Citation: Xinyu Yin, Haiyang Shi, Yu Wang, Xuefei Wang, Ping Wang, Huogen Yu. Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231200. doi: 10.3866/PKU.WHXB202312007 shu

Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production

  • Corresponding author: Xuefei Wang, xuefei@whut.edu.cn Huogen Yu, yuhuogen@cug.edu.cn
  • Received Date: 6 December 2023
    Revised Date: 10 January 2024
    Accepted Date: 10 January 2024
    Available Online: 15 January 2024

    Fund Project: the National Natural Science Foundation of China 22178276the National Natural Science Foundation of China U22A20147the National Natural Science Foundation of China 52073263the Natural Science Foundation of Hubei Province of China 2022CFA001

  • Transitional metal oxyhydroxides have been demonstrated to be the reliable cocatalysts for water oxidation reaction. However, their insufficient adsorption ability for H2O and its intermediate products during water oxidation greatly restricts the improvement of water oxidation rate. In this study, a spontaneously improved adsorption of H2O and its intermediates on the electron-deficient Mn(3+δ)+ of MnOOH cocatalyst can greatly promote the rapid water oxidation to realize the efficient photocatalytic H2O2 production in a pure water system. In this case, amorphous MnOOH is selectively deposited on the (110) facet of AuPd-modified single-crystal BiVO4 photocatalyst via the directionally photoinduced oxidation approach to produce AuPd/BiVO4/MnOOH photocatalyst. Photocatalytic experiments exhibit that the as-prepared AuPd/BiVO4/MnOOH (0.5%) photocatalyst obtains the boosted H2O2-evolution rate of 214 μmol∙L−1 as well as exhibits an outstanding stability and reproducibility. Density functional theory calculations and X-ray photoelectron spectroscopy (XPS) characterization reveal that the free electrons of MnOOH can effectively transfer to BiVO4 to induce the generation of electron-deficient Mn sites (Mn(3+δ)+), which spontaneously promotes the adsorption of H2O and its intermediates for enhancing 4-electron water oxidation reaction, resulting in an efficient H2O2 production. The present work about the strong interaction between cocatalyst and bulk catalyst provides a fresh idea for the rational design of highly efficient catalytic materials.
  • 加载中
    1. [1]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys.-Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    2. [2]

      Li, Y.; Liu, Y.; Wei, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Chin. J. Catal. 2023, 45, 132. doi: 10.1016/S1872-2067(22)64163-9  doi: 10.1016/S1872-2067(22)64163-9

    3. [3]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys.-Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037  doi: 10.3866/PKU.WHXB202112037

    4. [4]

      Zheng, D.; Su, Y.; Wen, D.; Zhang, Z.; Yang, P.; Ma, X.; Chen, Y.; Deng, L.; Zhou, S.; Meng, A. J. Catal. 2023, 428, 115180. doi: 10.1016/j.jcat.2023.115180  doi: 10.1016/j.jcat.2023.115180

    5. [5]

      Wen, D.; Su, Y.; Fang, J.; Zheng, D.; Xu, Y.; Zhou, S.; Meng, A.; Han, P.; Wong, C. Nano Energy 2023, 117, 108917. doi: 10.1016/j.nanoen.2023.108917  doi: 10.1016/j.nanoen.2023.108917

    6. [6]

      Wang, K.; Wang, M.; Yu, J.; Liao, D.; Shi, H.; Wang, X.; Yu, H. ACS Appl. Nano Mater. 2021, 4, 13158. doi: 10.1021/acsanm.1c02688  doi: 10.1021/acsanm.1c02688

    7. [7]

      Pan, M.; Wang, P.; Wang, X.; Chen, F.; Yu, H. ACS Sustain. Chem. Eng. 2023, 11, 13222. doi: 10.1021/acssuschemeng.3c04308  doi: 10.1021/acssuschemeng.3c04308

    8. [8]

      Cheng, L.; Li, B.; Yin, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2022, 118, 54. doi: 10.1016/j.jmst.2021.11.055  doi: 10.1016/j.jmst.2021.11.055

    9. [9]

      Xu, J.; Gao, D.; Yu, H.; Wang, P.; Zhu, B.; Wang, L.; Fan, J. Chin. J. Catal. 2022, 43, 215. doi: 10.1016/S1872-2067(21)63830-5  doi: 10.1016/S1872-2067(21)63830-5

    10. [10]

      Tao, J.; Wang, M.; Zhang, X.; Lu, L.; Tang, H.; Liu, Q.; Lei, S.; Qiao, G.; Liu, G. Appl. Catal. B Environ. 2023, 320, 122004. doi: 10.1016/j.apcatb.2022.122004  doi: 10.1016/j.apcatb.2022.122004

    11. [11]

      Xiong, S.; Tang, R.; Gong, D.; Deng, Y.; Zheng, J.; Li, L.; Zhou, Z.; Yang, L.; Su, L. Chin. J. Catal. 2022, 43, 1719. doi: 10.1016/S1872-2067(21)63994-3  doi: 10.1016/S1872-2067(21)63994-3

    12. [12]

      Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067  doi: 10.1016/j.jmst.2023.03.067

    13. [13]

      Volokh, M.; Shalom, M. Nat. Catal. 2021, 4, 350. doi: 10.1038/s41929-021-00620-2  doi: 10.1038/s41929-021-00620-2

    14. [14]

      Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Nat. Catal. 2021, 4, 374. doi: 10.1038/s41929-021-00605-1  doi: 10.1038/s41929-021-00605-1

    15. [15]

      Patra, S.; Meyerstein, D. Inorganics 2022, 10, 182. doi: 10.3390/inorganics10110182  doi: 10.3390/inorganics10110182

    16. [16]

      Vandichel, M.; Busch, M.; Laasonen, K. ChemCatChem 2020, 12, 1436. doi: 10.1002/cctc.201901951  doi: 10.1002/cctc.201901951

    17. [17]

      Wang, L.; Duan, G.; Chen, S.; Liu, X. J. Alloy. Compd. 2018, 752, 123. doi: 10.1016/j.jallcom.2018.03.244  doi: 10.1016/j.jallcom.2018.03.244

    18. [18]

      Salavati-Niasari, M.; Esmaeili-Zare, M.; Gholami-Daghian, M.; Bagheri, S. High Temp. Mater. Proc. 2016, 35, 493. doi: 10.1515/htmp-2015-0009  doi: 10.1515/htmp-2015-0009

    19. [19]

      Sun, M.; Gao, R.; Liu, X.; Gao, R.; Wang, L. J. Mater. Chem. A 2020, 8, 25298. doi: 10.1039/d0ta09946e  doi: 10.1039/d0ta09946e

    20. [20]

      Zhou, X.; Li, J.; Cai, X.; Gao, Q.; Zhang, S.; Yang, S.; Wang, H.; Zhong, X.; Fang, Y. J. Mater. Chem. A 2020, 8, 17120. doi: 10.1039/d0ta06341j  doi: 10.1039/d0ta06341j

    21. [21]

      Chen, Z.; Wang, X.; Keßler, S.; Fan, Q.; Huang, M.; Cölfen, H. J. Energy Chem. 2022, 71, 89. doi: 10.1016/j.jechem.2022.02.042  doi: 10.1016/j.jechem.2022.02.042

    22. [22]

      Wang, Y.; Hu, T.; Liu, Q.; Zhang, L. Chem. Commun. 2018, 54, 4005. doi: 10.1039/c8cc00870a  doi: 10.1039/c8cc00870a

    23. [23]

      Shi, H.; Li, Y.; Wang, K.; Li, S.; Wang, X.; Wang, P.; Chen, F.; Yu, H. Chem. Eng. J. 2022, 443, 136429. doi: 10.1016/j.cej.2022.136429  doi: 10.1016/j.cej.2022.136429

    24. [24]

      Li, X.; Li, K.; Ding, D.; Yan, J.; Wang, C.; Carabineiro, S.; Liu, Y.; Lv, K. Sep. Purif. Technol. 2023, 309, 123054. doi: 10.1016/j.seppur.2022.123054  doi: 10.1016/j.seppur.2022.123054

    25. [25]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    26. [26]

      Bashir, S.; Jamil, A.; Khan, M.; Alazmi, A.; Abuilaiwi, F.; Shahid, M. J. Alloy. Compd. 2022, 913, 165214. doi: 10.1016/j.jallcom.2022.165214  doi: 10.1016/j.jallcom.2022.165214

    27. [27]

      Zeng, F.; Zhu, H.; Wang, R.; Yuan, X.; Sun, K.; Qu, L.; Chen, X.; Yu, B. Chin. J. Catal. 2023, 46, 157. doi: 10.1016/S1872-2067(23)64391-8  doi: 10.1016/S1872-2067(23)64391-8

    28. [28]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    29. [29]

      Zhong, W.; Xu, J.; Zhang, X.; Zhang, J.; Wang, X.; Yu, H. Adv. Funct. Mater. 2023, 33, 2302325. doi: 10.1002/adfm.202302325  doi: 10.1002/adfm.202302325

    30. [30]

      Zhong, W.; Xu, J.; Wang, P.; Zhu, B.; Fan, J.; Yu, H. Chin. J. Catal. 2022, 43, 1074. doi: 10.1016/S1872-2067(21)63969-4  doi: 10.1016/S1872-2067(21)63969-4

    31. [31]

      Sun, L.; Su, H.; Liu, Q.; Hu, J.; Wang, L.; Tang, H. Rare Met. 2022, 41, 2387. doi: 10.1007/s12598-022-01966-7  doi: 10.1007/s12598-022-01966-7

    32. [32]

      Gao, D.; Long, H.; Wang, X.; Yu, J.; Yu, H. Adv. Funct. Mater. 2022, 33, 2209994. doi: 10.1002/adfm.202209994  doi: 10.1002/adfm.202209994

    33. [33]

      He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi: 10.1016/j.jmst.2023.02.020  doi: 10.1016/j.jmst.2023.02.020

    34. [34]

      Long, H.; Gao, D.; Wang, P.; Wang, X.; Chen, F.; Yu, H. Appl. Catal. B Environ. 2024, 340, 123270. doi: 10.1016/j.apcatb.2023.123270  doi: 10.1016/j.apcatb.2023.123270

    35. [35]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys.-Chim. Sin. 2022, 38, 2110049. doi: 10.3866/PKU.WHXB202110049  doi: 10.3866/PKU.WHXB202110049

    36. [36]

      Yue, X.; Fan, J.; Xiang, Q. Adv. Funct. Mater. 2022, 32, 2110258. doi: 10.1002/adfm.202110258  doi: 10.1002/adfm.202110258

    37. [37]

      Tang, D.; Shao, C.; Jiang, S.; Sun, C.; Song, S. ACS Nano 2021, 15, 7208. doi: 10.1021/acsnano.1c00477  doi: 10.1021/acsnano.1c00477

    38. [38]

      Yang, Y.; Li, F.; Chen, J.; Fan, J.; Xiang, Q. ChemSusChem 2020, 13, 1979. doi: 10.1002/cssc.202000375  doi: 10.1002/cssc.202000375

    39. [39]

      Song, S.; Song, H.; Li, L.; Wang, S.; Chu, W.; Peng, K.; Meng, X.; Wang, Q.; Deng, B.; Liu, Q.; et al. Nat. Catal. 2021, 4, 1032. doi: 10.1038/s41929-021-00708-9  doi: 10.1038/s41929-021-00708-9

    40. [40]

      Jiang, S.; Xiong, C.; Song, S.; Cheng, B. ACS Sustain. Chem. Eng. 2019, 7, 2018. doi: 10.1021/acssuschemeng.8b04338  doi: 10.1021/acssuschemeng.8b04338

    41. [41]

      Wang, S.; Hai, X.; Ding, X.; Jin, S.; Xiang, Y.; Wang, P.; Jiang, B.; Ichihara, F.; Oshikiri, M.; Meng, X.; et al. Nat. Commun. 2020, 11, 1149. doi: 10.1038/s41467-020-14851-7  doi: 10.1038/s41467-020-14851-7

    42. [42]

      Potapenko, K.; Kurenkova, A.; Bukhtiyarov, A.; Gerasimov, E.; Cherepanova, S.; Kozlova, E. Nanomaterials 2021, 11, 355. doi: 10.3390/nano11020355  doi: 10.3390/nano11020355

    43. [43]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    44. [44]

      Gao, D.; Xu, J.; Chen, F.; Wang, P.; Yu, H. Appl. Catal. B Environ. 2022, 305, 121053. doi: 10.1016/j.apcatb.2021.121053  doi: 10.1016/j.apcatb.2021.121053

    45. [45]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475  doi: 10.1002/adma.202108475

    46. [46]

      Zhong, W.; Zhao, B.; Wang, X.; Wang, P.; Yu, H. ACS Catal. 2023, 13, 749. doi: 10.1021/acscatal.2c04042  doi: 10.1021/acscatal.2c04042

    47. [47]

      Zhang, S.; Wei, Y.; Metz, J.; He, S.; Alvarez, P.; Long, M. J. Hazard. Mater. 2022, 421, 126805. doi: 10.1016/j.jhazmat.2021.126805  doi: 10.1016/j.jhazmat.2021.126805

    48. [48]

      Sun, S.; Wang, S.; Xia, T.; Li, X.; Jin, Q.; Wu, Q.; Wang, L.; Wei, Z.; Wang, P. J. Mater. Chem. A 2015, 3, 20944. doi: 10.1039/c5ta04851f  doi: 10.1039/c5ta04851f

    49. [49]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    50. [50]

      Xu, J.; Zhong, W.; Chen, F.; Wang, X.; Yu, H. Appl. Catal. B-Environ. 2023, 328, 122493. doi: 10.1016/j.apcatb.2023.122493  doi: 10.1016/j.apcatb.2023.122493

    51. [51]

      Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708. doi: 10.1021/acscatal.2c05014  doi: 10.1021/acscatal.2c05014

    52. [52]

      Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys.-Chim. Sin. 2022, 38, 2110014. doi: 10.3866/PKU.WHXB202110014  doi: 10.3866/PKU.WHXB202110014

    53. [53]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/S1872-2067(23)64491-2  doi: 10.1016/S1872-2067(23)64491-2

    54. [54]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872‐2067(23)64444‐4  doi: 10.1016/S1872‐2067(23)64444‐4

    55. [55]

      Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2022, 43, 2548. doi: 10.1016/S1872-2067(22)64111-1  doi: 10.1016/S1872-2067(22)64111-1

    56. [56]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys.-Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    57. [57]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    58. [58]

      Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W.; Wang, S. Acta Phys.-Chim. Sin. 2022, 38, 2111021. doi: 10.3866/PKU.WHXB202111021  doi: 10.3866/PKU.WHXB202111021

    59. [59]

      Zhao, M.; Liu, S.; Chen, D.; Zhang, S.; Carabineiro, S.; Lv, K. Chin. J. Catal. 2022, 43, 2615. doi: 10.1016/S1872-2067(22)64134-2  doi: 10.1016/S1872-2067(22)64134-2

    60. [60]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A.; Yu, J. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    61. [61]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys.-Chim. Sin. 2022, 38, 2108028. doi: 10.3866/PKU.WHXB202108028  doi: 10.3866/PKU.WHXB202108028

    62. [62]

      Deng, P.; Gao, D.; Wang, P.; Wang, X.; Chen, F.; Yu, H. J. Mater. Chem. A 2023, 11, 21874. doi: 10.1039/d3ta04934e  doi: 10.1039/d3ta04934e

    63. [63]

      Zhong, W.; Gao, D.; Wang, P.; Wang, X.; Yu, H. Appl. Catal. B-Environ. 2022, 319, 121910. doi: 10.1016/j.apcatb.2022.121910  doi: 10.1016/j.apcatb.2022.121910

    64. [64]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

  • 加载中
    1. [1]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    2. [2]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    19. [19]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(2)
  • Abstract views(525)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return