Citation:
Qi Li, Pingan Li, Zetong Liu, Jiahui Zhang, Hao Zhang, Weilai Yu, Xianluo Hu. Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 231103.
doi:
10.3866/PKU.WHXB202311030
-
Highly coveted for their exceptional energy density, extended cycle life, impressive rate capability, and thermal stability, lithium-ion batteries (LIBs) stand out as the optimal power sources for real-world applications, ranging from portable electronics to electric vehicles (EVs). In this context, coaxial electrospinning has emerged as a compelling technique for fabricating nanofiber materials endowed with properties ideally suited for LIBs. These properties include a high specific surface area, exceptional porosity, a substantial aspect ratio, and facile surface modification. This comprehensive review encapsulates the fundamental principles, practical applications, and recent strides in coaxial electrospinning, particularly in the preparation of crucial LIB components such as cathodes, anodes, and separators. The intricate relationships between the micro/nanostructures of coaxially electrospun fiber materials and their resultant battery performances are meticulously examined. Additionally, the review outlines future directions and underscores the challenges inherent in advancing the field of coaxial electrospinning for LIBs.
-
-
-
[1]
(1) Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X. Y.; Ren, R.; Chen, J. H. Nano Energy 2019, 62, 883. doi: 10.1016/j.nanoen.2019.06.023
-
[2]
(2) Lu, Z. H.; Sui, F.; Miao, Y.-E.; Liu, G. H.; Li, C.; Dong, W.; Cui, J.; Liu, T. X.; Wu, J. X.; Yang, C. L. J. Energy Chem. 2021, 58, 170. doi: 10.1016/j.jechem.2020.09.043
-
[3]
(3) Chombo, P. V.; Laoonual, Y. J. Power Sources 2020, 478, 228649. doi: 10.1016/j.jpowsour.2020.228649
-
[4]
(4) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47 (16), 2930. doi: 10.1002/anie.200702505
-
[5]
-
[6]
-
[7]
(7) Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. InfoMat 2021, 3 (12), 1333. doi: 10.1002/inf2.12189
-
[8]
(8) Zhang, R.; Yang, S.; Li, H.; Zhai, T.; Li, H. InfoMat 2022, 4 (6), e12305. doi: 10.1002/inf2.12305
-
[9]
-
[10]
(10) Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35 (13), 2207752. doi: 10.1002/adma.202207752
-
[11]
(11) Xie, W.; Li, S.; Wang, S.; Xue, S.; Liu, Z.; Jiang, X.; He, D. ACS Appl. Mater. Interfaces 2014, 6 (22), 20334. doi: 10.1021/am505829v
-
[12]
(12) Park, S.-H.; Lee, W.-J. J. Power Sources 2015, 281, 301. doi: 10.1016/j.jpowsour.2015.01.156
-
[13]
(13) Qu, E. L.; Chen, T.; Xiao, Q. Z.; Lei, G. T.; Li, Z. H. J. Electrochem. Soc. 2018, 165 (3), A487. doi: 10.1149/2.0441803jes
-
[14]
(14) Zhang, Y.; Luo, Z. P.; Xiao, Q. Z.; Sun, T. L.; Lei, G. T.; Li, Z. H.; Li, X. J. J. Power Sources 2015, 297, 442. doi: 10.1016/j.jpowsour.2015.08.012
-
[15]
(15) Gao, M. Z.; Liu, B.; Zhang, X. Y.; Zhang, Y. M.; Li, X. B.; Han, G. T. J. Alloy. Compd. 2022, 894, 162550. doi: 10.1016/j.jallcom.2021.162550
-
[16]
(16) Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W. Chem. Eng. J. 2018, 334, 162. doi: 10.1016/j.cej.2017.07.106
-
[17]
(17) Yarin, A. L.; Zussman, E.; Wendorff, J. H.; Greiner, A. J. Mater. Chem. 2007, 17 (25), 2585. doi: 10.1039/b618508h
-
[18]
(18) Moghe, A. K.; Gupta, B. S. Polym. Rev. 2008, 48 (2), 353. doi: 10.1080/15583720802022257
-
[19]
(19) Qu, H. L.; Wei, S. Y.; Guo, Z. H. J. Mater. Chem. A 2013, 1 (38), 11513. doi: 10.1039/c3ta12390a
-
[20]
(20) Yoon, J. Y.; Yang, H. S.; Lee, B. S.; Yu, W. R. Adv. Mater. 2018, 30 (42), e1704765. doi: 10.1002/adma.201704765
-
[21]
(21) Han, D.; Steckl, A. J. ChemPlusChem 2019, 84 (10), 1453. doi: 10.1002/cplu.201900281
-
[22]
(22) Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrochem. Energy Rev. 2021, 5 (2), 211. doi: 10.1007/s41918-021-00103-9
-
[23]
(23) Wang, J.; Wang, Z.; Ni, J.; Li, L. Energy Storage Mater. 2022, 45, 704. doi: 10.1016/j.ensm.2021.12.022
-
[24]
(24) Huang, Z. M.; Zhang, Y. Z.; Kotakic, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63 (15), 2223. doi: 10.1016/s0266-3538(03)00178-7
-
[25]
(25) Tucker, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; Hofman, K. J. Eng. Fibers Fabr. 2012, 7, 63. doi: 10.1177/155892501200702S10
-
[26]
(26) Song, W.; Tang, Y.; Qian, C.; Kim, B. J.; Liao, Y.; Yu, D.-G. Innovation 2023, 4 (2), 100381. doi: 10.1016/j.xinn.2023.100381
-
[27]
(27) Wang, C.; Liu, Y.; Jia, Z.; Zhao, W.; Wu, G. Nano-Micro Lett. 2022, 15 (1), 13. doi: 10.1007/s40820-022-00986-3
-
[28]
(28) Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28 (3), 325. doi: 10.1016/j.biotechadv.2010.01.004
-
[29]
(29) Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Gañán-Calvo, A. M. Science 2002, 295 (5560), 1695. doi: 10.1126/science.1067595
-
[30]
(30) Sun, Z. C.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Adv. Mater. 2003, 15 (22), 1929. doi: 10.1002/adma.200305136
-
[31]
(31) Gu, Y. X.; Jian, F. F. J. Phys. Chem. C 2008, 112 (51), 20176. doi: 10.1021/jp808468x
-
[32]
(32) Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Adv. Mater. 2004, 16 (22), 2062. doi: 10.1002/adma.200400606
-
[33]
(33) Xia, D. L. Y. Nano Lett. 2004, 4 (5), 933. doi: 10.1021/nl049590f
-
[34]
(34) Garcia-Mateos, F. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodriguez-Mirasol, J.; Cordero, T. Front. Mater. 2019, 6, 114. doi: 10.3389/fmats.2019.00114
-
[35]
(35) Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46 (10), 3372. doi: 10.1016/j.polymer.2005.03.011
-
[36]
(36) Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46 (13), 4799. doi: 10.1016/j.polymer.2005.04.021
-
[37]
(37) Lee, G. H.; Song, J.-C.; Yoon, K.-B. Macromol. Res. 2010, 18 (6), 571. doi: 10.1007/s13233-010-0607-9
-
[38]
(38) Yang, Q. B.; Li, Z. Y.; Hong, Y. L.; Zhao, Y. Y.; Qiu, S. L.; Wang, C.; Wei, Y. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (20), 3721. doi: 10.1002/polb.20222
-
[39]
(39) Zhang, Y. Z.; Huang, Z. M.; Xu, X. J.; Lim, C. T.; Ramakrishna, S. Chem. Mater. 2004, 16 (18), 3406. doi: 10.1021/cm049580f
-
[40]
(40) Dong, H.; Nyame, V.; MacDiarmid, A. G.; Jones, W. E. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (21), 3934. doi: 10.1002/polb.20253
-
[41]
(41) Kaerkitcha, N.; Chuangchote, S.; Hachiya, K.; Sagawa, T. Polym. J. 2017, 49 (6), 497. doi: 10.1038/pj.2017.8
-
[42]
(42) Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E. K.; Guo, Z. Wires. Nanomed. Nanobi. 2016, 8 (5), 654. doi: 10.1002/wnan.1391
-
[43]
(43) Wang, L. H.; Yang, H.; Hou, J. Z.; Zhang, W. X.; Xiang, C. H.; Li, L. L. New J. Chem. 2017, 41 (24), 15072. doi: 10.1039/c7nj02805a
-
[44]
(44) Kurban, Z.; Lovell, A.; Bennington, S. M.; Jenkins, D. W. K.; Ryan, K. R.; Jones, M. O.; Skipper, N. T.; David, W. I. F. J. Phys. Chem. C 2010, 114 (49), 21201. doi: 10.1021/jp107871v
-
[45]
(45) Pant, B.; Park, M.; Park, S.-J. Pharmaceutics 2019, 11 (7), 305. doi: 10.3390/pharmaceutics11070305
-
[46]
(46) Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Adv. Mater. 2004, 16 (17), 1562. doi: 10.1002/adma.200306644
-
[47]
(47) Yu, D.; Bligh, L. Z. S. W. A.; Branford-White, C.; White, K. N. Chem. Commun. 2011, 47 (4), 1216. doi: 10.1039/c0cc03521a
-
[48]
(48) Muthiah, P.; Hsu, S.-H.; Sigmund, W. Langmuir 2010, 26 (15), 12483. doi: 10.1021/la100748g
-
[49]
(49) Li, D.; McCann, J. T.; Xia, Y. N. Small 2005, 1 (1), 83. doi: 10.1002/smll.200400056
-
[50]
(50) Wang, M. L.; Wang, K.; Yang, Y. Y.; Liu, Y. N.; Yu, D. G. Polymers 2020, 12 (1), 103. doi: 10.3390/polym12010103
-
[51]
(51) Wang, C.; Yan, K.; Lin, Y.; Hsieh, P. C. H. Macromolecules 2010, 43 (15), 6389. doi: 10.1021/ma100423x
-
[52]
(52) Xia, X.; Wang, X.; Zhou, H. M.; Niu, X.; Xue, L. G.; Zhang, X. W.; Wei, Q. F. Electrochim. Acta 2014, 121, 345. doi: 10.1016/j.electacta.2014.01.004
-
[53]
(53) Chan, K. H. K.; Kotaki, M. J. Appl. Polym. Sci. 2009, 111 (1), 408. doi: 10.1002/app.28994
-
[54]
(54) Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Mater. Today 2006, 9 (3), 40. doi: 10.1016/S1369-7021(06)71389-X
-
[55]
(55) Agarwal, S.; Greiner, A.; Wendorff, J. H. Prog. Polym. Sci. 2013, 38 (6), 963. doi: 10.1016/j.progpolymsci.2013.02.001
-
[56]
(56) Zhao, T. Y.; Liu, Z. Y.; Kazuya, N.; Shunsuke, N.; Taketoshi, M.; Zhao, Y.; Jiang, L.; Akira, F. J. Mater. Chem. 2010, 20 (24), 5095. doi: 10.1039/c0jm00484g
-
[57]
(57) Xi, T.; Xin, B. J. J. Ind. Text. 2016, 46 (8), 1581. doi: 10.1177/1528083715627165
-
[58]
(58) Lee, B.-S.; Jeon, S.-Y.; Park, H.; Lee, G.; Yang, H.-S.; Yu, W.-R. Sci. Rep. 2014, 4, 6758. doi: 10.1038/srep06758
-
[59]
(59) Rahimi, M.; Mokhtari, J. J. Ind. Text. 2016, 47 (6), 1134. doi: 10.1177/1528083716676816
-
[60]
(60) Kaerkitcha, N.; Chuangchote, S.; Sagawa, T. Nanoscale Res. Lett. 2016, 11, 186. doi: 10.1186/s11671-016-1416-7
-
[61]
(61) Huang, F.; Xu, Y.; Peng, B.; Su, Y.; Jiang, F.; Hsieh, Y.-L.; Wei, Q. ACS Sustain. Chem. Eng. 2015, 3 (5), 932. doi: 10.1021/acssuschemeng.5b00032
-
[62]
(62) Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9
-
[63]
(63) Wang, Y.; Feng, X.; Huang, W.; He, X.; Wang, L.; Ouyang, M. Adv. Energy Mater. 2023, 13 (15), 2203841. doi: 10.1002/aenm.202203841
-
[64]
(64) Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Molecules 2023, 28 (5), 2108. doi: 10.3390/molecules28052108
-
[65]
(65) Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. Adv. Mater. 2023, 35 (16), 2210734. doi: 10.1002/adma.202210734
-
[66]
(66) Nishi, Y. Chem. Rec. 2001, 1 (5), 406. doi: 10.1002/tcr.1024
-
[67]
-
[68]
(68) Bi, C.-X.; Hou, L.-P.; Li, Z.; Zhao, M.; Zhang, X.-Q.; Li, B.-Q.; Zhang, Q.; Huang, J.-Q. Energy Mater. Adv. 2023, 4, 0010. doi: 10.34133/energymatadv.0010
-
[69]
(69) Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi: 10.1016/j.est.2023.106716
-
[70]
(70) Ezhyeh, Z. N.; Khodaei, M.; Torabi, F. Ceram. Int. 2023, 49 (5), 7105. doi: 10.1016/j.ceramint.2022.04.340
-
[71]
(71) Wang, Z. H.; Kang, K. Y.; Wu, J. X.; Hu, Q.; Harper, D. P.; Du, G. B.; Wang, S. Q.; Xu, K. M. J. Mater. Res. Technol. 2021, 11, 50. doi: 10.1016/j.jmrt.2021.01.009
-
[72]
(72) Liu, B. X.; Yu, Y. H.; Chang, J.; Yang, X. J.; Wu, D. Z.; Yang, X. P. Electrochem. Commun. 2011, 13 (6), 558. doi: 10.1016/j.elecom.2011.03.009
-
[73]
(73) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Seo, J.-H.; Choi, S.-H. L. I.-S.; Oh, K.-H.; Yu, W.-R. J. Power Sources 2012, 206, 267. doi: 10.1016/j.jpowsour.2012.01.120
-
[74]
(74) Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; Aken, P. A. V.; Maier, J. Angew. Chem. Int. Ed. 2009, 48 (35), 6485. doi: 10.1002/anie.200901723
-
[75]
(75) Li, X. Y.; Chen, Y. M.; Zhou, L. M.; Mai, Y.-W.; Huang, H. T. J. Mater. Chem. A 2014, 2 (11), 3875. doi: 10.1039/c3ta14646d
-
[76]
(76) Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Nanoscale 2013, 5 (13), 5973. doi: 10.1039/c3nr01128c
-
[77]
(77) Liu, Q.; Hu, Y.; Yu, X.; Qin, Y.; Meng, T.; Hu, X. Nano Res. Energy 2022, 1, e9120037. doi: 10.26599/nre.2022.9120037
-
[78]
(78) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Yu, W.-R.; Oh, K.-H.; Lee, S.-H. J. Power Sources 2012, 199, 53. doi: 10.1016/j.jpowsour.2011.10.030
-
[79]
(79) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Lee, G.; Oh, K. H.; Lee, S.-H.; Yu, W.-R. ACS Appl. Mater. Interfaces 2012, 4 (12), 6701. doi: 10.1021/am301873d
-
[80]
(80) Lee, B. S.; Yang, H. S.; Yu, W. R. Nanotechnology 2014, 25 (46), 465602. doi: 10.1088/0957-4484/25/46/465602
-
[81]
(81) Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Maiab, Y. W.; Huang, H. T. Energy Environ. Sci. 2012, 5 (7), 7898. doi: 10.1039/c2ee22085g
-
[82]
(82) Liu, J.-C.; Ma, L.-L.; Li, S.; Hou, L.-L.; Qi, X.-R.; Wen, Y.-Q.; Hu, G.-P.; Wang, N.; Zhao, Y.; Zhao, X.-X. Rare Met. 2023, 42 (10), 3378. doi: 10.1007/s12598-023-02372-3
-
[83]
(83) Yang, H.-S.; Lee, B.-S.; You, B.-C.; Sohn, H.-J.; Yu, W.-R. RSC Adv. 2014, 4 (88), 47389. doi: 10.1039/c4ra10031j
-
[84]
(84) Tong, F. L.; Guo, J. X.; Pan, Y. L.; Liu, H. B.; Lv, Y.; Wu, X. Y.; Jia, D. Z.; Zhao, X. J.; Hou, S. C. J. Colloid Interface Sci. 2021, 586, 371. doi: 10.1016/j.jcis.2020.10.100
-
[85]
(85) Yu, H.; Chen, L.; Li, W. X.; Dirican, M.; Liu, Y.; Zhang, X. W. J. Alloy. Compd. 2021, 863, 158481. doi: 10.1016/j.jallcom.2020.158481
-
[86]
(86) Zhang, C.; Yan, J.; Song, R.; Chen, L.; Liu, Y. J. Mater. Sci. 2021, 56 (36), 19996. doi: 10.1007/s10853-021-06532-7
-
[87]
(87) Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W. Nano Lett. 2012, 12 (2), 802. doi: 10.1021/nl203817r
-
[88]
(88) Wang, J.; Yu, Y.; Gu, L.; Wang, C.; Tang, K.; Maier, J. Nanoscale 2013, 5 (7), 2647. doi: 10.1039/c3nr00322a
-
[89]
(89) Lee, B.-S.; Yang, H.-S.; Jung, H.; Mah, S. K.; Kwon, S.; Park, J.-H.; Lee, K. H.; Yu, W.-R.; Doo, S.-G. Eur. Polym. J. 2015, 70, 392. doi: 10.1016/j.eurpolymj.2015.07.041
-
[90]
(90) Zeng, L.; Xi, H. X.; Liu, X. A.; Zhang, C. H. Nanomaterials 2021, 11 (12), 3454. doi: 10.3390/nano11123454
-
[91]
(91) Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y.-B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. Carbon 2016, 98, 582. doi: 10.1016/j.carbon.2015.11.048
-
[92]
(92) Wang, F.; Zhang, S. Z.; Zhang, J. W.; Han, M. S.; Pan, G. X.; Chen, M. H. e-Polymers 2020, 20 (1), 491. doi: 10.1515/epoly-2020-0023
-
[93]
(93) Lee, B.-S.; Son, S.-B.; Seo, J.-H.; Park, K.-M.; Lee, G.; Lee, S.-H.; Oh, K. H.; Ahn, J.-P.; Yu, W.-R. Nanoscale 2013, 5 (11), 4790. doi: 10.1039/c3nr00982c
-
[94]
(94) Lee, B.-S.; Yang, H.-S.; Jung, H.; Jeon, S.-Y.; Jung, C.; Kim, S.-W.; Bae, J.; Choong, C.-L.; Im, J.; Chung, U.-I.; et al. Nanoscale 2014, 6 (11), 5989. doi: 10.1039/c4nr00318g
-
[95]
(95) Jiang, R.; Yuan, H.; Wei, X.; Wang, H.; Shin, H.-J.; Lan, J.; Yu, Y.; Yang, X. Mater. Chem. Front. 2021, 5 (23), 8218. doi: 10.1039/d1qm00823d
-
[96]
(96) Li, C.; Yuan, C.; Zhu, J.; Ni, X.; Li, K.; Wang, L.; Qi, Y.; Ju, A. Colloids Surf. A 2022, 655, 129721. doi: 10.1016/j.colsurfa.2022.129721
-
[97]
(97) Wang, Y.; Yuan, C.; Li, K.; Li, D.; Ju, A. ACS Appl. Energy Mater. 2022, 5 (9), 11462. doi: 10.1021/acsaem.2c01898
-
[98]
(98) Li, Y.; Xu, G.; Yao, Y.; Xue, L.; Yanilmaz, M.; Lee, H.; Zhang, X. Solid State Ionics 2014, 258, 67. doi: 10.1016/j.ssi.2014.02.003
-
[99]
(99) Zhang, H. R.; Qin, X. Y.; Wu, J. X.; He, Y.-B.; Du, H. D.; Li, B. H.; Kang, F. Y. J. Mater. Chem. A 2015, 3 (13), 7112. doi: 10.1039/c4ta06044j
-
[100]
(100) Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanoscale 2015, 7 (14), 6126. doi: 10.1039/c5nr00224a
-
[101]
(101) Liu, X.; Jiang, Y. H.; Li, K. F.; Xu, F.; Zhang, P.; Ding, Y. H. Mater. Res. Bull. 2019, 109, 41. doi: 10.1016/j.materresbull.2018.09.023
-
[102]
(102) Park, H.; Song, T.; Han, H.; Devadoss, A.; Yuh, J.; Choi, C.; Paik, U. Electrochem. Commun. 2012, 22, 81. doi: 10.1016/j.elecom.2012.05.034
-
[103]
(103) Xie, S. M.; Yao, T. H.; Wang, J. K.; Alsulami, H.; Wang, H. K. ChemistrySelect 2020, 5 (11), 3225. doi: 10.1002/slct.202000288
-
[104]
(104) Li, M.; Zhou, D.; Song, W. L.; Li, X. G.; Fan, L. Z. J. Mater. Chem. A 2015, 3 (39), 19907. doi: 10.1039/c5ta05400a
-
[105]
(105) Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Electrochim. Acta 2015, 182, 507. doi: 10.1016/j.electacta.2015.09.120
-
[106]
(106) Shilpa; Basavaraja, B. M.; Majumder, S. B.; Sharma, A. J. Mater. Chem. A 2015, 3 (10), 5344. doi: 10.1039/c4ta07220k
-
[107]
(107) Zhang, M.; Huang, X. X.; Xin, H. L.; Li, D. Z.; Zhao, Y.; Shi, L. D.; Lin, Y. M.; Yu, J. L.; Yu, Z. Q.; Zhu, C. Z.; et al. Appl. Surf. Sci. 2019, 473, 352. doi: 10.1016/j.apsusc.2018.12.098
-
[108]
(108) Huang, Z.; Yu, K.; Wang, D.; Zhang, Y.; Li, L.; Liang, C. Colloids Surf. A 2022, 653, 129953. doi: 10.1016/j.colsurfa.2022.129953
-
[109]
(109) Feng, D.; Chen, Q.; Li, Z.; Zeng, T. J. Alloy. Compd. 2023, 960, 170851. doi: 10.1016/j.jallcom.2023.170851
-
[110]
(110) Zeng, T. B.; Feng, D.; Liu, Q.; Zhou, R. Y. ACS Appl. Mater. Interfaces 2021, 13 (28), 32978. doi: 10.1021/acsami.1c07387
-
[111]
(111) Hu, H. B.; Yang, Y. X.; Jiang, X.; Wang, J. X.; Cao, D. W.; He, L.; Chen, W.; Song, Y. F. Chem. -Eur. J. 2021, 27 (53), 13367. doi: 10.1002/chem.202101638
-
[112]
(112) Zhou, D.; Song, W. L.; Fan, L. Z. ACS Appl. Mater. Interfaces 2015, 7 (38), 21472. doi: 10.1021/acsami.5b06512
-
[113]
(113) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368
-
[114]
(114) Liu, S.; Pan, G. L.; Yan, N. F.; Gao, X. P. Energy Environ. Sci. 2010, 3 (11), 1732. doi: 10.1039/c0ee00170h
-
[115]
(115) Yuan, T.; Zhao, B. T.; Cai, R.; Zhou, Y. K.; Shao, Z. P. J. Mater. Chem. 2011, 21 (38), 15041. doi: 10.1039/c1jm11483b
-
[116]
(116) Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. Electrochem. Energy Rev. 2022, 5 (4), 14. doi: 10.1007/s41918-022-00131-z
-
[117]
(117) Lin, W. X.; Wang, F.; Wang, H. B.; Li, H.; Fan, Y.; Chan, D.; Chen, S. W.; Tang, Y. X.; Zhang, Y. Y. ChemSusChem 2022, 15 (24), e202201464 doi: 10.1002/cssc.202201464
-
[118]
(118) Kim, A.; Oh, S. H.; Adhikari, A.; Sathe, B. R.; Kumar, S.; Patel, R. J. Mater. Chem. A 2023, 11 (15), 7833. doi: 10.1039/d2ta09266b
-
[119]
(119) Babiker, D. M. D.; Usha, Z. R.; Wan, C.; Hassaan, M. M. E.; Chen, X.; Li, L. J. Power Sources 2023, 564, 232853. doi: 10.1016/j.jpowsour.2023.232853
-
[120]
(120) Lagadec, M. F.; Zahn, R.; Wood, V. Nat. Energy 2018, 4 (1), 16. doi: 10.1038/s41560-018-0295-9
-
[121]
(121) Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104 (10), 4419. doi: 10.1021/cr020738u
-
[122]
(122) Li, Y.; Li, P.; Lan, X.; Jiang, Y.; Hu, X. Mater. Today Phys. 2023, 38, 101256. doi: 10.1016/j.mtphys.2023.101256
-
[123]
(123) Li, P.; Wang, Y.; Liu, Z.; Hu, X. Mater. Chem. Front. 2023. doi: 10.1039/d3qm00709j
-
[124]
(124) Liu, Z.; Peng, Y.; Meng, T.; Yu, L.; Wang, S.; Hu, X. Energy Storage Mater. 2022, 47, 445. doi: 10.1016/j.ensm.2022.02.020
-
[125]
(125) Zhou, X. H.; Yue, L. P.; Zhang, J. J.; Kong, Q. S.; Liu, Z. H.; Yao, J. H.; Cui, G. L. J. Electrochem. Soc. 2013, 160 (9), A1341. doi: 10.1149/2.003309jes
-
[126]
(126) Miao, Y.; Zhu, G.; Hou, H.; Xia, Y.; Liu, T. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027
-
[127]
(127) Sun, G. H.; Kong, L. S.; Liu, B. X.; Niu, H. Q.; Zhang, M. Y.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 582, 132. doi: 10.1016/j.memsci.2019.04.005
-
[128]
(128) Dong, G. Q.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Energy Technol. 2019, 7 (7), 1801072. doi: 10.1002/ente.201801072
-
[129]
(129) Kim, Y.; Lee, W.-Y.; Kim, K. J.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2016, 305, 225. doi: 10.1016/j.jpowsour.2015.11.106
-
[130]
(130) Ma, X. J.; Kolla, P.; Yang, R. D.; Wang, Z.; Zhao, Y.; Smirnova, A. L.; Fong, H. Electrochim. Acta 2017, 236, 417. doi: 10.1016/j.electacta.2017.03.205
-
[131]
(131) Kong, L. S.; Liu, B. X.; Ding, J. L.; Yan, X. N.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2018, 549, 244. doi: 10.1016/j.memsci.2017.12.015
-
[132]
(132) Zhao, H. J.; Kang, W. M.; Deng, N. P.; Liu, M.; Cheng, B. W. Chem. Eng. J. 2020, 384, 123312. doi: 10.1016/j.cej.2019.123312
-
[133]
(133) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2020, 390, 124571. doi: 10.1016/j.cej.2020.124571
-
[134]
(134) Ma, Y.; Hu, J. P.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. J. Power Sources 2020, 451, 227759. doi: 10.1016/j.jpowsour.2020.227759
-
[135]
(135) Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrochim. Acta 2004, 50 (1), 69. doi: 10.1016/j.electacta.2004.07.014
-
[136]
(136) Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y.-R. Adv. Mater. 2003, 15 (23), 2027. doi: 10.1002/adma.200304617
-
[137]
(137) Liu, Z. H.; Jiang, W.; Kong, Q. S.; Zhang, C. J.; Han, P. X.; Wang, X. J.; Yao, J. H.; Cui, G. L. Macromol. Mater. Eng. 2013, 298 (7), 806. doi: 10.1002/mame.201200158
-
[138]
(138) Hu, M. F.; Ma, Q. Y.; Yuan, Y.; Pan, Y. K.; Chen, M. Q.; Zhang, Y. Y.; Long, D. H. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258
-
[139]
(139) Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3 (1), e1601978. doi: 10.1126/sciadv.1601978
-
[140]
(140) Yusuf, A.; Avvaru, V. S.; Dirican, M.; Changchun, S.; Wang, D.-Y. Appl. Mater. Today 2020, 20, 100675. doi: 10.1016/j.apmt.2020.100675
-
[141]
(141) Yang, K. C.; Liu, Z. L.; Chai, J. C.; Zheng, Y.; Fu, X. N.; Shen, Y. H.; Chen, J.; Liu, Z. H.; Shi, S. W. Mater. Chem. Phys. 2022, 282, 125975. doi: 10.1016/j.matchemphys.2022.125975
-
[142]
(142) Liang, Z.; Zhao, Y.; Li, Y. X. Energies 2019, 12 (17), 3391. doi: 10.3390/en12173391
-
[143]
(143) Yang, S. T.; Ma, W. H.; Wang, A. L.; Gu, J. F.; Yin, Y. H. RSC Adv. 2018, 8 (41), 23390. doi: 10.1039/c8ra02035c
-
[144]
(144) Wang, L. Y.; Deng, N. P.; Ju, J. G.; Wang, G.; Cheng, B. W.; Kang, W. M. Electrochim. Acta 2019, 300, 263. doi: 10.1016/j.electacta.2019.01.115
-
[145]
(145) Gao, X.; Sheng, L.; Yang, L.; Xie, X.; Li, D.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G.; et al. J. Colloid Interface Sci. 2023, 636, 317. doi: 10.1016/j.jcis.2023.01.033
-
[146]
(146) Chen, Y.; Qiu, L. L.; Ma, X. Y.; Chu, Z. D.; Zhuang, Z. S.; Dong, L. K.; Du, P. F.; Xiong, J. Solid State Ionics 2020, 347, 115253. doi: 10.1016/j.ssi.2020.115253
-
[147]
(147) Gong, W. Z.; Wei, S. Y.; Ruan, S. L.; Shen, C. Y. Mater. Lett. 2019, 244, 126. doi: 10.1016/j.matlet.2019.02.009
-
[148]
(148) Zhao, H. J.; Deng, N. P.; Wang, G.; Ren, H. R.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2021, 404, 126542. doi: 10.1016/j.cej.2020.126542
-
[149]
(149) Li, H.; Feng, T.; Liang, Y.; Wu, M. Chin. Chem. Lett. 2023, 34 (12), 108350. doi: 10.1016/j.cclet.2023.108350
-
[150]
(150) Jiang, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Mater. Chem. A 2017, 5 (44), 23238. doi: 10.1039/c7ta08063h
-
[151]
(151) Wei, Z. Z.; Gu, J. Y.; Zhang, F. R.; Pan, Z. J.; Zhao, Y. ACS Appl. Polym. Mater. 2020, 2 (5), 1989. doi: 10.1021/acsapm.0c00164
-
[152]
(152) Shao, F.; Kang, G.; Chen, H.; Wang, X.; Shao, Z.; Li, W.; Zheng, G. Preparation of Flame-retardant Lithium-ion Battery Separator by Coaxial Electrospinning. In IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China; 2021. doi: 10.1109/nems51815.2021.9451445
-
[153]
(153) Zheng, G.; Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Liu, Y. Mater. Chem. Phys. 2023, 301, 127647. doi: 10.1016/j.matchemphys.2023.127647
-
[154]
(154) Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Guo, S.; Liu, Y.; Zheng, G. ACS Appl. Mater. Interfaces 2023, 15 (37), 44259. doi: 10.1021/acsami.3c08757
-
[155]
(155) Liu, Z. F.; Jiang, Y. J.; Hu, Q. M.; Guo, S. T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. L. Energy Environ. Mater. 2021, 4 (3), 336. doi: 10.1002/eem2.12129
-
[156]
(156) Gong, W.; Wang, X.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. High Perform. Polym. 2018, 31 (8), 948. doi: 10.1177/0954008318814154
-
[157]
(157) Liao, H. Y.; Zhang, H. Y.; Qin, G.; Hong, H. Q.; Li, Z. H.; Lin, Y. X.; Li, L. Q. Macromol. Mater. Eng. 2017, 302 (11), 1700241. doi: 10.1002/mame.201700241
-
[158]
(158) Zhai, Y.; Wang, N.; Mao, X.; Si, Y.; Yu, J.; Al-Deyab, S. S.; El-Newehy, M.; Ding, B. J. Mater. Chem. A 2014, 2 (35), 14511. doi: 10.1039/c4ta02151g
-
[159]
(159) Jiang, Y. H.; Ding, Y. H.; Zhang, P.; Li, F.; Yang, Z. M. J. Membr. Sci. 2018, 565, 33. doi: 10.1016/j.memsci.2018.08.008
-
[160]
(160) Liu, Z. F.; Hu, Q. M.; Guo, S. T.; Yu, L.; Hu, X. L. Adv. Mater. 2021, 33 (15), e2008088. doi: 10.1002/adma.202008088
-
[161]
(161) Li, P.; Liu, Z.; Peng, Y.; Yang, S.; Meng, T.; Hu, Y.; Jiang, Y.; Sun, H.; Li, Q.; Hu, X. Nano Res. 2023, doi: 10.1007/s12274-023-6179-8
-
[162]
(162) Xi, Y. Y.; Zhang, P.; Zhang, H. N.; Wan, Z. H.; Tu, W. M.; Tang, H. L. Int. J. Electrochem. Sci. 2017, 12 (6), 5421. doi: 10.20964/2017.06.69
-
[163]
(163) Dong, G. Q.; Liu, B. X.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 577, 249. doi: 10.1016/j.memsci.2019.02.003
-
[164]
(164) Kong, L. S.; Wang, Y.; Yu, H. S.; Liu, B. X.; Qi, S. L.; Wu, D. Z.; Zhong, W.-H.; Tian, G. F.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11 (3), 2978. doi: 10.1021/acsami.8b17521
-
[165]
(165) Arifeen, W. U.; Choi, J.; Yoo, K.; Shim, J.; Ko, T. J. Chem. Eng. J. 2021, 417, 128075. doi: 10.1016/j.cej.2020.128075
-
[166]
(166) Huang, F. L.; Liu, W. T.; Li, P. Y.; Ning, J. X.; Wei, Q. F. Materials 2016, 9 (2), 75. doi: 10.3390/ma9020075
-
[167]
(167) Chong, Y. L.; Zhao, D. D.; Wang, B.; Feng, L.; Li, S. J.; Shao, L. X.; Tong, X.; Du, X.; Cheng, H.; Zhuang, J. L. Chem. Rec. 2022, 22 (10), e202200142. doi: 10.1002/tcr.202200142
-
[168]
(168) Cong, C.; Ma, H. Small 2023, 19 (15), 2207547. doi: 10.1002/smll.202207547
-
[169]
(169) Fu, Q. S.; Zhang, W.; Muhammad, I. P.; Chen, X. D.; Zeng, Y.; Wang, B. T.; Zhang, S. Y. Microporous Mesoporous Mater. 2021, 311, 110724. doi: 10.1016/j.micromeso.2020.110724
-
[170]
(170) Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Adv. Mater. 2019, 31 (21), 1808338. doi: 10.1002/adma.201808338
-
[171]
(171) Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mater. Today Chem. 2023, 30, 101552. doi: 10.1016/j.mtchem.2023.101552
-
[172]
(172) Nagappan, S.; Duraivel, M.; Elayappan, V.; Muthuchamy, N.; Mohan, B.; Dhakshinamoorthy, A.; Prabakar, K.; Lee, J.-M.; Park, K. H. Energy Technol. 2023, 11 (3), 2201200. doi: 10.1002/ente.202201200
-
[173]
(173) Akhmetov, N.; Manakhov, A.; Al-Qasim, A. S. Electronics 2023, 12 (5), 1152. doi: 10.3390/electronics12051152
-
[174]
(174) Mori, R. J. Solid State Electrochem. 2023, 27 (4), 813. doi: 10.1007/s10008-023-05387-z
-
[175]
(175) Kalluri, S.; Seng, K. H.; Guo, Z.; Liu, H.; Dou, S. RSC Adv. 2013, 3 (48), 25576. doi: 10.1039/c3ra45414b
-
[176]
(176) Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Chem. Commun. 2013, 49 (59), 6677. doi: 10.1039/c3cc43874k
-
[177]
(177) Zhan, S. H.; Li, Y.; Yu, H. B. J. Dispersion Sci. Technol. 2008, 29 (6), 823. doi: 10.1080/01932690701781469
-
[178]
(178) Gu, Y. X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. J. Mater. Chem. 2007, 17 (18), 1769. doi: 10.1039/b614205b
-
[179]
(179) Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci.: Mater. Electron. 2013, 24 (12), 4718. doi: 10.1007/s10854-013-1465-y
-
[180]
(180) Wei, B. B.; Wu, Y. B.; Yu, F. Y.; Zhou, Y. N. Int. J. Miner. Metall. Mater. 2016, 23 (4), 474. doi: 10.1007/s12613-016-1258-4
-
[181]
-
[182]
-
[183]
(183) Fan, X.; Liu, Y.; Tan, J.; Yang, S.; Zhang, X.; Liu, B.; Cheng, H.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10 (14), 7653. doi: 10.1039/d1ta10444f
-
[184]
(184) Zhang, X.; Zhu, L.; Gao, Z.; Zhang, L.; Zhang, Z.; Zhang, L.; Wang, Y. Mater. Today Commun. 2021, 28, 102666. doi: 10.1016/j.mtcomm.2021.102666
-
[185]
(185) Wei, C.; Han, Y.; Liu, H.; Gan, R.; Li, Q.; Wang, Y.; Hu, P.; Ma, C.; Shi, J. Carbon 2021, 184, 1. doi: 10.1016/j.carbon.2021.08.004
-
[186]
(186) Wei, C.; Liu, H.; Gan, R.; Ma, W.; Wang, Y.; Han, Y.; Song, Y.; Ma, C.; Shi, J. Colloids Surf. A 2022, 648, 129179. doi: 10.1016/j.colsurfa.2022.129179
-
[187]
(187) Huang, X. Y.; Liu, J.; Huang, Z. X.; Ke, X.; Liu, L. Y.; Wang, N. G.; Liu, J. P.; Guo, Z. P.; Yang, Y.; Shi, Z. C. Electrochim. Acta 2020, 333, 135493. doi: 10.1016/j.electacta.2019.135493
-
[188]
(188) Ding, P.; Yan, T.; Li, K.; Wu, Q.; Zhu, X.; Chen, H.; Ju, A. J. Alloy. Compd. 2022, 928, 167056. doi: 10.1016/j.jallcom.2022.167056
-
[189]
(189) Wang, X. L.; Chen, J.; Jin, B.; Jiang, Q.; Jin, E. M.; Jeong, S. M. J. Electroanal. Chem. 2020, 878, 114564. doi: 10.1016/j.jelechem.2020.114564
-
[190]
(190) Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. J. Alloy. Compd. 2014, 608, 220. doi: 10.1016/j.jallcom.2014.04.073
-
[191]
(191) Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. J. Energy Chem. 2020, 48, 334. doi: 10.1016/j.jechem.2020.02.033
-
[192]
(192) Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2020, 12 (19), 21586. doi: 10.1021/acsami.0c02291
-
[193]
(193) Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q.; et al. Mater. Today Energy 2021, 20, 100694. doi: 10.1016/j.mtener.2021.100694
-
[194]
(194) Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Adv. Sci. 2023, 10 (10), 2201718. doi: 10.1002/advs.202201718
-
[195]
(195) Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41 (9), 1119. doi: 10.1002/cjoc.202200588
-
[196]
(196) Yang, K.; Zhao, L.; An, X.; Chen, L.; Ma, J.; Mi, J.; He, Y. B. Angew. Chem., Int. Ed. 2023, 62 (24), e202302586. doi: 10.1002/anie.202302586
-
[197]
(197) Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. J. Energy Chem. 2019, 37, 126. doi: 10.1016/j.jechem.2018.12.013
-
[198]
(198) Ren, W. H.; Ding, C. F.; Fu, X. W.; Huang, Y. Energy Storage Mater. 2021, 34, 515. doi: 10.1016/j.ensm.2020.10.018
-
[199]
(199) Zhou, L.; Cao, Q.; Jing, B.; Wang, X.; Tang, X.; Wu, N. J. Power Sources 2014, 263, 118. doi: 10.1016/j.jpowsour.2014.03.140
-
[200]
(200) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Li, Z. J.; Wang, G.; Cheng, B. W. Energy Storage Mater. 2020, 26, 334. doi: 10.1016/j.ensm.2019.11.005
-
[201]
(201) Bi, H. T.; Sui, G.; Yang, X. P. J. Power Sources 2014, 267, 309. doi: 10.1016/j.jpowsour.2014.05.030
-
[202]
(202) Zhang, Z. Z.; Sui, G.; Bi, H. T.; Yang, X. P. J. Membr. Sci. 2015, 492, 77. doi: 10.1016/j.memsci.2015.05.040
-
[203]
(203) Barbosa, J. C.; Correia, D. M.; Gonçalves, R.; Bermudez, V. d. Z.; Silva, M. M.; Lanceros-Mendez, S.; Costa, C. M. J. Colloid Interface Sci. 2020, 582 (Pt A), 376. doi: 10.1016/j.jcis.2020.08.046
-
[204]
(204) Song, X.; Qi, W.; Zhang, H.; Wang, G. Solid State Ionics 2020, 347, 115266. doi: 10.1016/j.ssi.2020.115266
-
[205]
(205) Liu, X.; Ren, Y.; Zhang, L.; Zhang, S. Front. Chem. 2019, 7, 421. doi: 10.3389/fchem.2019.00421
-
[206]
(206) Luo, X. Y.; Liao, Y. H.; Xie, H. L.; Zhu, Y. M.; Huang, Q. M.; Li, W. S. Electrochim. Acta 2016, 220, 47. doi: 10.1016/j.electacta.2016.09.147
-
[207]
(207) Jia, H.; Onishi, H.; von Aspern, N.; Rodehorst, U.; Rudolf, K.; Billmann, B.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. J. Power Sources 2018, 397, 343. doi: 10.1016/j.jpowsour.2018.07.039
-
[208]
(208) Huang, J. H.; Liao, Y. H.; Li, G. J.; Xu, N.; Xu, M. Q.; Li, W. S. Electrochim. Acta 2019, 299, 45. doi: 10.1016/j.electacta.2018.12.168
-
[209]
(209) Wang, L.; Yan, J. W.; Zhang, R.; Li, Y. F.; Shen, W. Z.; Zhang, J. L.; Zhong, M.; Guo, S. W. ACS Appl. Mater. Interfaces 2021, 13 (8), 9875. doi: 10.1021/acsami.0c20854
-
[210]
(210) Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14 (7), 705. doi: 10.1038/s41565-019-0465-3
-
[211]
(211) Baskoro, F.; Wong, H. Q.; Yen, H.-J. ACS Appl. Energy Mater. 2019, 2 (6), 3937. doi: 10.1021/acsaem.9b00295
-
[212]
(212) Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Adv. Eng. Mater. 2019, 21 (7), 1900055. doi: 10.1002/adem.201900055
-
[213]
(213) Guo, Z. M.; Pang, Y. P.; Xia, S. X.; Xu, F.; Yang, J. H.; Sun, L. X.; Zheng, S. Y. Adv. Sci. 2021, 8 (16), 2100899. doi: 10.1002/advs.202100899
-
[214]
(214) Huang, H. H.; He, C. L.; Wang, H. S.; Mo, X. M. J. Biomed. Mater. Res. Part A 2009, 90 (4), 1243. doi: 10.1002/jbm.a.32543
-
[215]
(215) Bhattarai, R. S.; Bachu, R. D.; Boddu, S. H. S.; Bhaduri, S. Pharmaceutics 2018, 11 (1), 5. doi: 10.3390/pharmaceutics11010005
-
[216]
(216) Ghafoor, B.; Aleem, A.; Ali, M. N.; Mir, M. J. Drug Delivery Sci. Technol. 2018, 48, 82. doi: 10.1016/j.jddst.2018.09.005
-
[217]
(217) Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polym. Adv. Technol. 2017, 28 (5), 570. doi: 10.1002/pat.3794
-
[218]
(218) He, T. S.; Su, Q. Y.; Yildiz, Z.; Cai, K. D.; Wang, Y. J. Electrochim. Acta 2016, 222, 1120. doi: 10.1016/j.electacta.2016.11.083
-
[219]
(219) Zhu, Q.; Wang, M.; Nan, B.; Shi, H. H.; Zhang, X. M.; Deng, Y. H.; Wang, L. P.; Chen, Q. Q.; Lu, Z. G. J. Power Sources 2017, 362, 147. doi: 10.1016/j.jpowsour.2017.07.004
-
[220]
(220) Yadav, S.; Kok, M. D. R.; Forner-Cuenca, A.; Tenny, K. M.; Chiang, Y.-M.; Brushett, F. R.; Jervis, R.; Shearing, P. R.; Brett, D.; Roberts, E. P. L.; et al. J. Energy Storage 2021, 33, 102079. doi: 10.1016/j.est.2020.102079
-
[221]
(221) Li, D. M.; Li, H. T.; Zheng, S. M.; Gao, N.; Li, S.; Liu, J.; Hou, L.; Liu, J.; Miao, B.; Bai, J.; et al. J. Colloid Interface Sci. 2021, 607 (Pt 1), 655. doi: 10.1016/j.jcis.2021.08.171
-
[222]
(222) Lang, L. M.; Wu, D.; Xu, Z. Chem. -Eur. J. 2012, 18 (34), 10661. doi: 10.1002/chem.201200378
-
[223]
(223) Vempati, S.; Ranjith, K. S.; Topuz, F.; Biyikli, N.; Uyar, T. ACS Appl. Nano Mater. 2020, 3 (7), 6186. doi: 10.1021/acsanm.0c01120
-
[224]
(224) Wang, Z.; Ni, J.; Li, L.; Lu, J. Cell Rep. Phys. Sci. 2020, 1 (6), 100078. doi: 10.1016/j.xcrp.2020.100078
-
[225]
(225) Yu, M.; Dong, R.-H.; Yan, X.; Yu, G.-F.; You, M.-H.; Ning, X.; Long, Y.-Z. Macromol. Mater. Eng. 2017, 302 (7), 1700002. doi: 10.1002/mame.201700002
-
[1]
-
-
-
[1]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[2]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[3]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[8]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[9]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[10]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[11]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[12]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[13]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[14]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[15]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[16]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[17]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[18]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[19]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[20]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(545)
- HTML views(67)