Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production
- Corresponding author: Xuefei Wang, xuefei@whut.edu.cn Huogen Yu, yuhuogen@cug.edu.cn
Citation:
Xinyu Yin, Haiyang Shi, Yu Wang, Xuefei Wang, Ping Wang, Huogen Yu. Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 231200.
doi:
10.3866/PKU.WHXB202312007
Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys.-Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010
doi: 10.3866/PKU.WHXB202212010
Li, Y.; Liu, Y.; Wei, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Chin. J. Catal. 2023, 45, 132. doi: 10.1016/S1872-2067(22)64163-9
doi: 10.1016/S1872-2067(22)64163-9
Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys.-Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037
doi: 10.3866/PKU.WHXB202112037
Zheng, D.; Su, Y.; Wen, D.; Zhang, Z.; Yang, P.; Ma, X.; Chen, Y.; Deng, L.; Zhou, S.; Meng, A. J. Catal. 2023, 428, 115180. doi: 10.1016/j.jcat.2023.115180
doi: 10.1016/j.jcat.2023.115180
Wen, D.; Su, Y.; Fang, J.; Zheng, D.; Xu, Y.; Zhou, S.; Meng, A.; Han, P.; Wong, C. Nano Energy 2023, 117, 108917. doi: 10.1016/j.nanoen.2023.108917
doi: 10.1016/j.nanoen.2023.108917
Wang, K.; Wang, M.; Yu, J.; Liao, D.; Shi, H.; Wang, X.; Yu, H. ACS Appl. Nano Mater. 2021, 4, 13158. doi: 10.1021/acsanm.1c02688
doi: 10.1021/acsanm.1c02688
Pan, M.; Wang, P.; Wang, X.; Chen, F.; Yu, H. ACS Sustain. Chem. Eng. 2023, 11, 13222. doi: 10.1021/acssuschemeng.3c04308
doi: 10.1021/acssuschemeng.3c04308
Cheng, L.; Li, B.; Yin, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2022, 118, 54. doi: 10.1016/j.jmst.2021.11.055
doi: 10.1016/j.jmst.2021.11.055
Xu, J.; Gao, D.; Yu, H.; Wang, P.; Zhu, B.; Wang, L.; Fan, J. Chin. J. Catal. 2022, 43, 215. doi: 10.1016/S1872-2067(21)63830-5
doi: 10.1016/S1872-2067(21)63830-5
Tao, J.; Wang, M.; Zhang, X.; Lu, L.; Tang, H.; Liu, Q.; Lei, S.; Qiao, G.; Liu, G. Appl. Catal. B Environ. 2023, 320, 122004. doi: 10.1016/j.apcatb.2022.122004
doi: 10.1016/j.apcatb.2022.122004
Xiong, S.; Tang, R.; Gong, D.; Deng, Y.; Zheng, J.; Li, L.; Zhou, Z.; Yang, L.; Su, L. Chin. J. Catal. 2022, 43, 1719. doi: 10.1016/S1872-2067(21)63994-3
doi: 10.1016/S1872-2067(21)63994-3
Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067
doi: 10.1016/j.jmst.2023.03.067
Volokh, M.; Shalom, M. Nat. Catal. 2021, 4, 350. doi: 10.1038/s41929-021-00620-2
doi: 10.1038/s41929-021-00620-2
Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Nat. Catal. 2021, 4, 374. doi: 10.1038/s41929-021-00605-1
doi: 10.1038/s41929-021-00605-1
Patra, S.; Meyerstein, D. Inorganics 2022, 10, 182. doi: 10.3390/inorganics10110182
doi: 10.3390/inorganics10110182
Vandichel, M.; Busch, M.; Laasonen, K. ChemCatChem 2020, 12, 1436. doi: 10.1002/cctc.201901951
doi: 10.1002/cctc.201901951
Wang, L.; Duan, G.; Chen, S.; Liu, X. J. Alloy. Compd. 2018, 752, 123. doi: 10.1016/j.jallcom.2018.03.244
doi: 10.1016/j.jallcom.2018.03.244
Salavati-Niasari, M.; Esmaeili-Zare, M.; Gholami-Daghian, M.; Bagheri, S. High Temp. Mater. Proc. 2016, 35, 493. doi: 10.1515/htmp-2015-0009
doi: 10.1515/htmp-2015-0009
Sun, M.; Gao, R.; Liu, X.; Gao, R.; Wang, L. J. Mater. Chem. A 2020, 8, 25298. doi: 10.1039/d0ta09946e
doi: 10.1039/d0ta09946e
Zhou, X.; Li, J.; Cai, X.; Gao, Q.; Zhang, S.; Yang, S.; Wang, H.; Zhong, X.; Fang, Y. J. Mater. Chem. A 2020, 8, 17120. doi: 10.1039/d0ta06341j
doi: 10.1039/d0ta06341j
Chen, Z.; Wang, X.; Keßler, S.; Fan, Q.; Huang, M.; Cölfen, H. J. Energy Chem. 2022, 71, 89. doi: 10.1016/j.jechem.2022.02.042
doi: 10.1016/j.jechem.2022.02.042
Wang, Y.; Hu, T.; Liu, Q.; Zhang, L. Chem. Commun. 2018, 54, 4005. doi: 10.1039/c8cc00870a
doi: 10.1039/c8cc00870a
Shi, H.; Li, Y.; Wang, K.; Li, S.; Wang, X.; Wang, P.; Chen, F.; Yu, H. Chem. Eng. J. 2022, 443, 136429. doi: 10.1016/j.cej.2022.136429
doi: 10.1016/j.cej.2022.136429
Li, X.; Li, K.; Ding, D.; Yan, J.; Wang, C.; Carabineiro, S.; Liu, Y.; Lv, K. Sep. Purif. Technol. 2023, 309, 123054. doi: 10.1016/j.seppur.2022.123054
doi: 10.1016/j.seppur.2022.123054
Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046
doi: 10.1016/j.jmst.2021.11.046
Bashir, S.; Jamil, A.; Khan, M.; Alazmi, A.; Abuilaiwi, F.; Shahid, M. J. Alloy. Compd. 2022, 913, 165214. doi: 10.1016/j.jallcom.2022.165214
doi: 10.1016/j.jallcom.2022.165214
Zeng, F.; Zhu, H.; Wang, R.; Yuan, X.; Sun, K.; Qu, L.; Chen, X.; Yu, B. Chin. J. Catal. 2023, 46, 157. doi: 10.1016/S1872-2067(23)64391-8
doi: 10.1016/S1872-2067(23)64391-8
He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1
doi: 10.1016/S1872-2067(23)64420-1
Zhong, W.; Xu, J.; Zhang, X.; Zhang, J.; Wang, X.; Yu, H. Adv. Funct. Mater. 2023, 33, 2302325. doi: 10.1002/adfm.202302325
doi: 10.1002/adfm.202302325
Zhong, W.; Xu, J.; Wang, P.; Zhu, B.; Fan, J.; Yu, H. Chin. J. Catal. 2022, 43, 1074. doi: 10.1016/S1872-2067(21)63969-4
doi: 10.1016/S1872-2067(21)63969-4
Sun, L.; Su, H.; Liu, Q.; Hu, J.; Wang, L.; Tang, H. Rare Met. 2022, 41, 2387. doi: 10.1007/s12598-022-01966-7
doi: 10.1007/s12598-022-01966-7
Gao, D.; Long, H.; Wang, X.; Yu, J.; Yu, H. Adv. Funct. Mater. 2022, 33, 2209994. doi: 10.1002/adfm.202209994
doi: 10.1002/adfm.202209994
He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi: 10.1016/j.jmst.2023.02.020
doi: 10.1016/j.jmst.2023.02.020
Long, H.; Gao, D.; Wang, P.; Wang, X.; Chen, F.; Yu, H. Appl. Catal. B Environ. 2024, 340, 123270. doi: 10.1016/j.apcatb.2023.123270
doi: 10.1016/j.apcatb.2023.123270
Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys.-Chim. Sin. 2022, 38, 2110049. doi: 10.3866/PKU.WHXB202110049
doi: 10.3866/PKU.WHXB202110049
Yue, X.; Fan, J.; Xiang, Q. Adv. Funct. Mater. 2022, 32, 2110258. doi: 10.1002/adfm.202110258
doi: 10.1002/adfm.202110258
Tang, D.; Shao, C.; Jiang, S.; Sun, C.; Song, S. ACS Nano 2021, 15, 7208. doi: 10.1021/acsnano.1c00477
doi: 10.1021/acsnano.1c00477
Yang, Y.; Li, F.; Chen, J.; Fan, J.; Xiang, Q. ChemSusChem 2020, 13, 1979. doi: 10.1002/cssc.202000375
doi: 10.1002/cssc.202000375
Song, S.; Song, H.; Li, L.; Wang, S.; Chu, W.; Peng, K.; Meng, X.; Wang, Q.; Deng, B.; Liu, Q.; et al. Nat. Catal. 2021, 4, 1032. doi: 10.1038/s41929-021-00708-9
doi: 10.1038/s41929-021-00708-9
Jiang, S.; Xiong, C.; Song, S.; Cheng, B. ACS Sustain. Chem. Eng. 2019, 7, 2018. doi: 10.1021/acssuschemeng.8b04338
doi: 10.1021/acssuschemeng.8b04338
Wang, S.; Hai, X.; Ding, X.; Jin, S.; Xiang, Y.; Wang, P.; Jiang, B.; Ichihara, F.; Oshikiri, M.; Meng, X.; et al. Nat. Commun. 2020, 11, 1149. doi: 10.1038/s41467-020-14851-7
doi: 10.1038/s41467-020-14851-7
Potapenko, K.; Kurenkova, A.; Bukhtiyarov, A.; Gerasimov, E.; Cherepanova, S.; Kozlova, E. Nanomaterials 2021, 11, 355. doi: 10.3390/nano11020355
doi: 10.3390/nano11020355
Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643
doi: 10.1002/adma.202300643
Gao, D.; Xu, J.; Chen, F.; Wang, P.; Yu, H. Appl. Catal. B Environ. 2022, 305, 121053. doi: 10.1016/j.apcatb.2021.121053
doi: 10.1016/j.apcatb.2021.121053
Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475
doi: 10.1002/adma.202108475
Zhong, W.; Zhao, B.; Wang, X.; Wang, P.; Yu, H. ACS Catal. 2023, 13, 749. doi: 10.1021/acscatal.2c04042
doi: 10.1021/acscatal.2c04042
Zhang, S.; Wei, Y.; Metz, J.; He, S.; Alvarez, P.; Long, M. J. Hazard. Mater. 2022, 421, 126805. doi: 10.1016/j.jhazmat.2021.126805
doi: 10.1016/j.jhazmat.2021.126805
Sun, S.; Wang, S.; Xia, T.; Li, X.; Jin, Q.; Wu, Q.; Wang, L.; Wei, Z.; Wang, P. J. Mater. Chem. A 2015, 3, 20944. doi: 10.1039/c5ta04851f
doi: 10.1039/c5ta04851f
Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559
doi: 10.1002/anie.202304559
Xu, J.; Zhong, W.; Chen, F.; Wang, X.; Yu, H. Appl. Catal. B-Environ. 2023, 328, 122493. doi: 10.1016/j.apcatb.2023.122493
doi: 10.1016/j.apcatb.2023.122493
Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708. doi: 10.1021/acscatal.2c05014
doi: 10.1021/acscatal.2c05014
Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys.-Chim. Sin. 2022, 38, 2110014. doi: 10.3866/PKU.WHXB202110014
doi: 10.3866/PKU.WHXB202110014
Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/S1872-2067(23)64491-2
doi: 10.1016/S1872-2067(23)64491-2
Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872‐2067(23)64444‐4
doi: 10.1016/S1872‐2067(23)64444‐4
Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2022, 43, 2548. doi: 10.1016/S1872-2067(22)64111-1
doi: 10.1016/S1872-2067(22)64111-1
Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys.-Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037
doi: 10.3866/PKU.WHXB202209037
Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065
doi: 10.1016/j.jmst.2021.12.065
Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W.; Wang, S. Acta Phys.-Chim. Sin. 2022, 38, 2111021. doi: 10.3866/PKU.WHXB202111021
doi: 10.3866/PKU.WHXB202111021
Zhao, M.; Liu, S.; Chen, D.; Zhang, S.; Carabineiro, S.; Lv, K. Chin. J. Catal. 2022, 43, 2615. doi: 10.1016/S1872-2067(22)64134-2
doi: 10.1016/S1872-2067(22)64134-2
Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A.; Yu, J. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029
doi: 10.1016/j.jmst.2022.01.029
Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys.-Chim. Sin. 2022, 38, 2108028. doi: 10.3866/PKU.WHXB202108028
doi: 10.3866/PKU.WHXB202108028
Deng, P.; Gao, D.; Wang, P.; Wang, X.; Chen, F.; Yu, H. J. Mater. Chem. A 2023, 11, 21874. doi: 10.1039/d3ta04934e
doi: 10.1039/d3ta04934e
Zhong, W.; Gao, D.; Wang, P.; Wang, X.; Yu, H. Appl. Catal. B-Environ. 2022, 319, 121910. doi: 10.1016/j.apcatb.2022.121910
doi: 10.1016/j.apcatb.2022.121910
Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
doi: 10.14102/j.cnki.0254-5861.2022-0108
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008