Citation: Ping Ye, Lingshuang Qin, Mengyao He, Fangfang Wu, Zengye Chen, Mingxing Liang, Libo Deng. Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 231103. doi: 10.3866/PKU.WHXB202311032 shu

Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons

  • Corresponding author: Mingxing Liang, mxliang@szu.edu.cn Libo Deng, Denglb@szu.edu.cn
  • Received Date: 26 November 2023
    Revised Date: 9 January 2024
    Accepted Date: 4 February 2024

    Fund Project: the Shenzhen Science and Technology Program JCYJ20220818095806013the Shenzhen Science and Technology Program JCYJ20230808105111022Natural Science Foundation of Guangdong Province 2023A1515012267National Natural Science Foundation of China 22178223National Sponsored Postdoctoral Researcher Program of China GZC20231721

  • With the growth of batteries, electroplating, and mining industries, heavy metal ions such as cadmium (Cd2+) are being discharged on a massive scale, thus posing a severe threat to the environment. Conventional techniques for removing Cd2+ from wastewater with low concentrations still suffer from slow kinetics and secondary pollution. A carbon-based capacitive deionization (CDI) system is highly desired but encounters a severe co-ion expulsion effect. Herein, we developed CDI systems based on surface charge-modulated porous carbon and an asymmetric configuration. This was achieved by first preparing porous carbons through facile microwave pyrolysis of lotus leaf followed by KOH activation. The morphology, pore structure, heteroatom content, surface charge, and electrochemical behavior of porous carbons were investigated by adjusting the mass ratio of KOH to carbon. The lotus leaf-derived carbons show a morphology of nanosheet-like thin carbon (NSTC), with their specific surface areas increasing with the amount of KOH used for activation. In contrast, the heteroatom (i.e., nitrogen and oxygen) contents decrease with the increase in the mass ratio of KOH to carbon, resulting in a more positive surface charge. Notably, the NSTC with a mass ratio of 3 for KOH/carbon (NSTC-3) displays an ultrahigh specific surface area of 3705.0 m2∙g-1, and a specific capacitance of 92.5 F∙g-1 at a current density of 0.5 A∙g-1 when coupled with a commercial activated carbon in an asymmetric YP-50F//NSTC-3 supercapacitor. Consequently, the CDI cell equipped with a YP-50F as the anode and a NSTC-3 as the cathode exhibits a high specific adsorption capacity of 88.6 mgCd·gcathode-1 at 1.2 V in a 100 mg∙L-1 Cd2+ solution, which is about 36.3% higher than that of the symmetrical configuration NSTC-3//NSTC-3. Furthermore, 71% of the initial removal capacity of the YP-50F//NSTC-3 system is retained after 7 cycles of charging and discharging. Characterizations of the cathode after the adsorption process indicate that the Cd2+ is captured by both electrical-double-layer and pseudocapacitive mechanisms. Additionally, CdCO3 precipitate is also responsible for Cd2+ removal, which might be ascribed to the reaction of dissolved CO2 in aqueous media with Cd2+ under the electrified action. The high removal performance and excellent cycling stability are attributed to the tunability of the surface charge properties and the asymmetric configuration, which minimizes the co-ion expulsion and modulates potential distribution. This study provides a novel avenue to design biochar-based configurations for electrified water treatment.
  • 加载中
    1. [1]

      Elimelech, M.; Phillip, W. A. Science 2011, 333 (6043), 712. doi: 10.1126/science.1200488  doi: 10.1126/science.1200488

    2. [2]

      Wei, B.; Yang, L. Microchem. J. 2010, 94 (2), 99. doi: 10.1016/j.microc.2009.09.014  doi: 10.1016/j.microc.2009.09.014

    3. [3]

      Xu, Y.; Xiang, S.; Zhang, X.; Zhou, H.; Zhang, H. J. Hazard. Mater. 2022, 439, 129575. doi: 10.1016/j.jhazmat.2022.129575  doi: 10.1016/j.jhazmat.2022.129575

    4. [4]

      Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. NPJ Clean Water 2021, 4 (1), 36. doi: 10.1038/s41545-021-00127-0  doi: 10.1038/s41545-021-00127-0

    5. [5]

      Li, B.; Yuan, W.; Li, L. Acta Phys. -Chim. Sin. 2016, 32 (4), 997. doi: 10.3866/PKU.WHXB201602182  doi: 10.3866/PKU.WHXB201602182

    6. [6]

      Liang, M.; Liu, N.; Zhang, X.; Xiao, Y.; Yang, J.; Yu, F.; Ma, J. Adv. Funct. Mater. 2022, 32 (49), 2209741. doi: 10.1002/adfm.202209741  doi: 10.1002/adfm.202209741

    7. [7]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33 (7), 1338. doi: 10.3866/PKU.WHXB201704113  doi: 10.3866/PKU.WHXB201704113

    8. [8]

      Zhao, C.; Wang, X.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Environ. Sci. : Water Res. Technol. 2020, 6 (2), 331. doi: 10.1039/C9EW00472F  doi: 10.1039/C9EW00472F

    9. [9]

      Chen, Y.; Zhang, Z.; Deng, W.; Wang, Z.; Gao, M.; Gao, C.; Chen, W.; Dai, Q.; Ueyama, T. Desalination 2022, 521, 115384. doi: 10.1016/j.desal.2021.115384  doi: 10.1016/j.desal.2021.115384

    10. [10]

      Wang, S.; Chen, D.; Zhang, Z.; Hu, Y.; Quan, H. Sep. Purif. Technol. 2022, 290, 120912. doi: 10.1016/j.seppur.2022.120912  doi: 10.1016/j.seppur.2022.120912

    11. [11]

      Song, Z.; Li, L.; Chen, Y.; Duan, X.; Ren, N. J. Mater. Sci. Technol. 2023, 148, 10. doi: 10.1016/j.jmst.2022.11.016  doi: 10.1016/j.jmst.2022.11.016

    12. [12]

      Fleischmann, S.; Zhang, Y.; Wang, X.; Cummings, P. T.; Wu, J.; Simon, P.; Gogotsi, Y.; Presser, V.; Augustyn, V. Nat. Energy 2022, 7 (3), 222. doi: 10.1038/s41560-022-00993-z  doi: 10.1038/s41560-022-00993-z

    13. [13]

      Wen, Y.; Cao, G.; Cheng, J.; Yang, Y. Acta Phys. -Chim. Sin. 2005, 21 (5), 494. doi: 10.3866/PKU.WHXB20050507  doi: 10.3866/PKU.WHXB20050507

    14. [14]

      Li, D.; Zhang, J.; Wang, Z.; Jin, X. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245. doi: 10.3866/PKU.WHXB201705241  doi: 10.3866/PKU.WHXB201705241

    15. [15]

      Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020, 36 (2), 21. doi: 10.3866/PKU.WHXB201903055  doi: 10.3866/PKU.WHXB201903055

    16. [16]

      Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y.; Abdelkader, A.; Li, Y.; Ren, X.; Deng, L. Nano-Micro Lett. 2023, 15 (1), 48. doi: 10.1007/s40820-023-01022-8  doi: 10.1007/s40820-023-01022-8

    17. [17]

      Li, J.; Wu, J.; Zhang, T.; Huang, L. Acta Phys. -Chim. Sin. 2017, 33 (5), 968. doi: 10.3866/PKU.WHXB201702093  doi: 10.3866/PKU.WHXB201702093

    18. [18]

      Chu, M.; Tian, W.; Zhao, J.; Zhang, D.; Zou, M.; Lu, Z.; Jiang, J. Desalination 2023, 556, 116588. doi: 10.1016/j.desal.2023.116588  doi: 10.1016/j.desal.2023.116588

    19. [19]

      Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat. Rev. Mater. 2020, 5 (7), 517. doi: 10.1038/s41578-020-0193-1  doi: 10.1038/s41578-020-0193-1

    20. [20]

      Wu, T.; Wang, G.; Zhan, F.; Dong, Q.; Ren, Q.; Wang, J.; Qiu, J. Water Res. 2016, 93, 30. doi: 10.1016/j.watres.2016.02.004  doi: 10.1016/j.watres.2016.02.004

    21. [21]

      Nguyen, T. K. A.; Huynh, T. V.; Doong, R. A. Chem. Eng. J. 2023, 475, 146439. doi: 10.1016/j.cej.2023.146439  doi: 10.1016/j.cej.2023.146439

    22. [22]

      Deng, H.; Wang, Z.; Kim, M.; Yamauchi, Y.; Eichhorn, S. J.; Titirici, M. M.; Deng, L. Nano Energy 2023, 117, 108914. doi: 10.1016/j.nanoen.2023.108914  doi: 10.1016/j.nanoen.2023.108914

    23. [23]

      Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. Electrochim. Acta 2015, 153, 106. doi: 10.1016/j.electacta.2014.12.007  doi: 10.1016/j.electacta.2014.12.007

    24. [24]

      Oghbaei, M.; Mirzaee, O. J. Alloys Compd. 2010, 494 (1), 175. doi: 10.1016/j.jallcom.2010.01.068  doi: 10.1016/j.jallcom.2010.01.068

    25. [25]

      Wei, W.; Gu, X.; Wang, R.; Feng, X.; Chen, H. Nano Lett. 2022, 22 (18), 7572. doi: 10.1021/acs.nanolett.2c02583  doi: 10.1021/acs.nanolett.2c02583

    26. [26]

      He, R.; Neupane, M.; Zia, A.; Huang, X.; Bowers, C.; Wang, M.; Lu, J.; Yang, Y.; Dong, P. Adv. Funct. Mater. 2022, 32 (49), 2208040. doi: 10.1002/adfm.202208040  doi: 10.1002/adfm.202208040

    27. [27]

      Mo, F.; Zhang, H.; Wang, Y.; Chen, C.; Wu, X. J. Energy Storage 2022, 49, 104122. doi: 10.1016/j.est.2022.104122  doi: 10.1016/j.est.2022.104122

    28. [28]

      Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B. D. ACS Nano 2017, 11 (12), 12650. doi: 10.1021/acsnano.7b07116  doi: 10.1021/acsnano.7b07116

    29. [29]

      Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2023, 62 (38), e202309446. doi: 10.1002/anie.202309446  doi: 10.1002/anie.202309446

    30. [30]

      Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2024, 63 (3), e202316835. doi: 10.1002/anie.202316835  doi: 10.1002/anie.202316835

    31. [31]

      Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. ACS Appl. Mater. Interfaces 2023, 15 (29), 35380. doi: 10.1021/acsami.3c06849  doi: 10.1021/acsami.3c06849

    32. [32]

      Ma, X.; Wu, Q.; Wang, W.; Lu, S.; Xiang, Y.; Aurbach, D. J. Mater. Chem. A 2020, 8 (32), 16312. doi: 10.1039/D0TA00682C  doi: 10.1039/D0TA00682C

    33. [33]

      Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    34. [34]

      Ye, G.; Liu, S.; Huang, K.; Wang, S.; Zhao, K.; Zhu, W.; Su, Y.; Wang, J.; He, Z. Adv. Funct. Mater. 2022, 32 (18), 2111396. doi: 10.1002/adfm.202111396  doi: 10.1002/adfm.202111396

    35. [35]

      Wu, S.; Chen, G.; Kim, N. Y.; Ni, K.; Zeng, W.; Zhao, Y.; Tao, Z.; Ji, H.; Lee, Z.; Zhu, Y. Small 2016, 12 (17), 2376. doi: 10.1002/smll.201503855  doi: 10.1002/smll.201503855

    36. [36]

      Zhang, W.; Sun, M.; Yin, J.; Lu, K.; Schwingenschlogl, U.; Qiu, X.; Alshareef, H. N. Adv. Energy Mater. 2021, 11 (41), 9. doi: 10.1002/aenm.202101928  doi: 10.1002/aenm.202101928

    37. [37]

      Zhang, H.; Wang, C.; Zhang, W.; Zhang, M.; Qi, J.; Qian, J.; Sun, X.; Yuliarto, B.; Na, J.; Park, T.; et al. J. Mater. Chem. A 2021, 9 (21), 12807. doi: 10.1039/d0ta10797b  doi: 10.1039/d0ta10797b

    38. [38]

      Temesgen, T.; Bekele, E. T.; Gonfa, B. A.; Tufa, L. T.; Sabir, F. K.; Tadesse, S.; Dessie, Y. J. Energy Storage 2023, 73, 109293. doi: 10.1016/j.est.2023.109293  doi: 10.1016/j.est.2023.109293

    39. [39]

      Deng, H.; Wei, W.; Yao, L.; Zheng, Z.; Li, B.; Abdelkader, A.; Deng, L. Adv. Sci. 2022, 9 (30), 2203189. doi: 10.1002/advs.202203189  doi: 10.1002/advs.202203189

    40. [40]

      Cao, Z.; Hu, S.; Yang, Q.; Yu, J.; Pan, Y.; Zuo, J.; Song, H.; Ye, Z.; Zhang, S. Chem. Eng. J. 2022, 450, 138126. doi: 10.1016/j.cej.2022.138126  doi: 10.1016/j.cej.2022.138126

    41. [41]

      Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. J. Mater. Chem. A 2016, 4 (15), 5467. doi: 10.1039/C6TA00618C  doi: 10.1039/C6TA00618C

    42. [42]

      Cheng, Y.; Liu, J. Mater. Res. Lett. 2013, 1 (4), 175. doi: 10.1080/21663831.2013.808712  doi: 10.1080/21663831.2013.808712

    43. [43]

      Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J. Hazard. Mater. 2016, 302, 323. doi: 10.1016/j.jhazmat.2015.09.064  doi: 10.1016/j.jhazmat.2015.09.064

    44. [44]

      Wu, J.; Wang, T.; Zhang, Y.; Pan, W. Bioresour. Technol. 2019, 291, 121859. doi: 10.1016/j.biortech.2019.121859  doi: 10.1016/j.biortech.2019.121859

    45. [45]

      Feizi, M.; Jalali, M.; Antoniadis, V.; Shaheen, S. M.; Ok, Y. S.; Rinklebe, J. J. Hazard. Mater. 2019, 379, 10. doi:10.1016/j.jhazmat.2019.04.050  doi: 10.1016/j.jhazmat.2019.04.050

  • 加载中
    1. [1]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    3. [3]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    9. [9]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    10. [10]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

Metrics
  • PDF Downloads(0)
  • Abstract views(100)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return