Citation: Zhengyu Zhou, Huiqin Yao, Youlin Wu, Teng Li, Noritatsu Tsubaki, Zhiliang Jin. Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231201. doi: 10.3866/PKU.WHXB202312010 shu

Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution

  • Corresponding author: Huiqin Yao, yaohq@nxmu.edu.cn Noritatsu Tsubaki, tsubaki@eng.u-toyama.ac.jp Zhiliang Jin, zl-jin@nun.edu.cn
  • Received Date: 8 December 2023
    Revised Date: 8 January 2024
    Accepted Date: 8 January 2024
    Available Online: 11 January 2024

    Fund Project: the Ningxia Hui Autonomous Region Natural Science Foundation Project 2023AAC02046

  • Cu-Graphdiyne and CoNiWO4 were synthesized by organic and hydrothermal methods, respectively. The establishment of an S-scheme heterojunction between Cu-Graphdiyne and CoNiWO4 was achieved by interface engineering design. The efficient separation and transfer of photogenerated carriers are facilitated by the synergistic effect of the built-in electric field and band bending, while maintaining the strong redox capacity of the catalysts. The introduction of Cu-Graphdiyne effectively enhances the photo absorption capacity and conductivity of the composite catalyst, and significantly suppresses the recombination of photogenerated carriers. The unique two-dimensional planar network structure of Cu-Graphdiyne provides abundant active sites for photocatalytic processes, thereby facilitating the photocatalytic reaction. Density functional theory (DFT) calculations demonstrate that hot electrons generated by surface plasmon resonance effects of Cu will transfer to Graphdiyne to promote hydrogen evolution reaction. This study offers insights into potential applications of Cu-Graphdiyne and nickel-cobalt based catalysts in photocatalytic hydrogen evolution.
  • 加载中
    1. [1]

      Zhang, L.; Wu, Y.; N, Tsubaki.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi: 10.3866/PKU.WHXB202302051  doi: 10.3866/PKU.WHXB202302051

    2. [2]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    3. [3]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2023, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    4. [4]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    5. [5]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    6. [6]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    7. [7]

      He, F.; Meng, A.; Cheng, B.; Wingkei, H.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6  doi: 10.1016/s1872-2067(19)63382-6

    8. [8]

      Yu, W.; Harold, Fu.; Mueller, T.; Brunschwig, B.; Lewis, N. J. Chem. Phys. 2020, 153, 020902. doi: 10.1063/5.0009858  doi: 10.1063/5.0009858

    9. [9]

      Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemif, J.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1039/d2gc01684b  doi: 10.1039/d2gc01684b

    10. [10]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/s1872-2067(23)64420-1  doi: 10.1016/s1872-2067(23)64420-1

    11. [11]

      Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067  doi: 10.1016/j.jmst.2023.03.067

    12. [12]

      Zhang, H.; Wang, Z.; Zhang. J.; Dai. K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/s1872-2067(23)64444-4  doi: 10.1016/s1872-2067(23)64444-4

    13. [13]

      Yan, T.; Zhang, X.; Liu, H.; Jin, Z. Chin. J. Chem. 2022, 41, 220104. doi: 10.14102/j.cnki.0254-5861.2021-0057  doi: 10.14102/j.cnki.0254-5861.2021-0057

    14. [14]

      Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. J. Mater. Sci. Technol. 2023, 167, 184. doi: 10.1016/j.jmst.2023.05.046  doi: 10.1016/j.jmst.2023.05.046

    15. [15]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    16. [16]

      Bodedla, G.; Imran, M.; Zhao, J.; Zhu, X.; Wong, W. Aggregate 2023, 4, 364. doi: 10.1002/agt2.364  doi: 10.1002/agt2.364

    17. [17]

      Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 315. doi: 10.1016/s1872-2067(21)63818-4  doi: 10.1016/s1872-2067(21)63818-4

    18. [18]

      Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8  doi: 10.1016/s1872-2067(22)64096-8

    19. [19]

      Wang, K.; Liu, S.; Li, Y.; Wang, G.; Yang, M.; Jin, Z. Appl. Surf. Sci. 2022, 601, 154174. doi: 10.1016/j.apsusc.2022.154174  doi: 10.1016/j.apsusc.2022.154174

    20. [20]

      Zafar, K.; Wasim, M.; Fatima, B.; Hussain, D.; Mehmood, R.; Najam-Ul-Haq, M. Sci. Rep. 2023, 13, 10239. doi: 10.1038/s41598-023-37053-9  doi: 10.1038/s41598-023-37053-9

    21. [21]

      Azizi, S.; Asadpour‐Zeynali, K.; ChemistrySelect 2022, 7, 4548. doi: 10.1002/slct.202104548  doi: 10.1002/slct.202104548

    22. [22]

      Denis, D.; Sun, X.; Zhang, J.; Wang, Y.; Hou, L.; Li, J.; Yuan, C. ACS Appl. Energy Mater. 2020, 3, 3955. doi: 10.1021/acsaem.0c00353  doi: 10.1021/acsaem.0c00353

    23. [23]

      Huang, B.; Wang, H.; Liang, S.; Qin, H.; Li, Y.; Luo, Z.; Zhao, C.; Xie, L.; Chen, L. Energy Stor. Mater. 2020, 32, 105. doi: 10.1016/j.ensm.2020.07.014  doi: 10.1016/j.ensm.2020.07.014

    24. [24]

      Rajpurohit, A.; Punde, N.; Rawool, C.; Srivastava, A. Chem. Eng. J. 2019, 371, 679. doi: 10.1016/j.cej.2019.04.100  doi: 10.1016/j.cej.2019.04.100

    25. [25]

      Prabhu, S.; Balaji, C.; Navaneethan, M.; Selvaraj, M.; Anandhan, N.; Sivaganesh, D.; Saravanakumar, S.; Sivakumar, P.; Ramesh, R. J. Alloy. Compd. 2021, 875, 160066. doi: 10.1016/j.jallcom.2021.160066  doi: 10.1016/j.jallcom.2021.160066

    26. [26]

      Nagarajan, C.; Rahulan, K.; Madhubala, V.; Flower, N.; Vinitha, G.; Sujatha, R. Opt. Mater. 2021, 122, 111680. doi: 10.1016/j.optmat.2021.111680  doi: 10.1016/j.optmat.2021.111680

    27. [27]

      Zhu, Z.; Bai, Q.; Li, S.; Li, S.; Liu, M.; Du, F.; Sui, N.; Yu, W. Small 2020, 16, 2001440. doi: 10.1002/smll.202001440  doi: 10.1002/smll.202001440

    28. [28]

      Li, J.; Zhu, L.; Tung, C.; Wu, L. Angew. Chem. Int. Ed. 2023, 62, 1384. doi: 10.1002/anie.202301384  doi: 10.1002/anie.202301384

    29. [29]

      Fang, Y.; Liu, Y.; Qi, L.; Xue, Y.; Li, Y. Chem. Soc. Rev. 2022, 51, 2681. doi: 10.1039/d1cs00592h  doi: 10.1039/d1cs00592h

    30. [30]

      Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 19, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    31. [31]

      Xu, Q.; Wageh, S.; Al-Ghamdi, A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016  doi: 10.1016/j.jmst.2022.02.016

    32. [32]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    33. [33]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    34. [34]

      Wageh, S.; Al-Ghamdi, A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 41, 667. doi: 10.1016/s1872-2067(20)63705-6  doi: 10.1016/s1872-2067(20)63705-6

    35. [35]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    36. [36]

      Shi, W.; Xu, Z.; Shi, Y.; Li, L.; Lu, J.; Sun, X.; Du, X.; Guo, F. Rare Metals. 2024, 43, 198. doi: 10.1007/s12598-023-02403-z  doi: 10.1007/s12598-023-02403-z

    37. [37]

      Sun, L.; Yu, X.; Tang, L.; Wang, W.; Liu, Q. Chin. J. Catal 2023, 52, 164. doi: 10.1016/s1872-2067(23)64507-3  doi: 10.1016/s1872-2067(23)64507-3

    38. [38]

      Kokulnathan, T.; Wang, T.; Ashok Kumar, E.; Ahmed, F. Chem. Eng. J. 2021, 433, 133639. doi: 10.1016/j.cej.2021.133639  doi: 10.1016/j.cej.2021.133639

    39. [39]

      Xie, H.; Wang, K.; Xiang, D.; Li, S.; Jin, Z. J. Mater. Chem. A 2023, 11, 14971. doi: 10.1039/d3ta02598e  doi: 10.1039/d3ta02598e

    40. [40]

      Wang, T.; Jin, Z. J. Mater. Sci. Technol. 2023, 155, 132. doi: 10.1016/j.jmst.2023.03.002  doi: 10.1016/j.jmst.2023.03.002

    41. [41]

      Alam, U.; Verma, N. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 630, 127606. doi: 10.1016/j.colsurfa.2021.127606  doi: 10.1016/j.colsurfa.2021.127606

    42. [42]

      Zhang, L.; Hao, X.; Li, J.; Wang, Y.; Jin, Z. Chin. J. Catal. 2020, 41, 82. doi: 10.1016/s1872-2067(19)63454-6  doi: 10.1016/s1872-2067(19)63454-6

    43. [43]

      Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.073  doi: 10.1016/j.jmst.2021.11.073

    44. [44]

      Li, Y.; Jang, S.; Khan, A.; Tobias, V.; Andrew, L.; Wang, Q.; Ashlie, M.; Yip-Wah, C.; Kim, S. Tribol Lett. 2023, 71, 57. doi: 10.1007/s11249-023-01728-1  doi: 10.1007/s11249-023-01728-1

    45. [45]

      Jin, Z.; Wu, Y. Appl. Catal. B 2023, 327, 122461. doi: 10.1016/j.apcatb.2023.122461  doi: 10.1016/j.apcatb.2023.122461

    46. [46]

      Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Chem. 2022, 41, 2206031. doi: 10.14102/j.cnki.0254-5861.2022-0096  doi: 10.14102/j.cnki.0254-5861.2022-0096

    47. [47]

      He, J.; Shao, D.; Zheng, L.; Zheng, L.; Feng, D.; Xu, J.; Zhang, X.; Wang, W.; Wang, W.; Lu, F.; et al. Appl. Catal. B 2016, 203, 917. doi: 10.1016/j.apcatb.2016.10.086  doi: 10.1016/j.apcatb.2016.10.086

    48. [48]

      Kozlica, D.; Kokalj, A.; Milošev, I. Corrosion Sci. 2020, 182, 109082. doi: 10.1016/j.corsci.2020.109082  doi: 10.1016/j.corsci.2020.109082

    49. [49]

      Zhang, L.; Dong, W.; Zhang, Y.; Song, X.; Jiang, H. Chem. Eng. J. 2023, 472, 144898. doi: 10.1016/j.cej.2023.144898  doi: 10.1016/j.cej.2023.144898

    50. [50]

      Zhang, Q.; Wang, Z.; Song, Y.; Fan, J.; Sun, T. J. Mater. Sci. Technol. 2023, 169, 148. doi: 10.1016/j.jmst.2023.05.066  doi: 10.1016/j.jmst.2023.05.066

    51. [51]

      Wang, X.; Jin, Z.; Li, X. Rare Metals 2023, 42, 1494. doi: 10.1007/s12598-022-02183-y  doi: 10.1007/s12598-022-02183-y

    52. [52]

      Chai, B.; Liu, C.; Wang, C.; Yan, J.; Ren, Z. Chin. J. Catal. 2017, 38, 2067. doi: 10.1016/s1872-2067(17)62981-4A  doi: 10.1016/s1872-2067(17)62981-4A

    53. [53]

      Liu, D.; Sun, B.; Bai, S.; Gao, T.; Zhou, G. Chin. J. Catal. 2023, 50, 273. doi: 10.1016/s1872-2067(23)64462-6  doi: 10.1016/s1872-2067(23)64462-6

    54. [54]

      Cheng, Y.; Lin, Y.; Xu, J.; He, J.; Wang, T.; Yu, G.; Shao, D.; Wang, W.; Lu, F.; Li, L.; et al. Appl. Surf. Sci. 2016, 336, 120. doi: 10.1016/j.apsusc.2015.12.238  doi: 10.1016/j.apsusc.2015.12.238

    55. [55]

      He, Y.; Li, H.; Wu, J.; Liu, Z.; Chen, Y.; Gou, W.; Wu, Y.; Fu, M.; Liu, X. Appl. Surf. Sci. 2022, 604, 154641. doi: 10.1016/j.apsusc.2022.154641  doi: 10.1016/j.apsusc.2022.154641

    56. [56]

      Wu, J.; Xi, X.; Zhu, W.; Yang, Z.; An, P.; Wang, Y.; Li, Y.; Zhu, Y.; Yao, W.; Jiang, G. Chem. Eng. J. 2022, 422, 136334. doi: 10.1016/j.cej.2022.136334  doi: 10.1016/j.cej.2022.136334

    57. [57]

      Zhang, K.; Wang, C.; Guo, S.; Li, S.; Wu, Z.; Hata, S.; Li, J.; Shiraishi, Y.; Du, Y. J. Colloid Interface Sci. 2023, 636, 559. doi: 10.1016/j.jcis.2023.01.055  doi: 10.1016/j.jcis.2023.01.055

    58. [58]

      Wu, Y.; Li, M.; Jin, Z. Appl. Catal. A-Gen. 2023, 666, 119421. doi: 10.1016/j.apcata.2023.119421  doi: 10.1016/j.apcata.2023.119421

    59. [59]

      Li, Y.; Jin, Z.; Liu, H.; Wang, H.; Zhang, Y.; Wang, G. J. Colloid Interface Sci. 2019, 541, 287. doi: 10.1016/j.jcis.2019.01.101  doi: 10.1016/j.jcis.2019.01.101

    60. [60]

      Zhao, X.; Gu, M.; Zhai, R.; Zhang, Y.; Jin, M.; Wang, Y.; Li, J.; Cheng, Y.; Xiao, B.; Zhang, J. Small 2023, 25, 2302859. doi: 10.1002/smll.202302859  doi: 10.1002/smll.202302859

    61. [61]

      Jin, Z.; Jiang, Xu.; Liu, Y. Renew. Energ. 2022, 201, 854. doi: 10.1016/j.renene.2022.11.004  doi: 10.1016/j.renene.2022.11.004

    62. [62]

      Wang, X.; Jin, Z. J. Mater. Chem. A 2022, 10, 23134. doi: 10.1039/d2ta06752h  doi: 10.1039/d2ta06752h

    63. [63]

      Wang, C.; Han, X.; Xu, Q.; Sun, Y.; Arbiol, J.; Ghazzal, M.; Li, J. J. Mater. Chem. A 2023, 11, 3380. doi: 10.1039/d2ta09918g  doi: 10.1039/d2ta09918g

    64. [64]

      Lv, J.; Zhang, Z.; Wang, J.; Lu, X.; Zhang, W.; Lu, T. ACS Appl. Mater. 2018, 11, 2655. doi: 10.1021/acsami.8b03326  doi: 10.1021/acsami.8b03326

    65. [65]

      Yan, T.; Liu, H.; Jin, Z. ACS Appl. Mater. 2021, 13, 24896. doi: 10.1021/acsami.1c04874  doi: 10.1021/acsami.1c04874

    66. [66]

      Cao, Y.; Gou, H.; Zhu, P.; Jin, Z. Chin. J. Chem. 2022, 41, 2206079. doi: 10.14102/j.cnki.0254-5861.2022-0042  doi: 10.14102/j.cnki.0254-5861.2022-0042

    67. [67]

      Dang, Y.; Tian, J.; Wang, W.; Ma, B. J. Colloid Interface Sci. 2022, 633, 649. doi: 10.1016/j.jcis.2022.11.084  doi: 10.1016/j.jcis.2022.11.084

    68. [68]

      Si, W.; Yang, J.; Cao, Y.; Qin, W. J. Alloy. Compd. 2023, 968, 172218. doi: 10.1016/j.jallcom.2023.172218  doi: 10.1016/j.jallcom.2023.172218

    69. [69]

      Muniyappa, M.; Kalegowda, S.; Shetty, M.; Sriramoju, J.; Shastri, M.; Rao, S. V. N.; De, D.; Shankar, M. V.; Rangappa, D. Int. J. Hydrog. Energy 2021, 47, 5307. doi: 10.1016/j.ijhydene.2021.11.171  doi: 10.1016/j.ijhydene.2021.11.171

    70. [70]

      Wang, T.; Jin, Z. J. Mater. Chem. C 2023, 11, 13957. doi: 10.1039/d3tc02869k  doi: 10.1039/d3tc02869k

    71. [71]

      Shen, P.; Liu, Y.; Long, Y.; Shen, L.; Kang, B. J. Phys. Chem. C 2016, 120, 8900. doi: 10.1021/acs.jpcc.6b02802  doi: 10.1021/acs.jpcc.6b02802

  • 加载中
    1. [1]

      Rohit KumarAnita SudhaikAftab Asalam Pawaz KhanVan Huy NeguyenArchana SinghPardeep SinghSourbh ThakurPankaj Raizada . Designing tandem S-scheme photo-catalytic systems: Mechanistic insights, characterization techniques, and applications. Acta Physico-Chimica Sinica, 2025, 41(11): 100150-0. doi: 10.1016/j.actphy.2025.100150

    2. [2]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    3. [3]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    6. [6]

      Ruyan LiuZhenrui NiOlim RuzimuradovKhayit TurayevTao LiuLuo YuPanyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159

    7. [7]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    8. [8]

      Wenzheng ChenWeiyun ChenBin ChenMingbao Feng . Deciphering the electron-shuttling role of iron(Ⅲ) porphyrin in modulating the reductive UV/S(Ⅳ) system into the oxidative strategy for micropollutant abatement. Chinese Chemical Letters, 2025, 36(10): 110743-. doi: 10.1016/j.cclet.2024.110743

    9. [9]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Chengxiao ZhaoZhaolin LiDongfang WuXiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-0. doi: 10.1016/j.actphy.2025.100149

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    15. [15]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    16. [16]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    17. [17]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    18. [18]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    19. [19]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    20. [20]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

Metrics
  • PDF Downloads(2)
  • Abstract views(793)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return