Citation: Ping Ye,  Lingshuang Qin,  Mengyao He,  Fangfang Wu,  Zengye Chen,  Mingxing Liang,  Libo Deng. 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 231103. doi: 10.3866/PKU.WHXB202311032 shu

荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子

  • Received Date: 26 November 2023
    Revised Date: 9 January 2024
    Accepted Date: 4 February 2024

    Fund Project: The project was supported by the Shenzhen Science and Technology Program (JCYJ20220818095806013, JCYJ20230808105111022), Natural Science Foundation of Guangdong Province (2023A1515012267), National Natural Science Foundation of China (22178223), and National Sponsored Postdoctoral Researcher Program of China (GZC20231721).

  • 随着电池、电镀和采矿业的发展,镉(Cd2+)等重金属离子被大量排放,对环境造成严重威胁。由于废水中Cd2+浓度低,传统的去除技术存在动力学慢、二次污染等问题。因此,本文通过微波热解和KOH活化工艺,制备了荷叶衍生碳,开发了基于生物质衍生碳、不对称结构的电容性去离子(CDI)系统。结果表明,获得的纳米片状薄碳(NSTC-3)具有3705.0 m2∙g-1的超高比表面积,在0.5 A∙g-1电流密度下展现了92.5 F∙g-1的比电容(NSTC-3为工作电极,商业活性炭YP-50F为对电极)。分别以YP-50F、NSTC-3为阳极和阴极,在1.2 V电压下,实现了88.6 mgCd·gcathode-1的电吸附容量(Cd2+的初始浓度为100 mg∙L-1),比对称构型(NSTC-3//NSTC-3)的性能提高了36.3%。优异的去除性能和良好的循环稳定性归因于电极表面电荷性质的调控和不对称电极结构的构建,从而最大限度地减少了同离子排斥,调节了电极电势分布。本研究为设计生物炭基电化学水处理工艺提供了新思路。
  • 加载中
    1. [1]

      (1) Elimelech, M.; Phillip, W. A. Science 2011, 333 (6043), 712. doi:10.1126/science.1200488

    2. [2]

      (2) Wei, B.; Yang, L. Microchem. J. 2010, 94 (2), 99. doi:10.1016/j.microc.2009.09.014

    3. [3]

      (3) Xu, Y.; Xiang, S.; Zhang, X.; Zhou, H.; Zhang, H. J. Hazard. Mater. 2022, 439, 129575. doi:10.1016/j.jhazmat.2022.129575

    4. [4]

      (4) Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. NPJ Clean Water 2021, 4 (1), 36. doi:10.1038/s41545-021-00127-0

    5. [5]

    6. [6]

      (6) Liang, M.; Liu, N.; Zhang, X.; Xiao, Y.; Yang, J.; Yu, F.; Ma, J. Adv. Funct. Mater. 2022, 32 (49), 2209741. doi:10.1002/adfm.202209741

    7. [7]

    8. [8]

      (8) Zhao, C.; Wang, X.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Environ. Sci.: Water Res. Technol. 2020, 6 (2), 331. doi:10.1039/C9EW00472F

    9. [9]

      (9) Chen, Y.; Zhang, Z.; Deng, W.; Wang, Z.; Gao, M.; Gao, C.; Chen, W.; Dai, Q.; Ueyama, T. Desalination 2022, 521, 115384. doi:10.1016/j.desal.2021.115384

    10. [10]

      (10) Wang, S.; Chen, D.; Zhang, Z.; Hu, Y.; Quan, H. Sep. Purif. Technol. 2022, 290, 120912. doi:10.1016/j.seppur.2022.120912

    11. [11]

      (11) Song, Z.; Li, L.; Chen, Y.; Duan, X.; Ren, N. J. Mater. Sci. Technol. 2023, 148, 10. doi:10.1016/j.jmst.2022.11.016

    12. [12]

      (12) Fleischmann, S.; Zhang, Y.; Wang, X.; Cummings, P. T.; Wu, J.; Simon, P.; Gogotsi, Y.; Presser, V.; Augustyn, V. Nat. Energy 2022, 7 (3), 222. doi:10.1038/s41560-022-00993-z

    13. [13]

    14. [14]

    15. [15]

    16. [16]

      (16) Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y.; Abdelkader, A.; Li, Y.; Ren, X.; Deng, L. Nano-Micro Lett. 2023, 15 (1), 48. doi:10.1007/s40820-023-01022-8

    17. [17]

    18. [18]

      (18) Chu, M.; Tian, W.; Zhao, J.; Zhang, D.; Zou, M.; Lu, Z.; Jiang, J. Desalination 2023, 556, 116588. doi:10.1016/j.desal.2023.116588

    19. [19]

      (19) Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat. Rev. Mater. 2020, 5 (7), 517. doi:10.1038/s41578-020-0193-1

    20. [20]

      (20) Wu, T.; Wang, G.; Zhan, F.; Dong, Q.; Ren, Q.; Wang, J.; Qiu, J. Water Res. 2016, 93, 30. doi:10.1016/j.watres.2016.02.004

    21. [21]

      (21) Nguyen, T. K. A.; Huynh, T. V.; Doong, R. A. Chem. Eng. J. 2023, 475, 146439. doi:10.1016/j.cej.2023.146439

    22. [22]

      (22) Deng, H.; Wang, Z.; Kim, M.; Yamauchi, Y.; Eichhorn, S. J.; Titirici, M. M.; Deng, L. Nano Energy 2023, 117, 108914. doi:10.1016/j.nanoen.2023.108914

    23. [23]

      (23) Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. Electrochim. Acta 2015, 153, 106. doi:10.1016/j.electacta.2014.12.007

    24. [24]

      (24) Oghbaei, M.; Mirzaee, O. J. Alloys Compd. 2010, 494 (1), 175. doi:10.1016/j.jallcom.2010.01.068

    25. [25]

      (25) Wei, W.; Gu, X.; Wang, R.; Feng, X.; Chen, H. Nano Lett. 2022, 22 (18), 7572. doi:10.1021/acs.nanolett.2c02583

    26. [26]

      (26) He, R.; Neupane, M.; Zia, A.; Huang, X.; Bowers, C.; Wang, M.; Lu, J.; Yang, Y.; Dong, P. Adv. Funct. Mater. 2022, 32 (49), 2208040. doi:10.1002/adfm.202208040

    27. [27]

      (27) Mo, F.; Zhang, H.; Wang, Y.; Chen, C.; Wu, X. J. Energy Storage 2022, 49, 104122. doi:10.1016/j.est.2022.104122

    28. [28]

      (28) Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B. D. ACS Nano 2017, 11 (12), 12650. doi:10.1021/acsnano.7b07116

    29. [29]

      (29) Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2023, 62 (38), e202309446. doi:10.1002/anie.202309446

    30. [30]

      (30) Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2024, 63 (3), e202316835. doi:10.1002/anie.202316835

    31. [31]

      (31) Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. ACS Appl. Mater. Interfaces 2023, 15 (29), 35380. doi:10.1021/acsami.3c06849

    32. [32]

      (32) Ma, X.; Wu, Q.; Wang, W.; Lu, S.; Xiang, Y.; Aurbach, D. J. Mater. Chem. A 2020, 8 (32), 16312. doi:10.1039/D0TA00682C

    33. [33]

      (33) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332 (6037), 1537. doi:10.1126/science.1200770

    34. [34]

      (34) Ye, G.; Liu, S.; Huang, K.; Wang, S.; Zhao, K.; Zhu, W.; Su, Y.; Wang, J.; He, Z. Adv. Funct. Mater. 2022, 32 (18), 2111396. doi:10.1002/adfm.202111396

    35. [35]

      (35) Wu, S.; Chen, G.; Kim, N. Y.; Ni, K.; Zeng, W.; Zhao, Y.; Tao, Z.; Ji, H.; Lee, Z.; Zhu, Y. Small 2016, 12 (17), 2376. doi:10.1002/smll.201503855

    36. [36]

      (36) Zhang, W.; Sun, M.; Yin, J.; Lu, K.; Schwingenschlogl, U.; Qiu, X.; Alshareef, H. N. Adv. Energy Mater. 2021, 11 (41), 9. doi:10.1002/aenm.202101928

    37. [37]

      (37) Zhang, H.; Wang, C.; Zhang, W.; Zhang, M.; Qi, J.; Qian, J.; Sun, X.; Yuliarto, B.; Na, J.; Park, T.; et al. J. Mater. Chem. A 2021, 9 (21), 12807. doi:10.1039/d0ta10797b

    38. [38]

      (38) Temesgen, T.; Bekele, E. T.; Gonfa, B. A.; Tufa, L. T.; Sabir, F. K.; Tadesse, S.; Dessie, Y. J. Energy Storage 2023, 73, 109293. doi:10.1016/j.est.2023.109293

    39. [39]

      (39) Deng, H.; Wei, W.; Yao, L.; Zheng, Z.; Li, B.; Abdelkader, A.; Deng, L. Adv. Sci. 2022, 9 (30), 2203189. doi:10.1002/advs.202203189

    40. [40]

      (40) Cao, Z.; Hu, S.; Yang, Q.; Yu, J.; Pan, Y.; Zuo, J.; Song, H.; Ye, Z.; Zhang, S. Chem. Eng. J. 2022, 450, 138126. doi:10.1016/j.cej.2022.138126

    41. [41]

      (41) Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. J. Mater. Chem. A 2016, 4 (15), 5467. doi:10.1039/C6TA00618C

    42. [42]

      (42) Cheng, Y.; Liu, J. Mater. Res. Lett. 2013, 1 (4), 175. doi:10.1080/21663831.2013.808712

    43. [43]

      (43) Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J. Hazard. Mater. 2016, 302, 323. doi:10.1016/j.jhazmat.2015.09.064

    44. [44]

      (44) Wu, J.; Wang, T.; Zhang, Y.; Pan, W. Bioresour. Technol. 2019, 291, 121859. doi:10.1016/j.biortech.2019.121859

    45. [45]

      (45) Feizi, M.; Jalali, M.; Antoniadis, V.; Shaheen, S. M.; Ok, Y. S.; Rinklebe, J. J. Hazard. Mater. 2019, 379, 10. doi:10.1016/j.jhazmat.2019.04.050

  • 加载中
    1. [1]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    19. [19]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(0)
  • Abstract views(64)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return