Citation:
Zhengyu Zhou, Huiqin Yao, Youlin Wu, Teng Li, Noritatsu Tsubaki, Zhiliang Jin. Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 231201.
doi:
10.3866/PKU.WHXB202312010
-
Cu-Graphdiyne and CoNiWO4 were synthesized by organic and hydrothermal methods, respectively. The establishment of an S-scheme heterojunction between Cu-Graphdiyne and CoNiWO4 was achieved by interface engineering design. The efficient separation and transfer of photogenerated carriers are facilitated by the synergistic effect of the built-in electric field and band bending, while maintaining the strong redox capacity of the catalysts. The introduction of Cu-Graphdiyne effectively enhances the photo absorption capacity and conductivity of the composite catalyst, and significantly suppresses the recombination of photogenerated carriers. The unique two-dimensional planar network structure of Cu-Graphdiyne provides abundant active sites for photocatalytic processes, thereby facilitating the photocatalytic reaction. Density functional theory (DFT) calculations demonstrate that hot electrons generated by surface plasmon resonance effects of Cu will transfer to Graphdiyne to promote hydrogen evolution reaction. This study offers insights into potential applications of Cu-Graphdiyne and nickel-cobalt based catalysts in photocatalytic hydrogen evolution.
-
-
-
[1]
-
[2]
(2) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011
-
[3]
(3) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2023, 2310600. doi: 10.1002/adma.202310600
-
[4]
-
[5]
-
[6]
(6) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008
-
[7]
(7) He, F.; Meng, A.; Cheng, B.; Wingkei, H.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6
-
[8]
(8) Yu, W.; Harold, Fu.; Mueller, T.; Brunschwig, B.; Lewis, N. J. Chem. Phys. 2020, 153, 020902. doi: 10.1063/5.0009858
-
[9]
(9) Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemif, J.; Yu, J. Green Chem. 2022, 24, 5739. doi: 10.1039/d2gc01684b
-
[10]
(10) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/s1872-2067(23)64420-1
-
[11]
(11) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067
-
[12]
(12) Zhang, H.; Wang, Z.; Zhang. J.; Dai. K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/s1872-2067(23)64444-4
-
[13]
(13) Yan, T.; Zhang, X.; Liu, H.; Jin, Z. Chin. J. Chem. 2022, 41, 220104. doi: 10.14102/j.cnki.0254-5861.2021-0057
-
[14]
(14) Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. J. Mater. Sci. Technol. 2023, 167, 184. doi: 10.1016/j.jmst.2023.05.046
-
[15]
(15) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
-
[16]
(16) Bodedla, G.; Imran, M.; Zhao, J.; Zhu, X.; Wong, W. Aggregate 2023, 4, 364. doi: 10.1002/agt2.364
-
[17]
(17) Jin, Z.; Li, H.; Li, J. Chin. J. Catal. 2022, 43, 315. doi: 10.1016/s1872-2067(21)63818-4
-
[18]
(18) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/s1872-2067(22)64096-8
-
[19]
(19) Wang, K.; Liu, S.; Li, Y.; Wang, G.; Yang, M.; Jin, Z. Appl. Surf. Sci. 2022, 601, 154174. doi: 10.1016/j.apsusc.2022.154174
-
[20]
(20) Zafar, K.; Wasim, M.; Fatima, B.; Hussain, D.; Mehmood, R.; Najam-Ul-Haq, M. Sci. Rep. 2023,13, 10239. doi: 10.1038/s41598-023-37053-9
-
[21]
(21) Azizi, S.; Asadpour‐Zeynali, K.;ChemistrySelect 2022, 7, 4548. doi: 10.1002/slct.202104548
-
[22]
(22) Denis, D.; Sun, X.; Zhang, J.; Wang, Y.; Hou, L.; Li, J.; Yuan, C. ACS Appl. Energy Mater. 2020, 3, 3955. doi: 10.1021/acsaem.0c00353
-
[23]
(23) Huang, B.; Wang, H.; Liang, S.; Qin, H.; Li, Y.; Luo, Z.; Zhao, C.; Xie, L.; Chen, L. Energy Stor. Mater. 2020, 32, 105. doi: 10.1016/j.ensm.2020.07.014
-
[24]
(24) Rajpurohit, A.; Punde, N.; Rawool, C.; Srivastava, A. Chem. Eng. J. 2019,371, 679. doi: 10.1016/j.cej.2019.04.100
-
[25]
(25) Prabhu, S.; Balaji, C.; Navaneethan, M.; Selvaraj, M.; Anandhan, N.; Sivaganesh, D.; Saravanakumar, S.; Sivakumar, P.; Ramesh, R. J. Alloy. Compd. 2021, 875, 160066. doi: 10.1016/j.jallcom.2021.160066
-
[26]
(26) Nagarajan, C.; Rahulan, K.; Madhubala, V.; Flower, N.; Vinitha, G.; Sujatha, R. Opt. Mater. 2021, 122, 111680. doi: 10.1016/j.optmat.2021.111680
-
[27]
(27) Zhu, Z.; Bai, Q.; Li, S.; Li, S.; Liu, M.; Du, F.; Sui, N.; Yu, W. Small 2020,16, 2001440. doi: 10.1002/smll.202001440
-
[28]
(28) Li, J.; Zhu, L.; Tung, C.; Wu, L.Angew. Chem. Int. Ed. 2023, 62, 1384. doi: 10.1002/anie.202301384
-
[29]
(29) Fang, Y.; Liu, Y.; Qi, L.; Xue, Y.; Li, Y. Chem. Soc. Rev. 2022, 51, 2681. doi: 10.1039/d1cs00592h
-
[30]
(30) Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Chem. Commun. 2010, 19, 3256. doi: 10.1039/b922733d
-
[31]
(31) Xu, Q.; Wageh, S.; Al-Ghamdi, A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016
-
[32]
-
[33]
(33) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
-
[34]
(34) Wageh, S.; Al-Ghamdi, A.; Jafer, R.; Li, X.; Zhang, P. Chin. J. Catal. 2021, 41, 667. doi: 10.1016/s1872-2067(20)63705-6
-
[35]
-
[36]
(36) Shi, W.; Xu, Z.; Shi, Y.; Li, L.; Lu, J.; Sun, X.; Du, X.; Guo, F. Rare Metals. 2024,43, 198. doi: 10.1007/s12598-023-02403-z
-
[37]
(37) Sun, L.; Yu, X.; Tang, L.; Wang, W.; Liu, Q. Chin. J. Catal 2023, 52, 164. doi: 10.1016/s1872-2067(23)64507-3
-
[38]
(38) Kokulnathan, T.; Wang, T.; Ashok Kumar, E.; Ahmed, F. Chem. Eng. J. 2021, 433, 133639. doi: 10.1016/j.cej.2021.133639
-
[39]
(39) Xie, H.; Wang, K.; Xiang, D.; Li, S.; Jin, Z. J. Mater. Chem. A 2023, 11, 14971. doi: 10.1039/d3ta02598e
-
[40]
(40) Wang, T.; Jin, Z. J. Mater. Sci. Technol. 2023, 155, 132. doi: 10.1016/j.jmst.2023.03.002
-
[41]
(41) Alam, U.; Verma, N. Colloid Surf. A-Physicochem. Eng. Asp. 2021, 630, 127606. doi: 10.1016/j.colsurfa.2021.127606
-
[42]
(42) Zhang, L.; Hao, X.; Li, J.; Wang, Y.; Jin, Z. Chin. J. Catal. 2020, 41, 82. doi: 10.1016/s1872-2067(19)63454-6
-
[43]
(43) Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.073
-
[44]
(44) Li, Y.; Jang, S.; Khan, A.; Tobias, V.; Andrew, L.; Wang, Q.; Ashlie, M.; Yip-Wah, C.; Kim, S. Tribol Lett. 2023, 71, 57. doi: 10.1007/s11249-023-01728-1
-
[45]
(45) Jin, Z.; Wu, Y. Appl. Catal. B 2023, 327, 122461. doi: 10.1016/j.apcatb.2023.122461
-
[46]
(46) Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Chem. 2022,41, 2206031. doi: 10.14102/j.cnki.0254-5861.2022-0096
-
[47]
(47) He, J.; Shao, D.; Zheng, L.; Zheng, L.; Feng, D.; Xu, J.; Zhang, X.; Wang, W.; Wang, W.; Lu, F.; et al. Appl. Catal. B 2016, 203, 917. doi: 10.1016/j.apcatb.2016.10.086
-
[48]
(48) Kozlica, D.; Kokalj, A.; Milošev, I. Corrosion Sci. 2020, 182, 109082. doi: 10.1016/j.corsci.2020.109082
-
[49]
(49) Zhang, L.; Dong, W.; Zhang, Y.; Song, X.; Jiang, H. Chem. Eng. J. 2023, 472, 144898. doi: 10.1016/j.cej.2023.144898
-
[50]
(50) Zhang, Q.; Wang, Z.; Song, Y.; Fan, J.; Sun, T. J. Mater. Sci. Technol. 2023, 169, 148. doi: 10.1016/j.jmst.2023.05.066
-
[51]
(51) Wang, X.; Jin, Z.; Li, X. Rare Metals 2023, 42, 1494. doi: 10.1007/s12598-022-02183-y
-
[52]
(52) Chai, B.; Liu, C.; Wang, C.; Yan, J.; Ren, Z. Chin. J. Catal. 2017, 38, 2067. doi: 10.1016/s1872-2067(17)62981-4 A
-
[53]
(53) Liu, D.; Sun, B.; Bai, S.; Gao, T.; Zhou, G. Chin. J. Catal. 2023, 50, 273. doi: 10.1016/s1872-2067(23)64462-6
-
[54]
(54) Cheng, Y.; Lin, Y.; Xu, J.; He, J.; Wang, T.; Yu, G.; Shao, D.; Wang, W.; Lu, F.; Li, L.; et al. Appl. Surf. Sci. 2016, 336, 120. doi: 10.1016/j.apsusc.2015.12.238
-
[55]
(55) He, Y.; Li, H.; Wu, J.; Liu, Z.; Chen, Y.; Gou, W.; Wu, Y.; Fu, M.; Liu, X. Appl. Surf. Sci. 2022, 604, 154641. doi: 10.1016/j.apsusc.2022.154641
-
[56]
(56) Wu, J.; Xi, X.; Zhu,W.; Yang, Z.; An, P.; Wang, Y.; Li, Y.; Zhu, Y.; Yao, W.; Jiang, G. Chem. Eng. J. 2022, 422, 136334. doi: 10.1016/j.cej.2022.136334
-
[57]
(57) Zhang, K.; Wang, C.; Guo, S.; Li, S.; Wu, Z.; Hata, S.; Li, J.; Shiraishi, Y.; Du, Y. J. Colloid Interface Sci. 2023, 636, 559. doi: 10.1016/j.jcis.2023.01.055
-
[58]
(58) Wu, Y.; Li, M.; Jin, Z. Appl. Catal. A-Gen. 2023, 666, 119421. doi: 10.1016/j.apcata.2023.119421
-
[59]
(59) Li, Y.; Jin, Z.; Liu, H.; Wang, H.; Zhang, Y.; Wang, G. J. Colloid Interface Sci. 2019,541, 287. doi: 10.1016/j.jcis.2019.01.101
-
[60]
(60) Zhao, X.; Gu, M.; Zhai, R.; Zhang, Y.; Jin, M.; Wang, Y.; Li, J.; Cheng, Y.; Xiao, B.; Zhang, J. Small 2023, 25, 2302859. doi: 10.1002/smll.202302859
-
[61]
(61) Jin, Z.; Jiang, Xu.; Liu, Y. Renew. Energ. 2022, 201, 854. doi: 10.1016/j.renene.2022.11.004
-
[62]
(62) Wang, X.; Jin, Z. J. Mater. Chem. A 2022, 10, 23134. doi: 10.1039/d2ta06752h
-
[63]
(63) Wang, C.; Han, X.; Xu, Q.; Sun, Y.; Arbiol, J.; Ghazzal, M.; Li, J. J. Mater. Chem. A 2023, 11, 3380. doi: 10.1039/d2ta09918g
-
[64]
(64) Lv, J.; Zhang, Z.; Wang, J.; Lu, X.; Zhang, W.; Lu, T. ACS Appl. Mater. 2018,11, 2655. doi: 10.1021/acsami.8b03326
-
[65]
(65) Yan, T.; Liu, H.; Jin, Z. ACS Appl. Mater. 2021, 13, 24896. doi: 10.1021/acsami.1c04874
-
[66]
(66) Cao, Y.; Gou, H.; Zhu, P.; Jin, Z. Chin. J. Chem. 2022, 41, 2206079. doi: 10.14102/j.cnki.0254-5861.2022-0042
-
[67]
(67) Dang, Y.; Tian, J.; Wang, W.; Ma, B. J. Colloid Interface Sci. 2022, 633, 649. doi: 10.1016/j.jcis.2022.11.084
-
[68]
(68) Si, W.; Yang, J.; Cao, Y.; Qin, W. J. Alloy. Compd. 2023, 968, 172218. doi: 10.1016/j.jallcom.2023.172218
-
[69]
(69) Muniyappa, M.; Kalegowda, S.; Shetty, M.; Sriramoju, J.; Shastri, M.; Rao, S. V. N.; De, D.; Shankar, M. V.; Rangappa, D. Int. J. Hydrog. Energy 2021, 47, 5307. doi: 10.1016/j.ijhydene.2021.11.171
-
[70]
(70) Wang, T.; Jin, Z. J. Mater. Chem. C 2023, 11, 13957. doi: 10.1039/d3tc02869k
-
[71]
(71) Shen, P.; Liu, Y.; Long, Y.; Shen, L.; Kang, B. J. Phys. Chem. C 2016, 120, 8900. doi: 10.1021/acs.jpcc.6b02802
-
[1]
-
-
-
[1]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[2]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[3]
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
-
[4]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[5]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[6]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[7]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[8]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[9]
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
-
[10]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[11]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[12]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[13]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[14]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[15]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[16]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[17]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[18]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[19]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[20]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(479)
- HTML views(48)