.; Chen, X.; et al. Acta Phys.-Chim. Sin. 2023, 39 (5), 2211025. doi: 10.3866/PKU.WHXB202211025  doi: 10.3866/PKU.WHXB202211025

    56. [56]

      Son, D.; Kim, S.; Seo, J.; Lee, S.; Shin, H.; Lee, D.; Park, N. J. Am. Chem. Soc. 2018, 140 (4), 1358. doi: 10.1021/jacs.7b10430  doi: 10.1021/jacs.7b10430

    57. [57]

      Ma, W.; Zhang, X.; Xu, Z.; Guo, H.; Lu, G.; Meng, S. ACS Appl. Mater. Interfaces 2020, 12 (10), 12275. doi: 10.1021/acsami.9b20988  doi: 10.1021/acsami.9b20988

  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    3. [3]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    4. [4]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    5. [5]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    19. [19]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    20. [20]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

Metrics
  • PDF Downloads(3)
  • Abstract views(357)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return