Citation: Wenxiu Yang, Jinfeng Zhang, Quanlong Xu, Yun Yang, Lijie Zhang. Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231201. doi: 10.3866/PKU.WHXB202312014 shu

Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production

  • Corresponding author: Quanlong Xu, xuql@wzu.edu.cn Lijie Zhang, ljzhang@wzu.edu.cn
  • Received Date: 12 December 2023
    Revised Date: 12 January 2024
    Accepted Date: 12 January 2024
    Available Online: 18 January 2024

    Fund Project: the National Natural Science Foundation of China 52073263the National Natural Science Foundation of China 52171145the National Natural Science Foundation of China 21905209

  • Covalent organic frameworks (COFs) represent a kind of novel crystalline porous organic substances with extended π-conjugation framework and tunable structures, which display great promise in photocatalysis. However, unadorned COFs suffer from sluggish reaction kinetics, and a cocatalyst is essentially needed to reduce the activation barrier toward specific surface reaction and accelerate reaction kinetics. In this work, bimetallic alloys serving as co-catalysts were decorated on COFs to enhance the photocatalytic hydrogen evolution performance. By precisely-tuning the ratio of AuCu alloy, the resultant Au1Cu5/COF-TpPa displays the highest photocatalytic hydrogen generation rate (8.24 mmol∙g−1∙h−1), even surpassing the Pt modified COF-TpPa (6.51 mmol∙h−1∙g−1). According to the systematic characterizations and theoretical calculation, Au1Cu5/COF-TpPa exhibits the significantly enhanced charge carrier separation efficiency and reduced H* formation energy barrier, thus possessing high photocatalytic performance. This work affords a valuable approach to advancing COF-based photocatalysts by employing bimetallic alloy cocatalysts.
  • 加载中
    1. [1]

      Wang, S.; Yang, Y.; Liang, X.; Ren, Y.; Ma, H.; Zhu, Z.; Wang, J.; Zeng, S.; Song, S.; Wang, X.; et al. Adv. Funct. Mater. 2023, 33, 2300386. doi: 10.1002/adfm.202300386  doi: 10.1002/adfm.202300386

    2. [2]

      Fan, H.; Gu, J.; Meng, H.; Knebel, A.; Caro, J. Angew. Chem. Int. Ed. 2018, 57, 4083. doi: 10.1002/anie.201712816  doi: 10.1002/anie.201712816

    3. [3]

      Altundal, O. F.; Altintas, C.; Keskin, S. J. Mater. Chem. A 2020, 8, 14609. doi: 10.1039/d0ta04574h  doi: 10.1039/d0ta04574h

    4. [4]

      Evans, A. M.; Bradshaw, N. P.; Litchfield, B.; Strauss, M. J.; Seckman, B.; Ryder, M. R.; Castano, I.; Gilmore, C.; Gianneschi, N. C.; Mulzer, C. R.; et al. Adv. Mater. 2020, 32, 2004205. doi: 10.1002/adma.202004205  doi: 10.1002/adma.202004205

    5. [5]

      Liu, Y.; Tan, H.; Sun, J.; Wei, Y.; Liu, M.; Hong, J.; Shang, S.; Wang, X.; Li, L.; Gu, Y.; et al. Adv. Funct. Mater. 2023, 33, 202302874. doi: 10.1002/adfm.202302874  doi: 10.1002/adfm.202302874

    6. [6]

      Wang, W.; Zhao, W.; Xu, H.; Liu, S.; Huang, W.; Zhao, Q. Coord. Chem. Rev. 2021, 429, 213616. doi: 10.1016/j.ccr.2020.213616  doi: 10.1016/j.ccr.2020.213616

    7. [7]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. App. Catal. B 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    8. [8]

      Chen, H.; Jena, H. S.; Feng, X.; Leus, K.; Van Der Voort, P. Angew. Chem. Int. Ed. 2022, 61, e202204938. doi: 10.1002/anie.202204938  doi: 10.1002/anie.202204938

    9. [9]

      Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X.; et al. Chem. Soc. Rev. 2020, 49, 4135. doi: 10.1039/d0cs00278j  doi: 10.1039/d0cs00278j

    10. [10]

      Ye, L.; Xia, Z.; Xu, Q.; Yang, Y.; Xu, X.; Jin, H.; Wang, S. Chem. Commun. 2023, 59, 9872. doi: 10.1039/D3CC02914J  doi: 10.1039/D3CC02914J

    11. [11]

      Yin, C.; Liu, M.; Zhang, Z.; Wei, M.; Shi, X.; Zhang, Y.; Wang, J.; Wang, Y. J. Am. Chem. Soc. 2023, 145, 11431. doi: 10.1021/jacs.3c03198  doi: 10.1021/jacs.3c03198

    12. [12]

      Emmerling, S. T.; Schuldt, R.; Bette, S.; Yao, L.; Dinnebier, R. E.; Kästner, J.; Lotsch, B. V. J. Am. Chem. Soc. 2021, 143, 15711. doi: 10.1021/jacs.1c06518  doi: 10.1021/jacs.1c06518

    13. [13]

      Liang, Z.; Shen, R.; Zhang, P.; Li, Y.; Li, N.; Li, X. Chin. J. Catal. 2022, 43, 2581. doi: 10.1016/S1872-2067(22)64130-5  doi: 10.1016/S1872-2067(22)64130-5

    14. [14]

      Prakash, K.; Mishra, B.; Díaz, D. D.; Nagaraja, C. M.; Pachfule, P. J. Mater. Chem. A 2023, 11, 14489. doi: 10.1039/D3TA02189K  doi: 10.1039/D3TA02189K

    15. [15]

      Yuan, Y.; Bang, K. T.; Wang, R.; Kim, Y. Adv. Mater. 2023, 35, 2210952. doi: 10.1002/adma.202210952  doi: 10.1002/adma.202210952

    16. [16]

      Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Adv. Sci. 2019, 6, 1970011. doi: 10.1002/advs.201970011  doi: 10.1002/advs.201970011

    17. [17]

      Sun, L.; Li, L.; Yang, J.; Fan, J.; Xu, Q. Chin. J. Catal. 2022, 43, 350. doi: 10.1016/s1872-2067(21)63869-x  doi: 10.1016/s1872-2067(21)63869-x

    18. [18]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    19. [19]

      Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001  doi: 10.1016/j.jmst.2022.11.001

    20. [20]

      Sun, F.; Tang, Q.; Jiang, D. ACS Catal. 2022, 12, 8404. doi: 10.1021/acscatal.2c02081  doi: 10.1021/acscatal.2c02081

    21. [21]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    22. [22]

      Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi: 10.1016/S1872-2067(22)64108-1  doi: 10.1016/S1872-2067(22)64108-1

    23. [23]

      Xiang, X.; Zhang, L.; Luo, C.; Zhang, J.; Cheng, B.; Liang, G.; Zhang, Z.; Yu, J. App. Catal. B 2024, 340, 123196. doi: 10.1016/j.apcatb.2023.123196  doi: 10.1016/j.apcatb.2023.123196

    24. [24]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys.-Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    25. [25]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys.-Chim. Sin. 2022, 38, 2108028. doi: 10.3866/PKU.WHXB202108028  doi: 10.3866/PKU.WHXB202108028

    26. [26]

      Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35, 2303030. doi: 10.1002/adma.202303030  doi: 10.1002/adma.202303030

    27. [27]

      Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi: 10.1016/j.jmst.2023.06.048  doi: 10.1016/j.jmst.2023.06.048

    28. [28]

      Zhang, X.; Liu, K.; Fu, J.; Li, H.; Pan, H.; Hu, J.; Liu, M. Front. Phys. 2021, 16, 63500. doi: 10.1007/s11467-021-1079-4  doi: 10.1007/s11467-021-1079-4

    29. [29]

      Wageh, S.; Al-Ghamdi, A. A.; Xu, Q. Acta Phys.-Chim. Sin. 2022, 38, 2202001. doi: 10.3866/PKU.WHXB202202001  doi: 10.3866/PKU.WHXB202202001

    30. [30]

      Liu, L.; Corma, A. Chem. Rev. 2023, 123, 4855. doi: 10.1021/acs.chemrev.2c00733  doi: 10.1021/acs.chemrev.2c00733

    31. [31]

      Lee, S.; Jeong, S.; Kim, W. D.; Lee, S.; Lee, K.; Bae, W. K.; Moon, J. H.; Lee, S.; Lee, D. C. Nanoscale 2016, 8, 10043. doi: 10.1039/C6NR02124G  doi: 10.1039/C6NR02124G

    32. [32]

      Xu, Q.; Xia, Z.; Zhang, J.; Wei, Z.; Guo, Q.; Jin, H.; Tang, H.; Li, S.; Pan, X.; Su, Z.; et al. Carbon Energy 2023, 5, e205. doi: 10.1002/cey2.205  doi: 10.1002/cey2.205

    33. [33]

      Yao, Q.; Yu, Z.; Li, L.; Huang, X. Chem. Rev. 2023, 123, 9676. doi: 10.1021/acs.chemrev.3c00252  doi: 10.1021/acs.chemrev.3c00252

    34. [34]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    35. [35]

      Akinaga, Y.; Kawawaki, T.; Kameko, H.; Yamazaki, Y.; Yamazaki, K.; Nakayasu, Y.; Kato, K.; Tanaka, Y.; Hanindriyo, A. T.; Takagi, M.; et al. Adv. Funct. Mater. 2023, 33, 202303321. doi: 10.1002/adfm.202303321  doi: 10.1002/adfm.202303321

    36. [36]

      Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023, 19, 2301928. doi: 10.1002/smll.202301928  doi: 10.1002/smll.202301928

    37. [37]

      Shen, R.; Hao, L.; Ng, Y. H.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi: 10.1016/S1872-2067(22)64104-4  doi: 10.1016/S1872-2067(22)64104-4

    38. [38]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    39. [39]

      Fu, J.; Wang, S.; Wang, Z.; Liu, K.; Li, H.; Liu, H.; Hu, J.; Xu, X.; Li, H.; Liu, M. Front. Phys. 2020, 15, 33201. doi: 10.1007/s11467-019-0950-z  doi: 10.1007/s11467-019-0950-z

    40. [40]

      Zhang, H.; Zhang, P.; Qiu, M.; Dong, J.; Zhang, Y.; Lou, X. Adv. Mater. 2019, 31, 1804883. doi: 10.1002/adma.201804883  doi: 10.1002/adma.201804883

    41. [41]

      Yan, B.; He, Y.; Yang, G. Small 2022, 18, 2107840. doi: 10.1002/smll.202107840  doi: 10.1002/smll.202107840

    42. [42]

      Peng, Y.; Cheng, B.; Zhang, L.; Liu, J.; Yu, J. Sensor Actuat. B-Chem. 2023, 385, 133700. doi: 10.1016/j.snb.2023.133700  doi: 10.1016/j.snb.2023.133700

    43. [43]

      Zhou, Z.; Bie, C.; Li, P.; Tan, B.; Shen, Y. Chin. J. Catal. 2022, 43, 2699. doi: 10.1016/S1872-2067(22)64118-4  doi: 10.1016/S1872-2067(22)64118-4

    44. [44]

      Fukuzumi, S.; Lee, Y.; Nam, W. Coord. Chem. Rev. 2018, 355, 54. doi: 10.1016/j.ccr.2017.07.014  doi: 10.1016/j.ccr.2017.07.014

    45. [45]

      Deng, J.; Lei, W.; Fu, J.; Jin, H.; Xu, Q.; Wang, S. Sol. RRL 2022, 6, 2200279. doi: 10.1002/solr.202200279  doi: 10.1002/solr.202200279

    46. [46]

      Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. J. Mater. Sci. Technol. 2024, 180, 150. doi: 10.1016/j.jmst.2023.04.053  doi: 10.1016/j.jmst.2023.04.053

    47. [47]

      Sun, G.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J.; Xu, J. Chem. Eng. J. 2023, 476, 146818. doi: 10.1016/j.cej.2023.146818  doi: 10.1016/j.cej.2023.146818

    48. [48]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    49. [49]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    50. [50]

      Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.; Wang, L. App. Catal. B 2023, 324, 122301. doi: 10.1016/j.apcatb.2022.122301  doi: 10.1016/j.apcatb.2022.122301

    51. [51]

      Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2012, 134, 19524. doi: 10.1021/ja308278w  doi: 10.1021/ja308278w

    52. [52]

      Cao, Q.; Zhang, L.; Zhou, C.; He, J.; Marcomini, A.; Lu, J. App. Catal. B. 2021, 294, 120238. doi: 10.1016/j.apcatb.2021.120238  doi: 10.1016/j.apcatb.2021.120238

    53. [53]

      Dong, P.; Wang, Y.; Zhang, A.; Cheng, T.; Xi, X.; Zhang, J. ACS Catal. 2021, 11, 13266. doi: 10.1021/acscatal.1c03441  doi: 10.1021/acscatal.1c03441

    54. [54]

      Weng, W.; Guo, J. Nat Commun. 2022, 13, 5768. doi: 10.1038/s41467-022-33501-8  doi: 10.1038/s41467-022-33501-8

    55. [55]

      Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53, 9240. doi: 10.1002/anie.201403375  doi: 10.1002/anie.201403375

    56. [56]

      Zhang, Y.; Zeng, P.; Yu, Y.; Zhang, W. Chem. Eng. J. 2020, 381, 2301928. doi: 10.1016/j.cej.2019.122635  doi: 10.1016/j.cej.2019.122635

    57. [57]

      Liu, Q.; Xu, Y.; Wang, A.; Feng, J. Int. J. Hydrog. Energy 2016, 41, 2547. doi: 10.1016/j.ijhydene.2015.11.143  doi: 10.1016/j.ijhydene.2015.11.143

    58. [58]

      Zhan, W.; Wang, J.; Wang, H.; Zhang, J.; Liu, X.; Zhang, P.; Chi, M.; Guo, Y.; Guo, Y.; Lu, G.; et al. J. Am. Chem. Soc. 2017, 139, 8846. doi: 10.1021/jacs.7b01784  doi: 10.1021/jacs.7b01784

    59. [59]

      Zhang, S.; Li, M.; Zhao, J.; Wang, H.; Zhu, X.; Han, J.; Liu, X. App. Catal. B 2019, 252, 24. doi: 10.1016/j.apcatb.2019.04.013  doi: 10.1016/j.apcatb.2019.04.013

    60. [60]

      Zhang, P.; Zeng, G.; Song, T.; Huang, S.; Wang, T.; Zeng, H. App. Catal. B 2019, 242, 389. doi: 10.1016/j.apcatb.2018.10.020  doi: 10.1016/j.apcatb.2018.10.020

    61. [61]

      Fang, J.; Wei, H.; Chen, Y.; Dai, B.; Ni, Y.; Kou, J.; Lu, C.; Xu, Z. Small 2023, 19, 2207467. doi: 10.1002/smll.202207467  doi: 10.1002/smll.202207467

    62. [62]

      Li, S.; Zhao, Z.; Liu, M.; Liu, X.; Huang, W.; Sun, S.; Jiang, Y.; Liu, Y.; Zhang, J.; Zhang, Z. Nano Energy 2022, 95, 107031. doi: 10.1016/j.nanoen.2022.107031  doi: 10.1016/j.nanoen.2022.107031

    63. [63]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi: 10.1016/S1872-2067(21)64024-X  doi: 10.1016/S1872-2067(21)64024-X

    64. [64]

      Chen, S.; Hau Ng, Y.; Liao, J.; Gao, Q.; Yang, S.; Peng, F.; Zhong, X.; Fang, Y.; Zhang, S. J. Energy Chem. 2021, 52, 92. doi: 10.1016/j.jechem.2020.04.040  doi: 10.1016/j.jechem.2020.04.040

    65. [65]

      Xu, M.; Zhao, X.; Jiang, H.; Chen, S.; Huo, P. J. Environ. Chem. Eng. 2021, 9, 106469. doi: 10.1016/j.jece.2021.106469  doi: 10.1016/j.jece.2021.106469

    66. [66]

      Xu, W.; Huang, B.; Li, G.; Yang, F.; Lin, W.; Gu, J.; Deng, H.; Gu, Z.; Jin, H. ACS Catal. 2023, 13, 5723. doi: 10.1021/acscatal.3c00284  doi: 10.1021/acscatal.3c00284

  • 加载中
    1. [1]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    5. [5]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    8. [8]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    9. [9]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

Metrics
  • PDF Downloads(9)
  • Abstract views(771)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return