Citation: Qi Li, Pingan Li, Zetong Liu, Jiahui Zhang, Hao Zhang, Weilai Yu, Xianluo Hu. Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231103. doi: 10.3866/PKU.WHXB202311030 shu

Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications

  • Corresponding author: Weilai Yu, wyyu@stanford.edu Xianluo Hu, huxl@mail.hust.edu.cn
  • Received Date: 23 November 2023
    Revised Date: 12 December 2023
    Accepted Date: 14 December 2023
    Available Online: 8 January 2024

    Fund Project: the National Natural Foundation Science of China 52272206the National Natural Foundation Science of China 51972132

  • Highly coveted for their exceptional energy density, extended cycle life, impressive rate capability, and thermal stability, lithium-ion batteries (LIBs) stand out as the optimal power sources for real-world applications, ranging from portable electronics to electric vehicles (EVs). In this context, coaxial electrospinning has emerged as a compelling technique for fabricating nanofiber materials endowed with properties ideally suited for LIBs. These properties include a high specific surface area, exceptional porosity, a substantial aspect ratio, and facile surface modification. This comprehensive review encapsulates the fundamental principles, practical applications, and recent strides in coaxial electrospinning, particularly in the preparation of crucial LIB components such as cathodes, anodes, and separators. The intricate relationships between the micro/nanostructures of coaxially electrospun fiber materials and their resultant battery performances are meticulously examined. Additionally, the review outlines future directions and underscores the challenges inherent in advancing the field of coaxial electrospinning for LIBs.
  • 加载中
    1. [1]

      Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X. Y.; Ren, R.; Chen, J. H. Nano Energy 2019, 62, 883. doi: 10.1016/j.nanoen.2019.06.023  doi: 10.1016/j.nanoen.2019.06.023

    2. [2]

      Lu, Z. H.; Sui, F.; Miao, Y. -E.; Liu, G. H.; Li, C.; Dong, W.; Cui, J.; Liu, T. X.; Wu, J. X.; Yang, C. L. J. Energy Chem. 2021, 58, 170. doi: 10.1016/j.jechem.2020.09.043  doi: 10.1016/j.jechem.2020.09.043

    3. [3]

      Chombo, P. V.; Laoonual, Y. J. Power Sources 2020, 478, 228649. doi: 10.1016/j.jpowsour.2020.228649  doi: 10.1016/j.jpowsour.2020.228649

    4. [4]

      Bruce, P. G.; Scrosati, B.; Tarascon, J. -M. Angew. Chem. Int. Ed. 2008, 47 (16), 2930. doi: 10.1002/anie.200702505  doi: 10.1002/anie.200702505

    5. [5]

      Lu, H.; Hou, R.; Chu, S.; Zhou, H.; Guo, S. Acta Phys. -Chim. Sin. 2023, 39 (7), 2211057.  doi: 10.3866/PKU.WHXB202211057

    6. [6]

      Mo, Y.; Xiao, K.; Wu, J.; Liu, H.; Hu, A.; Gao, P.; Liu, J. Acta Phys. -Chim. Sin. 2021, 38 (6), 2107030.  doi: 10.3866/PKU.WHXB202107030

    7. [7]

      Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. InfoMat 2021, 3 (12), 1333. doi: 10.1002/inf2.12189  doi: 10.1002/inf2.12189

    8. [8]

      Zhang, R.; Yang, S.; Li, H.; Zhai, T.; Li, H. InfoMat 2022, 4 (6), e12305. doi: 10.1002/inf2.12305  doi: 10.1002/inf2.12305

    9. [9]

      Lv, H.; Wang, X.; Yang, Y.; Liu, T.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 39 (3), 2210014.  doi: 10.3866/PKU.WHXB202210014

    10. [10]

      Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35 (13), 2207752. doi: 10.1002/adma.202207752  doi: 10.1002/adma.202207752

    11. [11]

      Xie, W.; Li, S.; Wang, S.; Xue, S.; Liu, Z.; Jiang, X.; He, D. ACS Appl. Mater. Interfaces 2014, 6 (22), 20334. doi: 10.1021/am505829v  doi: 10.1021/am505829v

    12. [12]

      Park, S. -H.; Lee, W. -J. J. Power Sources 2015, 281, 301. doi: 10.1016/j.jpowsour.2015.01.156  doi: 10.1016/j.jpowsour.2015.01.156

    13. [13]

      Qu, E. L.; Chen, T.; Xiao, Q. Z.; Lei, G. T.; Li, Z. H. J. Electrochem. Soc. 2018, 165 (3), A487. doi: 10.1149/2.0441803jes  doi: 10.1149/2.0441803jes

    14. [14]

      Zhang, Y.; Luo, Z. P.; Xiao, Q. Z.; Sun, T. L.; Lei, G. T.; Li, Z. H.; Li, X. J. J. Power Sources 2015, 297, 442. doi: 10.1016/j.jpowsour.2015.08.012  doi: 10.1016/j.jpowsour.2015.08.012

    15. [15]

      Gao, M. Z.; Liu, B.; Zhang, X. Y.; Zhang, Y. M.; Li, X. B.; Han, G. T. J. Alloy. Compd. 2022, 894, 162550. doi: 10.1016/j.jallcom.2021.162550  doi: 10.1016/j.jallcom.2021.162550

    16. [16]

      Wang, M. -S.; Wang, Z. -Q.; Chen, Z.; Yang, Z. -L.; Tang, Z. -L.; Luo, H. -Y.; Huang, Y.; Li, X.; Xu, W. Chem. Eng. J. 2018, 334, 162. doi: 10.1016/j.cej.2017.07.106  doi: 10.1016/j.cej.2017.07.106

    17. [17]

      Yarin, A. L.; Zussman, E.; Wendorff, J. H.; Greiner, A. J. Mater. Chem. 2007, 17 (25), 2585. doi: 10.1039/b618508h  doi: 10.1039/b618508h

    18. [18]

      Moghe, A. K.; Gupta, B. S. Polym. Rev. 2008, 48 (2), 353. doi: 10.1080/15583720802022257  doi: 10.1080/15583720802022257

    19. [19]

      Qu, H. L.; Wei, S. Y.; Guo, Z. H. J. Mater. Chem. A 2013, 1 (38), 11513. doi: 10.1039/c3ta12390a  doi: 10.1039/c3ta12390a

    20. [20]

      Yoon, J. Y.; Yang, H. S.; Lee, B. S.; Yu, W. R. Adv. Mater. 2018, 30 (42), e1704765. doi: 10.1002/adma.201704765  doi: 10.1002/adma.201704765

    21. [21]

      Han, D.; Steckl, A. J. ChemPlusChem 2019, 84 (10), 1453. doi: 10.1002/cplu.201900281  doi: 10.1002/cplu.201900281

    22. [22]

      Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrochem. Energy Rev. 2021, 5 (2), 211. doi: 10.1007/s41918-021-00103-9  doi: 10.1007/s41918-021-00103-9

    23. [23]

      Wang, J.; Wang, Z.; Ni, J.; Li, L. Energy Storage Mater. 2022, 45, 704. doi: 10.1016/j.ensm.2021.12.022  doi: 10.1016/j.ensm.2021.12.022

    24. [24]

      Huang, Z. M.; Zhang, Y. Z.; Kotakic, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63 (15), 2223. doi: 10.1016/s0266-3538(03)00178-7  doi: 10.1016/s0266-3538(03)00178-7

    25. [25]

      Tucker, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; Hofman, K. J. Eng. Fibers Fabr. 2012, 7, 63. doi: 10.1177/155892501200702S10  doi: 10.1177/155892501200702S10

    26. [26]

      Song, W.; Tang, Y.; Qian, C.; Kim, B. J.; Liao, Y.; Yu, D. -G. Innovation 2023, 4 (2), 100381. doi: 10.1016/j.xinn.2023.100381  doi: 10.1016/j.xinn.2023.100381

    27. [27]

      Wang, C.; Liu, Y.; Jia, Z.; Zhao, W.; Wu, G. Nano-Micro Lett. 2022, 15 (1), 13. doi: 10.1007/s40820-022-00986-3  doi: 10.1007/s40820-022-00986-3

    28. [28]

      Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28 (3), 325. doi: 10.1016/j.biotechadv.2010.01.004  doi: 10.1016/j.biotechadv.2010.01.004

    29. [29]

      Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Gañán-Calvo, A. M. Science 2002, 295 (5560), 1695. doi: 10.1126/science.1067595  doi: 10.1126/science.1067595

    30. [30]

      Sun, Z. C.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Adv. Mater. 2003, 15 (22), 1929. doi: 10.1002/adma.200305136  doi: 10.1002/adma.200305136

    31. [31]

      Gu, Y. X.; Jian, F. F. J. Phys. Chem. C 2008, 112 (51), 20176. doi: 10.1021/jp808468x  doi: 10.1021/jp808468x

    32. [32]

      Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Adv. Mater. 2004, 16 (22), 2062. doi: 10.1002/adma.200400606  doi: 10.1002/adma.200400606

    33. [33]

      Xia, D. L. Y. Nano Lett. 2004, 4 (5), 933. doi: 10.1021/nl049590f  doi: 10.1021/nl049590f

    34. [34]

      Garcia-Mateos, F. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodriguez-Mirasol, J.; Cordero, T. Front. Mater. 2019, 6, 114. doi: 10.3389/fmats.2019.00114  doi: 10.3389/fmats.2019.00114

    35. [35]

      Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46 (10), 3372. doi: 10.1016/j.polymer.2005.03.011  doi: 10.1016/j.polymer.2005.03.011

    36. [36]

      Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46 (13), 4799. doi: 10.1016/j.polymer.2005.04.021  doi: 10.1016/j.polymer.2005.04.021

    37. [37]

      Lee, G. H.; Song, J. -C.; Yoon, K. -B. Macromol. Res. 2010, 18 (6), 571. doi: 10.1007/s13233-010-0607-9  doi: 10.1007/s13233-010-0607-9

    38. [38]

      Yang, Q. B.; Li, Z. Y.; Hong, Y. L.; Zhao, Y. Y.; Qiu, S. L.; Wang, C.; Wei, Y. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (20), 3721. doi: 10.1002/polb.20222  doi: 10.1002/polb.20222

    39. [39]

      Zhang, Y. Z.; Huang, Z. M.; Xu, X. J.; Lim, C. T.; Ramakrishna, S. Chem. Mater. 2004, 16 (18), 3406. doi: 10.1021/cm049580f  doi: 10.1021/cm049580f

    40. [40]

      Dong, H.; Nyame, V.; MacDiarmid, A. G.; Jones, W. E. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (21), 3934. doi: 10.1002/polb.20253  doi: 10.1002/polb.20253

    41. [41]

      Kaerkitcha, N.; Chuangchote, S.; Hachiya, K.; Sagawa, T. Polym. J. 2017, 49 (6), 497. doi: 10.1038/pj.2017.8  doi: 10.1038/pj.2017.8

    42. [42]

      Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E. K.; Guo, Z. Wires. Nanomed. Nanobi. 2016, 8 (5), 654. doi: 10.1002/wnan.1391  doi: 10.1002/wnan.1391

    43. [43]

      Wang, L. H.; Yang, H.; Hou, J. Z.; Zhang, W. X.; Xiang, C. H.; Li, L. L. New J. Chem. 2017, 41 (24), 15072. doi: 10.1039/c7nj02805a  doi: 10.1039/c7nj02805a

    44. [44]

      Kurban, Z.; Lovell, A.; Bennington, S. M.; Jenkins, D. W. K.; Ryan, K. R.; Jones, M. O.; Skipper, N. T.; David, W. I. F. J. Phys. Chem. C 2010, 114 (49), 21201. doi: 10.1021/jp107871v  doi: 10.1021/jp107871v

    45. [45]

      Pant, B.; Park, M.; Park, S. -J. Pharmaceutics 2019, 11 (7), 305. doi: 10.3390/pharmaceutics11070305  doi: 10.3390/pharmaceutics11070305

    46. [46]

      Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Adv. Mater. 2004, 16 (17), 1562. doi: 10.1002/adma.200306644  doi: 10.1002/adma.200306644

    47. [47]

      Yu, D.; Bligh, L. Z. S. W. A.; Branford-White, C.; White, K. N. Chem. Commun. 2011, 47 (4), 1216. doi: 10.1039/c0cc03521a  doi: 10.1039/c0cc03521a

    48. [48]

      Muthiah, P.; Hsu, S. -H.; Sigmund, W. Langmuir 2010, 26 (15), 12483. doi: 10.1021/la100748g  doi: 10.1021/la100748g

    49. [49]

      Li, D.; McCann, J. T.; Xia, Y. N. Small 2005, 1 (1), 83. doi: 10.1002/smll.200400056  doi: 10.1002/smll.200400056

    50. [50]

      Wang, M. L.; Wang, K.; Yang, Y. Y.; Liu, Y. N.; Yu, D. G. Polymers 2020, 12 (1), 103. doi: 10.3390/polym12010103  doi: 10.3390/polym12010103

    51. [51]

      Wang, C.; Yan, K.; Lin, Y.; Hsieh, P. C. H. Macromolecules 2010, 43 (15), 6389. doi: 10.1021/ma100423x  doi: 10.1021/ma100423x

    52. [52]

      Xia, X.; Wang, X.; Zhou, H. M.; Niu, X.; Xue, L. G.; Zhang, X. W.; Wei, Q. F. Electrochim. Acta 2014, 121, 345. doi: 10.1016/j.electacta.2014.01.004  doi: 10.1016/j.electacta.2014.01.004

    53. [53]

      Chan, K. H. K.; Kotaki, M. J. Appl. Polym. Sci. 2009, 111 (1), 408. doi: 10.1002/app.28994  doi: 10.1002/app.28994

    54. [54]

      Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Mater. Today 2006, 9 (3), 40. doi: 10.1016/S1369-7021(06)71389-X  doi: 10.1016/S1369-7021(06)71389-X

    55. [55]

      Agarwal, S.; Greiner, A.; Wendorff, J. H. Prog. Polym. Sci. 2013, 38 (6), 963. doi: 10.1016/j.progpolymsci.2013.02.001  doi: 10.1016/j.progpolymsci.2013.02.001

    56. [56]

      Zhao, T. Y.; Liu, Z. Y.; Kazuya, N.; Shunsuke, N.; Taketoshi, M.; Zhao, Y.; Jiang, L.; Akira, F. J. Mater. Chem. 2010, 20 (24), 5095. doi: 10.1039/c0jm00484g  doi: 10.1039/c0jm00484g

    57. [57]

      Xi, T.; Xin, B. J. J. Ind. Text. 2016, 46 (8), 1581. doi: 10.1177/1528083715627165  doi: 10.1177/1528083715627165

    58. [58]

      Lee, B. -S.; Jeon, S. -Y.; Park, H.; Lee, G.; Yang, H. -S.; Yu, W. -R. Sci. Rep. 2014, 4, 6758. doi: 10.1038/srep06758  doi: 10.1038/srep06758

    59. [59]

      Rahimi, M.; Mokhtari, J. J. Ind. Text. 2016, 47 (6), 1134. doi: 10.1177/1528083716676816  doi: 10.1177/1528083716676816

    60. [60]

      Kaerkitcha, N.; Chuangchote, S.; Sagawa, T. Nanoscale Res. Lett. 2016, 11, 186. doi: 10.1186/s11671-016-1416-7  doi: 10.1186/s11671-016-1416-7

    61. [61]

      Huang, F.; Xu, Y.; Peng, B.; Su, Y.; Jiang, F.; Hsieh, Y. -L.; Wei, Q. ACS Sustain. Chem. Eng. 2015, 3 (5), 932. doi: 10.1021/acssuschemeng.5b00032  doi: 10.1021/acssuschemeng.5b00032

    62. [62]

      Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9  doi: 10.1038/s41560-023-01208-9

    63. [63]

      Wang, Y.; Feng, X.; Huang, W.; He, X.; Wang, L.; Ouyang, M. Adv. Energy Mater. 2023, 13 (15), 2203841. doi: 10.1002/aenm.202203841  doi: 10.1002/aenm.202203841

    64. [64]

      Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Molecules 2023, 28 (5), 2108. doi: 10.3390/molecules28052108  doi: 10.3390/molecules28052108

    65. [65]

      Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. Adv. Mater. 2023, 35 (16), 2210734. doi: 10.1002/adma.202210734  doi: 10.1002/adma.202210734

    66. [66]

      Nishi, Y. Chem. Rec. 2001, 1 (5), 406. doi: 10.1002/tcr.1024  doi: 10.1002/tcr.1024

    67. [67]

      Zhu, S.; Li, H.; Hu, Z.; Zhang, Q.; Zhao, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38 (6), 2103052.  doi: 10.3866/PKU.WHXB202103052

    68. [68]

      Bi, C. -X.; Hou, L. -P.; Li, Z.; Zhao, M.; Zhang, X. -Q.; Li, B. -Q.; Zhang, Q.; Huang, J. -Q. Energy Mater. Adv. 2023, 4, 0010. doi: 10.34133/energymatadv.0010  doi: 10.34133/energymatadv.0010

    69. [69]

      Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi: 10.1016/j.est.2023.106716  doi: 10.1016/j.est.2023.106716

    70. [70]

      Ezhyeh, Z. N.; Khodaei, M.; Torabi, F. Ceram. Int. 2023, 49 (5), 7105. doi: 10.1016/j.ceramint.2022.04.340  doi: 10.1016/j.ceramint.2022.04.340

    71. [71]

      Wang, Z. H.; Kang, K. Y.; Wu, J. X.; Hu, Q.; Harper, D. P.; Du, G. B.; Wang, S. Q.; Xu, K. M. J. Mater. Res. Technol. 2021, 11, 50. doi: 10.1016/j.jmrt.2021.01.009  doi: 10.1016/j.jmrt.2021.01.009

    72. [72]

      Liu, B. X.; Yu, Y. H.; Chang, J.; Yang, X. J.; Wu, D. Z.; Yang, X. P. Electrochem. Commun. 2011, 13 (6), 558. doi: 10.1016/j.elecom.2011.03.009  doi: 10.1016/j.elecom.2011.03.009

    73. [73]

      Lee, B. -S.; Son, S. -B.; Park, K. -M.; Seo, J. -H.; Choi, S. -H. L. I. -S.; Oh, K. -H.; Yu, W. -R. J. Power Sources 2012, 206, 267. doi: 10.1016/j.jpowsour.2012.01.120  doi: 10.1016/j.jpowsour.2012.01.120

    74. [74]

      Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; Aken, P. A. V.; Maier, J. Angew. Chem. Int. Ed. 2009, 48 (35), 6485. doi: 10.1002/anie.200901723  doi: 10.1002/anie.200901723

    75. [75]

      Li, X. Y.; Chen, Y. M.; Zhou, L. M.; Mai, Y. -W.; Huang, H. T. J. Mater. Chem. A 2014, 2 (11), 3875. doi: 10.1039/c3ta14646d  doi: 10.1039/c3ta14646d

    76. [76]

      Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Nanoscale 2013, 5 (13), 5973. doi: 10.1039/c3nr01128c  doi: 10.1039/c3nr01128c

    77. [77]

      Liu, Q.; Hu, Y.; Yu, X.; Qin, Y.; Meng, T.; Hu, X. Nano Res. Energy 2022, 1, e9120037. doi: 10.26599/nre.2022.9120037  doi: 10.26599/nre.2022.9120037

    78. [78]

      Lee, B. -S.; Son, S. -B.; Park, K. -M.; Yu, W. -R.; Oh, K. -H.; Lee, S. -H. J. Power Sources 2012, 199, 53. doi: 10.1016/j.jpowsour.2011.10.030  doi: 10.1016/j.jpowsour.2011.10.030

    79. [79]

      Lee, B. -S.; Son, S. -B.; Park, K. -M.; Lee, G.; Oh, K. H.; Lee, S. -H.; Yu, W. -R. ACS Appl. Mater. Interfaces 2012, 4 (12), 6701. doi: 10.1021/am301873d  doi: 10.1021/am301873d

    80. [80]

      Lee, B. S.; Yang, H. S.; Yu, W. R. Nanotechnology 2014, 25 (46), 465602. doi: 10.1088/0957-4484/25/46/465602  doi: 10.1088/0957-4484/25/46/465602

    81. [81]

      Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Maiab, Y. W.; Huang, H. T. Energy Environ. Sci. 2012, 5 (7), 7898. doi: 10.1039/c2ee22085g  doi: 10.1039/c2ee22085g

    82. [82]

      Liu, J. -C.; Ma, L. -L.; Li, S.; Hou, L. -L.; Qi, X. -R.; Wen, Y. -Q.; Hu, G. -P.; Wang, N.; Zhao, Y.; Zhao, X. -X. Rare Met. 2023, 42 (10), 3378. doi: 10.1007/s12598-023-02372-3  doi: 10.1007/s12598-023-02372-3

    83. [83]

      Yang, H. -S.; Lee, B. -S.; You, B. -C.; Sohn, H. -J.; Yu, W. -R. RSC Adv. 2014, 4 (88), 47389. doi: 10.1039/c4ra10031j  doi: 10.1039/c4ra10031j

    84. [84]

      Tong, F. L.; Guo, J. X.; Pan, Y. L.; Liu, H. B.; Lv, Y.; Wu, X. Y.; Jia, D. Z.; Zhao, X. J.; Hou, S. C. J. Colloid Interface Sci. 2021, 586, 371. doi: 10.1016/j.jcis.2020.10.100  doi: 10.1016/j.jcis.2020.10.100

    85. [85]

      Yu, H.; Chen, L.; Li, W. X.; Dirican, M.; Liu, Y.; Zhang, X. W. J. Alloy. Compd. 2021, 863, 158481. doi: 10.1016/j.jallcom.2020.158481  doi: 10.1016/j.jallcom.2020.158481

    86. [86]

      Zhang, C.; Yan, J.; Song, R.; Chen, L.; Liu, Y. J. Mater. Sci. 2021, 56 (36), 19996. doi: 10.1007/s10853-021-06532-7  doi: 10.1007/s10853-021-06532-7

    87. [87]

      Hwang, T. H.; Lee, Y. M.; Kong, B. -S.; Seo, J. -S.; Choi, J. W. Nano Lett. 2012, 12 (2), 802. doi: 10.1021/nl203817r  doi: 10.1021/nl203817r

    88. [88]

      Wang, J.; Yu, Y.; Gu, L.; Wang, C.; Tang, K.; Maier, J. Nanoscale 2013, 5 (7), 2647. doi: 10.1039/c3nr00322a  doi: 10.1039/c3nr00322a

    89. [89]

      Lee, B. -S.; Yang, H. -S.; Jung, H.; Mah, S. K.; Kwon, S.; Park, J. -H.; Lee, K. H.; Yu, W. -R.; Doo, S. -G. Eur. Polym. J. 2015, 70, 392. doi: 10.1016/j.eurpolymj.2015.07.041  doi: 10.1016/j.eurpolymj.2015.07.041

    90. [90]

      Zeng, L.; Xi, H. X.; Liu, X. A.; Zhang, C. H. Nanomaterials 2021, 11 (12), 3454. doi: 10.3390/nano11123454  doi: 10.3390/nano11123454

    91. [91]

      Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y. -B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. Carbon 2016, 98, 582. doi: 10.1016/j.carbon.2015.11.048  doi: 10.1016/j.carbon.2015.11.048

    92. [92]

      Wang, F.; Zhang, S. Z.; Zhang, J. W.; Han, M. S.; Pan, G. X.; Chen, M. H. e-Polymers 2020, 20 (1), 491. doi: 10.1515/epoly-2020-0023  doi: 10.1515/epoly-2020-0023

    93. [93]

      Lee, B. -S.; Son, S. -B.; Seo, J. -H.; Park, K. -M.; Lee, G.; Lee, S. -H.; Oh, K. H.; Ahn, J. -P.; Yu, W. -R. Nanoscale 2013, 5 (11), 4790. doi: 10.1039/c3nr00982c  doi: 10.1039/c3nr00982c

    94. [94]

      Lee, B. -S.; Yang, H. -S.; Jung, H.; Jeon, S. -Y.; Jung, C.; Kim, S. -W.; Bae, J.; Choong, C. -L.; Im, J.; Chung, U. -I.; et al. Nanoscale 2014, 6 (11), 5989. doi: 10.1039/c4nr00318g  doi: 10.1039/c4nr00318g

    95. [95]

      Jiang, R.; Yuan, H.; Wei, X.; Wang, H.; Shin, H. -J.; Lan, J.; Yu, Y.; Yang, X. Mater. Chem. Front. 2021, 5 (23), 8218. doi: 10.1039/d1qm00823d  doi: 10.1039/d1qm00823d

    96. [96]

      Li, C.; Yuan, C.; Zhu, J.; Ni, X.; Li, K.; Wang, L.; Qi, Y.; Ju, A. Colloids Surf. A 2022, 655, 129721. doi: 10.1016/j.colsurfa.2022.129721  doi: 10.1016/j.colsurfa.2022.129721

    97. [97]

      Wang, Y.; Yuan, C.; Li, K.; Li, D.; Ju, A. ACS Appl. Energy Mater. 2022, 5 (9), 11462. doi: 10.1021/acsaem.2c01898  doi: 10.1021/acsaem.2c01898

    98. [98]

      Li, Y.; Xu, G.; Yao, Y.; Xue, L.; Yanilmaz, M.; Lee, H.; Zhang, X. Solid State Ionics 2014, 258, 67. doi: 10.1016/j.ssi.2014.02.003  doi: 10.1016/j.ssi.2014.02.003

    99. [99]

      Zhang, H. R.; Qin, X. Y.; Wu, J. X.; He, Y. -B.; Du, H. D.; Li, B. H.; Kang, F. Y. J. Mater. Chem. A 2015, 3 (13), 7112. doi: 10.1039/c4ta06044j  doi: 10.1039/c4ta06044j

    100. [100]

      Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanoscale 2015, 7 (14), 6126. doi: 10.1039/c5nr00224a  doi: 10.1039/c5nr00224a

    101. [101]

      Liu, X.; Jiang, Y. H.; Li, K. F.; Xu, F.; Zhang, P.; Ding, Y. H. Mater. Res. Bull. 2019, 109, 41. doi: 10.1016/j.materresbull.2018.09.023  doi: 10.1016/j.materresbull.2018.09.023

    102. [102]

      Park, H.; Song, T.; Han, H.; Devadoss, A.; Yuh, J.; Choi, C.; Paik, U. Electrochem. Commun. 2012, 22, 81. doi: 10.1016/j.elecom.2012.05.034  doi: 10.1016/j.elecom.2012.05.034

    103. [103]

      Xie, S. M.; Yao, T. H.; Wang, J. K.; Alsulami, H.; Wang, H. K. ChemistrySelect 2020, 5 (11), 3225. doi: 10.1002/slct.202000288  doi: 10.1002/slct.202000288

    104. [104]

      Li, M.; Zhou, D.; Song, W. L.; Li, X. G.; Fan, L. Z. J. Mater. Chem. A 2015, 3 (39), 19907. doi: 10.1039/c5ta05400a  doi: 10.1039/c5ta05400a

    105. [105]

      Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Electrochim. Acta 2015, 182, 507. doi: 10.1016/j.electacta.2015.09.120  doi: 10.1016/j.electacta.2015.09.120

    106. [106]

      Shilpa; Basavaraja, B. M.; Majumder, S. B.; Sharma, A. J. Mater. Chem. A 2015, 3 (10), 5344. doi: 10.1039/c4ta07220k  doi: 10.1039/c4ta07220k

    107. [107]

      Zhang, M.; Huang, X. X.; Xin, H. L.; Li, D. Z.; Zhao, Y.; Shi, L. D.; Lin, Y. M.; Yu, J. L.; Yu, Z. Q.; Zhu, C. Z.; et al. Appl. Surf. Sci. 2019, 473, 352. doi: 10.1016/j.apsusc.2018.12.098  doi: 10.1016/j.apsusc.2018.12.098

    108. [108]

      Huang, Z.; Yu, K.; Wang, D.; Zhang, Y.; Li, L.; Liang, C. Colloids Surf. A 2022, 653, 129953. doi: 10.1016/j.colsurfa.2022.129953  doi: 10.1016/j.colsurfa.2022.129953

    109. [109]

      Feng, D.; Chen, Q.; Li, Z.; Zeng, T. J. Alloy. Compd. 2023, 960, 170851. doi: 10.1016/j.jallcom.2023.170851  doi: 10.1016/j.jallcom.2023.170851

    110. [110]

      Zeng, T. B.; Feng, D.; Liu, Q.; Zhou, R. Y. ACS Appl. Mater. Interfaces 2021, 13 (28), 32978. doi: 10.1021/acsami.1c07387  doi: 10.1021/acsami.1c07387

    111. [111]

      Hu, H. B.; Yang, Y. X.; Jiang, X.; Wang, J. X.; Cao, D. W.; He, L.; Chen, W.; Song, Y. F. Chem. -Eur. J. 2021, 27 (53), 13367. doi: 10.1002/chem.202101638  doi: 10.1002/chem.202101638

    112. [112]

      Zhou, D.; Song, W. L.; Fan, L. Z. ACS Appl. Mater. Interfaces 2015, 7 (38), 21472. doi: 10.1021/acsami.5b06512  doi: 10.1021/acsami.5b06512

    113. [113]

      Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368  doi: 10.1038/nmat1368

    114. [114]

      Liu, S.; Pan, G. L.; Yan, N. F.; Gao, X. P. Energy Environ. Sci. 2010, 3 (11), 1732. doi: 10.1039/c0ee00170h  doi: 10.1039/c0ee00170h

    115. [115]

      Yuan, T.; Zhao, B. T.; Cai, R.; Zhou, Y. K.; Shao, Z. P. J. Mater. Chem. 2011, 21 (38), 15041. doi: 10.1039/c1jm11483b  doi: 10.1039/c1jm11483b

    116. [116]

      Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. Electrochem. Energy Rev. 2022, 5 (4), 14. doi: 10.1007/s41918-022-00131-z  doi: 10.1007/s41918-022-00131-z

    117. [117]

      Lin, W. X.; Wang, F.; Wang, H. B.; Li, H.; Fan, Y.; Chan, D.; Chen, S. W.; Tang, Y. X.; Zhang, Y. Y. ChemSusChem 2022, 15 (24), e202201464 doi: 10.1002/cssc.202201464  doi: 10.1002/cssc.202201464

    118. [118]

      Kim, A.; Oh, S. H.; Adhikari, A.; Sathe, B. R.; Kumar, S.; Patel, R. J. Mater. Chem. A 2023, 11 (15), 7833. doi: 10.1039/d2ta09266b  doi: 10.1039/d2ta09266b

    119. [119]

      Babiker, D. M. D.; Usha, Z. R.; Wan, C.; Hassaan, M. M. E.; Chen, X.; Li, L. J. Power Sources 2023, 564, 232853. doi: 10.1016/j.jpowsour.2023.232853  doi: 10.1016/j.jpowsour.2023.232853

    120. [120]

      Lagadec, M. F.; Zahn, R.; Wood, V. Nat. Energy 2018, 4 (1), 16. doi: 10.1038/s41560-018-0295-9  doi: 10.1038/s41560-018-0295-9

    121. [121]

      Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104 (10), 4419. doi: 10.1021/cr020738u  doi: 10.1021/cr020738u

    122. [122]

      Li, Y.; Li, P.; Lan, X.; Jiang, Y.; Hu, X. Mater. Today Phys. 2023, 38, 101256. doi: 10.1016/j.mtphys.2023.101256  doi: 10.1016/j.mtphys.2023.101256

    123. [123]

      Li, P.; Wang, Y.; Liu, Z.; Hu, X. Mater. Chem. Front. 2023. doi: 10.1039/d3qm00709j  doi: 10.1039/d3qm00709j

    124. [124]

      Liu, Z.; Peng, Y.; Meng, T.; Yu, L.; Wang, S.; Hu, X. Energy Storage Mater. 2022, 47, 445. doi: 10.1016/j.ensm.2022.02.020  doi: 10.1016/j.ensm.2022.02.020

    125. [125]

      Zhou, X. H.; Yue, L. P.; Zhang, J. J.; Kong, Q. S.; Liu, Z. H.; Yao, J. H.; Cui, G. L. J. Electrochem. Soc. 2013, 160 (9), A1341. doi: 10.1149/2.003309jes  doi: 10.1149/2.003309jes

    126. [126]

      Miao, Y.; Zhu, G.; Hou, H.; Xia, Y.; Liu, T. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027  doi: 10.1016/j.jpowsour.2012.10.027

    127. [127]

      Sun, G. H.; Kong, L. S.; Liu, B. X.; Niu, H. Q.; Zhang, M. Y.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 582, 132. doi: 10.1016/j.memsci.2019.04.005  doi: 10.1016/j.memsci.2019.04.005

    128. [128]

      Dong, G. Q.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Energy Technol. 2019, 7 (7), 1801072. doi: 10.1002/ente.201801072  doi: 10.1002/ente.201801072

    129. [129]

      Kim, Y.; Lee, W. -Y.; Kim, K. J.; Yu, J. -S.; Kim, Y. -J. J. Power Sources 2016, 305, 225. doi: 10.1016/j.jpowsour.2015.11.106  doi: 10.1016/j.jpowsour.2015.11.106

    130. [130]

      Ma, X. J.; Kolla, P.; Yang, R. D.; Wang, Z.; Zhao, Y.; Smirnova, A. L.; Fong, H. Electrochim. Acta 2017, 236, 417. doi: 10.1016/j.electacta.2017.03.205  doi: 10.1016/j.electacta.2017.03.205

    131. [131]

      Kong, L. S.; Liu, B. X.; Ding, J. L.; Yan, X. N.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2018, 549, 244. doi: 10.1016/j.memsci.2017.12.015  doi: 10.1016/j.memsci.2017.12.015

    132. [132]

      Zhao, H. J.; Kang, W. M.; Deng, N. P.; Liu, M.; Cheng, B. W. Chem. Eng. J. 2020, 384, 123312. doi: 10.1016/j.cej.2019.123312  doi: 10.1016/j.cej.2019.123312

    133. [133]

      Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2020, 390, 124571. doi: 10.1016/j.cej.2020.124571  doi: 10.1016/j.cej.2020.124571

    134. [134]

      Ma, Y.; Hu, J. P.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. J. Power Sources 2020, 451, 227759. doi: 10.1016/j.jpowsour.2020.227759  doi: 10.1016/j.jpowsour.2020.227759

    135. [135]

      Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrochim. Acta 2004, 50 (1), 69. doi: 10.1016/j.electacta.2004.07.014  doi: 10.1016/j.electacta.2004.07.014

    136. [136]

      Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y. -R. Adv. Mater. 2003, 15 (23), 2027. doi: 10.1002/adma.200304617  doi: 10.1002/adma.200304617

    137. [137]

      Liu, Z. H.; Jiang, W.; Kong, Q. S.; Zhang, C. J.; Han, P. X.; Wang, X. J.; Yao, J. H.; Cui, G. L. Macromol. Mater. Eng. 2013, 298 (7), 806. doi: 10.1002/mame.201200158  doi: 10.1002/mame.201200158

    138. [138]

      Hu, M. F.; Ma, Q. Y.; Yuan, Y.; Pan, Y. K.; Chen, M. Q.; Zhang, Y. Y.; Long, D. H. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258  doi: 10.1016/j.cej.2020.124258

    139. [139]

      Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3 (1), e1601978. doi: 10.1126/sciadv.1601978  doi: 10.1126/sciadv.1601978

    140. [140]

      Yusuf, A.; Avvaru, V. S.; Dirican, M.; Changchun, S.; Wang, D. -Y. Appl. Mater. Today 2020, 20, 100675. doi: 10.1016/j.apmt.2020.100675  doi: 10.1016/j.apmt.2020.100675

    141. [141]

      Yang, K. C.; Liu, Z. L.; Chai, J. C.; Zheng, Y.; Fu, X. N.; Shen, Y. H.; Chen, J.; Liu, Z. H.; Shi, S. W. Mater. Chem. Phys. 2022, 282, 125975. doi: 10.1016/j.matchemphys.2022.125975  doi: 10.1016/j.matchemphys.2022.125975

    142. [142]

      Liang, Z.; Zhao, Y.; Li, Y. X. Energies 2019, 12 (17), 3391. doi: 10.3390/en12173391  doi: 10.3390/en12173391

    143. [143]

      Yang, S. T.; Ma, W. H.; Wang, A. L.; Gu, J. F.; Yin, Y. H. RSC Adv. 2018, 8 (41), 23390. doi: 10.1039/c8ra02035c  doi: 10.1039/c8ra02035c

    144. [144]

      Wang, L. Y.; Deng, N. P.; Ju, J. G.; Wang, G.; Cheng, B. W.; Kang, W. M. Electrochim. Acta 2019, 300, 263. doi: 10.1016/j.electacta.2019.01.115  doi: 10.1016/j.electacta.2019.01.115

    145. [145]

      Gao, X.; Sheng, L.; Yang, L.; Xie, X.; Li, D.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G.; et al. J. Colloid Interface Sci. 2023, 636, 317. doi: 10.1016/j.jcis.2023.01.033  doi: 10.1016/j.jcis.2023.01.033

    146. [146]

      Chen, Y.; Qiu, L. L.; Ma, X. Y.; Chu, Z. D.; Zhuang, Z. S.; Dong, L. K.; Du, P. F.; Xiong, J. Solid State Ionics 2020, 347, 115253. doi: 10.1016/j.ssi.2020.115253  doi: 10.1016/j.ssi.2020.115253

    147. [147]

      Gong, W. Z.; Wei, S. Y.; Ruan, S. L.; Shen, C. Y. Mater. Lett. 2019, 244, 126. doi: 10.1016/j.matlet.2019.02.009  doi: 10.1016/j.matlet.2019.02.009

    148. [148]

      Zhao, H. J.; Deng, N. P.; Wang, G.; Ren, H. R.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2021, 404, 126542. doi: 10.1016/j.cej.2020.126542  doi: 10.1016/j.cej.2020.126542

    149. [149]

      Li, H.; Feng, T.; Liang, Y.; Wu, M. Chin. Chem. Lett. 2023, 34 (12), 108350. doi: 10.1016/j.cclet.2023.108350  doi: 10.1016/j.cclet.2023.108350

    150. [150]

      Jiang, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Mater. Chem. A 2017, 5 (44), 23238. doi: 10.1039/c7ta08063h  doi: 10.1039/c7ta08063h

    151. [151]

      Wei, Z. Z.; Gu, J. Y.; Zhang, F. R.; Pan, Z. J.; Zhao, Y. ACS Appl. Polym. Mater. 2020, 2 (5), 1989. doi: 10.1021/acsapm.0c00164  doi: 10.1021/acsapm.0c00164

    152. [152]

      Shao, F.; Kang, G.; Chen, H.; Wang, X.; Shao, Z.; Li, W.; Zheng, G. Preparation of Flame-retardant Lithium-ion Battery Separator by Coaxial Electrospinning. In IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China; 2021. doi: 10.1109/nems51815.2021.9451445

    153. [153]

      Zheng, G.; Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Liu, Y. Mater. Chem. Phys. 2023, 301, 127647. doi: 10.1016/j.matchemphys.2023.127647  doi: 10.1016/j.matchemphys.2023.127647

    154. [154]

      Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Guo, S.; Liu, Y.; Zheng, G. ACS Appl. Mater. Interfaces 2023, 15 (37), 44259. doi: 10.1021/acsami.3c08757  doi: 10.1021/acsami.3c08757

    155. [155]

      Liu, Z. F.; Jiang, Y. J.; Hu, Q. M.; Guo, S. T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. L. Energy Environ. Mater. 2021, 4 (3), 336. doi: 10.1002/eem2.12129  doi: 10.1002/eem2.12129

    156. [156]

      Gong, W.; Wang, X.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. High Perform. Polym. 2018, 31 (8), 948. doi: 10.1177/0954008318814154  doi: 10.1177/0954008318814154

    157. [157]

      Liao, H. Y.; Zhang, H. Y.; Qin, G.; Hong, H. Q.; Li, Z. H.; Lin, Y. X.; Li, L. Q. Macromol. Mater. Eng. 2017, 302 (11), 1700241. doi: 10.1002/mame.201700241  doi: 10.1002/mame.201700241

    158. [158]

      Zhai, Y.; Wang, N.; Mao, X.; Si, Y.; Yu, J.; Al-Deyab, S. S.; El-Newehy, M.; Ding, B. J. Mater. Chem. A 2014, 2 (35), 14511. doi: 10.1039/c4ta02151g  doi: 10.1039/c4ta02151g

    159. [159]

      Jiang, Y. H.; Ding, Y. H.; Zhang, P.; Li, F.; Yang, Z. M. J. Membr. Sci. 2018, 565, 33. doi: 10.1016/j.memsci.2018.08.008  doi: 10.1016/j.memsci.2018.08.008

    160. [160]

      Liu, Z. F.; Hu, Q. M.; Guo, S. T.; Yu, L.; Hu, X. L. Adv. Mater. 2021, 33 (15), e2008088. doi: 10.1002/adma.202008088  doi: 10.1002/adma.202008088

    161. [161]

      Li, P.; Liu, Z.; Peng, Y.; Yang, S.; Meng, T.; Hu, Y.; Jiang, Y.; Sun, H.; Li, Q.; Hu, X. Nano Res. 2023, doi: 10.1007/s12274-023-6179-8  doi: 10.1007/s12274-023-6179-8

    162. [162]

      Xi, Y. Y.; Zhang, P.; Zhang, H. N.; Wan, Z. H.; Tu, W. M.; Tang, H. L. Int. J. Electrochem. Sci. 2017, 12 (6), 5421. doi: 10.20964/2017.06.69  doi: 10.20964/2017.06.69

    163. [163]

      Dong, G. Q.; Liu, B. X.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 577, 249. doi: 10.1016/j.memsci.2019.02.003  doi: 10.1016/j.memsci.2019.02.003

    164. [164]

      Kong, L. S.; Wang, Y.; Yu, H. S.; Liu, B. X.; Qi, S. L.; Wu, D. Z.; Zhong, W. -H.; Tian, G. F.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11 (3), 2978. doi: 10.1021/acsami.8b17521  doi: 10.1021/acsami.8b17521

    165. [165]

      Arifeen, W. U.; Choi, J.; Yoo, K.; Shim, J.; Ko, T. J. Chem. Eng. J. 2021, 417, 128075. doi: 10.1016/j.cej.2020.128075  doi: 10.1016/j.cej.2020.128075

    166. [166]

      Huang, F. L.; Liu, W. T.; Li, P. Y.; Ning, J. X.; Wei, Q. F. Materials 2016, 9 (2), 75. doi: 10.3390/ma9020075  doi: 10.3390/ma9020075

    167. [167]

      Chong, Y. L.; Zhao, D. D.; Wang, B.; Feng, L.; Li, S. J.; Shao, L. X.; Tong, X.; Du, X.; Cheng, H.; Zhuang, J. L. Chem. Rec. 2022, 22 (10), e202200142. doi: 10.1002/tcr.202200142  doi: 10.1002/tcr.202200142

    168. [168]

      Cong, C.; Ma, H. Small 2023, 19 (15), 2207547. doi: 10.1002/smll.202207547  doi: 10.1002/smll.202207547

    169. [169]

      Fu, Q. S.; Zhang, W.; Muhammad, I. P.; Chen, X. D.; Zeng, Y.; Wang, B. T.; Zhang, S. Y. Microporous Mesoporous Mater. 2021, 311, 110724. doi: 10.1016/j.micromeso.2020.110724  doi: 10.1016/j.micromeso.2020.110724

    170. [170]

      Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Adv. Mater. 2019, 31 (21), 1808338. doi: 10.1002/adma.201808338  doi: 10.1002/adma.201808338

    171. [171]

      Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mater. Today Chem. 2023, 30, 101552. doi: 10.1016/j.mtchem.2023.101552  doi: 10.1016/j.mtchem.2023.101552

    172. [172]

      Nagappan, S.; Duraivel, M.; Elayappan, V.; Muthuchamy, N.; Mohan, B.; Dhakshinamoorthy, A.; Prabakar, K.; Lee, J. -M.; Park, K. H. Energy Technol. 2023, 11 (3), 2201200. doi: 10.1002/ente.202201200  doi: 10.1002/ente.202201200

    173. [173]

      Akhmetov, N.; Manakhov, A.; Al-Qasim, A. S. Electronics 2023, 12 (5), 1152. doi: 10.3390/electronics12051152  doi: 10.3390/electronics12051152

    174. [174]

      Mori, R. J. Solid State Electrochem. 2023, 27 (4), 813. doi: 10.1007/s10008-023-05387-z  doi: 10.1007/s10008-023-05387-z

    175. [175]

      Kalluri, S.; Seng, K. H.; Guo, Z.; Liu, H.; Dou, S. RSC Adv. 2013, 3 (48), 25576. doi: 10.1039/c3ra45414b  doi: 10.1039/c3ra45414b

    176. [176]

      Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Chem. Commun. 2013, 49 (59), 6677. doi: 10.1039/c3cc43874k  doi: 10.1039/c3cc43874k

    177. [177]

      Zhan, S. H.; Li, Y.; Yu, H. B. J. Dispersion Sci. Technol. 2008, 29 (6), 823. doi: 10.1080/01932690701781469  doi: 10.1080/01932690701781469

    178. [178]

      Gu, Y. X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. J. Mater. Chem. 2007, 17 (18), 1769. doi: 10.1039/b614205b  doi: 10.1039/b614205b

    179. [179]

      Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci. : Mater. Electron. 2013, 24 (12), 4718. doi: 10.1007/s10854-013-1465-y  doi: 10.1007/s10854-013-1465-y

    180. [180]

      Wei, B. B.; Wu, Y. B.; Yu, F. Y.; Zhou, Y. N. Int. J. Miner. Metall. Mater. 2016, 23 (4), 474. doi: 10.1007/s12613-016-1258-4  doi: 10.1007/s12613-016-1258-4

    181. [181]

      Qu, Z.; Zhang, X.; Xiao, R.; Sun, Z.; Li, F. Acta Phys. -Chim. Sin. 2023, 39 (8), 2301019.  doi: 10.3866/PKU.WHXB202301019

    182. [182]

      Wang, J.; Cao, G.; Duan, R.; Li, X.; Li, X. Acta Phys. -Chim. Sin. 2023, 39 (5), 2212005.  doi: 10.3866/PKU.WHXB202212005

    183. [183]

      Fan, X.; Liu, Y.; Tan, J.; Yang, S.; Zhang, X.; Liu, B.; Cheng, H.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10 (14), 7653. doi: 10.1039/d1ta10444f  doi: 10.1039/d1ta10444f

    184. [184]

      Zhang, X.; Zhu, L.; Gao, Z.; Zhang, L.; Zhang, Z.; Zhang, L.; Wang, Y. Mater. Today Commun. 2021, 28, 102666. doi: 10.1016/j.mtcomm.2021.102666  doi: 10.1016/j.mtcomm.2021.102666

    185. [185]

      Wei, C.; Han, Y.; Liu, H.; Gan, R.; Li, Q.; Wang, Y.; Hu, P.; Ma, C.; Shi, J. Carbon 2021, 184, 1. doi: 10.1016/j.carbon.2021.08.004  doi: 10.1016/j.carbon.2021.08.004

    186. [186]

      Wei, C.; Liu, H.; Gan, R.; Ma, W.; Wang, Y.; Han, Y.; Song, Y.; Ma, C.; Shi, J. Colloids Surf. A 2022, 648, 129179. doi: 10.1016/j.colsurfa.2022.129179  doi: 10.1016/j.colsurfa.2022.129179

    187. [187]

      Huang, X. Y.; Liu, J.; Huang, Z. X.; Ke, X.; Liu, L. Y.; Wang, N. G.; Liu, J. P.; Guo, Z. P.; Yang, Y.; Shi, Z. C. Electrochim. Acta 2020, 333, 135493. doi: 10.1016/j.electacta.2019.135493  doi: 10.1016/j.electacta.2019.135493

    188. [188]

      Ding, P.; Yan, T.; Li, K.; Wu, Q.; Zhu, X.; Chen, H.; Ju, A. J. Alloy. Compd. 2022, 928, 167056. doi: 10.1016/j.jallcom.2022.167056  doi: 10.1016/j.jallcom.2022.167056

    189. [189]

      Wang, X. L.; Chen, J.; Jin, B.; Jiang, Q.; Jin, E. M.; Jeong, S. M. J. Electroanal. Chem. 2020, 878, 114564. doi: 10.1016/j.jelechem.2020.114564  doi: 10.1016/j.jelechem.2020.114564

    190. [190]

      Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. J. Alloy. Compd. 2014, 608, 220. doi: 10.1016/j.jallcom.2014.04.073  doi: 10.1016/j.jallcom.2014.04.073

    191. [191]

      Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. J. Energy Chem. 2020, 48, 334. doi: 10.1016/j.jechem.2020.02.033  doi: 10.1016/j.jechem.2020.02.033

    192. [192]

      Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2020, 12 (19), 21586. doi: 10.1021/acsami.0c02291  doi: 10.1021/acsami.0c02291

    193. [193]

      Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q.; et al. Mater. Today Energy 2021, 20, 100694. doi: 10.1016/j.mtener.2021.100694  doi: 10.1016/j.mtener.2021.100694

    194. [194]

      Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Adv. Sci. 2023, 10 (10), 2201718. doi: 10.1002/advs.202201718  doi: 10.1002/advs.202201718

    195. [195]

      Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41 (9), 1119. doi: 10.1002/cjoc.202200588  doi: 10.1002/cjoc.202200588

    196. [196]

      Yang, K.; Zhao, L.; An, X.; Chen, L.; Ma, J.; Mi, J.; He, Y. B. Angew. Chem., Int. Ed. 2023, 62 (24), e202302586. doi: 10.1002/anie.202302586  doi: 10.1002/anie.202302586

    197. [197]

      Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. J. Energy Chem. 2019, 37, 126. doi: 10.1016/j.jechem.2018.12.013  doi: 10.1016/j.jechem.2018.12.013

    198. [198]

      Ren, W. H.; Ding, C. F.; Fu, X. W.; Huang, Y. Energy Storage Mater. 2021, 34, 515. doi: 10.1016/j.ensm.2020.10.018  doi: 10.1016/j.ensm.2020.10.018

    199. [199]

      Zhou, L.; Cao, Q.; Jing, B.; Wang, X.; Tang, X.; Wu, N. J. Power Sources 2014, 263, 118. doi: 10.1016/j.jpowsour.2014.03.140  doi: 10.1016/j.jpowsour.2014.03.140

    200. [200]

      Zhao, H. J.; Deng, N. P.; Kang, W. M.; Li, Z. J.; Wang, G.; Cheng, B. W. Energy Storage Mater. 2020, 26, 334. doi: 10.1016/j.ensm.2019.11.005  doi: 10.1016/j.ensm.2019.11.005

    201. [201]

      Bi, H. T.; Sui, G.; Yang, X. P. J. Power Sources 2014, 267, 309. doi: 10.1016/j.jpowsour.2014.05.030  doi: 10.1016/j.jpowsour.2014.05.030

    202. [202]

      Zhang, Z. Z.; Sui, G.; Bi, H. T.; Yang, X. P. J. Membr. Sci. 2015, 492, 77. doi: 10.1016/j.memsci.2015.05.040  doi: 10.1016/j.memsci.2015.05.040

    203. [203]

      Barbosa, J. C.; Correia, D. M.; Gonçalves, R.; Bermudez, V. d. Z.; Silva, M. M.; Lanceros-Mendez, S.; Costa, C. M. J. Colloid Interface Sci. 2020, 582 (Pt A), 376. doi: 10.1016/j.jcis.2020.08.046  doi: 10.1016/j.jcis.2020.08.046

    204. [204]

      Song, X.; Qi, W.; Zhang, H.; Wang, G. Solid State Ionics 2020, 347, 115266. doi: 10.1016/j.ssi.2020.115266  doi: 10.1016/j.ssi.2020.115266

    205. [205]

      Liu, X.; Ren, Y.; Zhang, L.; Zhang, S. Front. Chem. 2019, 7, 421. doi: 10.3389/fchem.2019.00421  doi: 10.3389/fchem.2019.00421

    206. [206]

      Luo, X. Y.; Liao, Y. H.; Xie, H. L.; Zhu, Y. M.; Huang, Q. M.; Li, W. S. Electrochim. Acta 2016, 220, 47. doi: 10.1016/j.electacta.2016.09.147  doi: 10.1016/j.electacta.2016.09.147

    207. [207]

      Jia, H.; Onishi, H.; von Aspern, N.; Rodehorst, U.; Rudolf, K.; Billmann, B.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. J. Power Sources 2018, 397, 343. doi: 10.1016/j.jpowsour.2018.07.039  doi: 10.1016/j.jpowsour.2018.07.039

    208. [208]

      Huang, J. H.; Liao, Y. H.; Li, G. J.; Xu, N.; Xu, M. Q.; Li, W. S. Electrochim. Acta 2019, 299, 45. doi: 10.1016/j.electacta.2018.12.168  doi: 10.1016/j.electacta.2018.12.168

    209. [209]

      Wang, L.; Yan, J. W.; Zhang, R.; Li, Y. F.; Shen, W. Z.; Zhang, J. L.; Zhong, M.; Guo, S. W. ACS Appl. Mater. Interfaces 2021, 13 (8), 9875. doi: 10.1021/acsami.0c20854  doi: 10.1021/acsami.0c20854

    210. [210]

      Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14 (7), 705. doi: 10.1038/s41565-019-0465-3  doi: 10.1038/s41565-019-0465-3

    211. [211]

      Baskoro, F.; Wong, H. Q.; Yen, H. -J. ACS Appl. Energy Mater. 2019, 2 (6), 3937. doi: 10.1021/acsaem.9b00295  doi: 10.1021/acsaem.9b00295

    212. [212]

      Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Adv. Eng. Mater. 2019, 21 (7), 1900055. doi: 10.1002/adem.201900055  doi: 10.1002/adem.201900055

    213. [213]

      Guo, Z. M.; Pang, Y. P.; Xia, S. X.; Xu, F.; Yang, J. H.; Sun, L. X.; Zheng, S. Y. Adv. Sci. 2021, 8 (16), 2100899. doi: 10.1002/advs.202100899  doi: 10.1002/advs.202100899

    214. [214]

      Huang, H. H.; He, C. L.; Wang, H. S.; Mo, X. M. J. Biomed. Mater. Res. Part A 2009, 90 (4), 1243. doi: 10.1002/jbm.a.32543  doi: 10.1002/jbm.a.32543

    215. [215]

      Bhattarai, R. S.; Bachu, R. D.; Boddu, S. H. S.; Bhaduri, S. Pharmaceutics 2018, 11 (1), 5. doi: 10.3390/pharmaceutics11010005  doi: 10.3390/pharmaceutics11010005

    216. [216]

      Ghafoor, B.; Aleem, A.; Ali, M. N.; Mir, M. J. Drug Delivery Sci. Technol. 2018, 48, 82. doi: 10.1016/j.jddst.2018.09.005  doi: 10.1016/j.jddst.2018.09.005

    217. [217]

      Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polym. Adv. Technol. 2017, 28 (5), 570. doi: 10.1002/pat.3794  doi: 10.1002/pat.3794

    218. [218]

      He, T. S.; Su, Q. Y.; Yildiz, Z.; Cai, K. D.; Wang, Y. J. Electrochim. Acta 2016, 222, 1120. doi: 10.1016/j.electacta.2016.11.083  doi: 10.1016/j.electacta.2016.11.083

    219. [219]

      Zhu, Q.; Wang, M.; Nan, B.; Shi, H. H.; Zhang, X. M.; Deng, Y. H.; Wang, L. P.; Chen, Q. Q.; Lu, Z. G. J. Power Sources 2017, 362, 147. doi: 10.1016/j.jpowsour.2017.07.004  doi: 10.1016/j.jpowsour.2017.07.004

    220. [220]

      Yadav, S.; Kok, M. D. R.; Forner-Cuenca, A.; Tenny, K. M.; Chiang, Y. -M.; Brushett, F. R.; Jervis, R.; Shearing, P. R.; Brett, D.; Roberts, E. P. L.; et al. J. Energy Storage 2021, 33, 102079. doi: 10.1016/j.est.2020.102079  doi: 10.1016/j.est.2020.102079

    221. [221]

      Li, D. M.; Li, H. T.; Zheng, S. M.; Gao, N.; Li, S.; Liu, J.; Hou, L.; Liu, J.; Miao, B.; Bai, J.; et al. J. Colloid Interface Sci. 2021, 607 (Pt 1), 655. doi: 10.1016/j.jcis.2021.08.171  doi: 10.1016/j.jcis.2021.08.171

    222. [222]

      Lang, L. M.; Wu, D.; Xu, Z. Chem. -Eur. J. 2012, 18 (34), 10661. doi: 10.1002/chem.201200378  doi: 10.1002/chem.201200378

    223. [223]

      Vempati, S.; Ranjith, K. S.; Topuz, F.; Biyikli, N.; Uyar, T. ACS Appl. Nano Mater. 2020, 3 (7), 6186. doi: 10.1021/acsanm.0c01120  doi: 10.1021/acsanm.0c01120

    224. [224]

      Wang, Z.; Ni, J.; Li, L.; Lu, J. Cell Rep. Phys. Sci. 2020, 1 (6), 100078. doi: 10.1016/j.xcrp.2020.100078  doi: 10.1016/j.xcrp.2020.100078

    225. [225]

      Yu, M.; Dong, R. -H.; Yan, X.; Yu, G. -F.; You, M. -H.; Ning, X.; Long, Y. -Z. Macromol. Mater. Eng. 2017, 302 (7), 1700002. doi: 10.1002/mame.201700002  doi: 10.1002/mame.201700002

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    3. [3]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    10. [10]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(6)
  • Abstract views(682)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return