Citation: Xiaochen Zhang, Fei Yu, Jie Ma. Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 231102. doi: 10.3866/PKU.WHXB202311026 shu

Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization

  • Corresponding author: Jie Ma, jma@tongji.edu.cn
  • Received Date: 21 November 2023
    Revised Date: 25 December 2023
    Accepted Date: 26 December 2023
    Available Online: 26 February 2024

    Fund Project: the National Natural Science Foundation of China 22276137the National Natural Science Foundation of China 52170087

  • Capacitive deionization (CDI) technology is considered to be an emerging water treatment technology in the 21st century, owing to its low energy consumption, absence of secondary pollution, and straightforward operation. The advancement of basic theory and computer science has facilitated the use of multi-angle numerical simulations for CDI. However, due to errors in experimental methods, a direct understanding of mechanisms such as the kinetic characteristics of ion diffusion inside electrode materials, structural evolution during charging and discharging, and the intrinsic connection between potentials and structures is lacking. Existing experimental methods fall short of providing clear theoretical explanations for these phenomena. In contrast, numerical simulations offer a better comprehension of the chemical and electrochemical evolution in CDI. Beyond electrode materials, the device configuration of CDI significantly impacts its performance. Utilizing numerical simulations to study the optimal device configuration is expected to enhance economic efficiency and promote the practical application of CDI. While current reviews of CDI focus primarily on electrode materials and device configurations, there is a dearth of comprehensive reviews on cutting-edge numerical simulation research in the CDI field. This review commences with the earliest continuous-scale model used to describe the dynamic process of CDI. It systematically categorizes multi-angle numerical simulations in CDI, summarizes the strengths and weaknesses of different numerical simulation methods, and anticipates future development directions. Continuous-scale models accurately characterize the ion dynamics of CDI, determining rate and process constraints. Pore-scale models analyze the microstructure of porous media, obviating the need for empirical formulas to preset transport parameters for continuous-scale models. Researchers have introduced molecular dynamics simulation and density functional theory into CDI research, effectively analyzing the influence of structural features at the molecular/atomic level of electrode materials on the CDI system. This aids researchers in enhancing the efficacy and ionic selectivity of CDI electrode materials through pore engineering, defect engineering, and electrochemical microcosmic modulation engineering. Finite element analysis guides improvements in ion diffusion and stability of electrode materials, while computational fluid dynamics provides references for designing high-performance CDI devices. Data-driven machine learning excels in handling nonlinear data and uncovering complex mechanisms of CDI water treatment processes, while digital twin technology can reduce operation and maintenance costs of CDI. Considering costs in practical applications, techno-economic analysis plays a pivotal role in promoting the practical application of CDI technology. This review, the first of its kind, provides an essential theoretical foundation and research ideas for the new paradigm of CDI research by summarizing the advantages and disadvantages of different numerical simulation methods and offering insights into cutting-edge perspectives in the field of CDI.
  • 加载中
    1. [1]

      Rodell, M.; Famiglietti, J. S.; Wiese, D. N.; Reager, J. T.; Beaudoing, H. K.; Landerer, F. W.; Lo, M. H. Nature 2018, 557 (7707), 651. doi: 10.1038/s41586-018-0123-1  doi: 10.1038/s41586-018-0123-1

    2. [2]

      AlMarzooqi, F. A.; Al Ghaferi, A. A.; Saadat, I.; Hilal, N. Desalination 2014, 342, 3. doi: 10.1016/j.desal.2014.02.031  doi: 10.1016/j.desal.2014.02.031

    3. [3]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Nature 2008, 452 (7185), 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    4. [4]

      Elimelech, M.; Phillip, W. A. Science 2011, 333 (6043), 712. doi: 10.1126/science.1200488  doi: 10.1126/science.1200488

    5. [5]

      Li, Y.; Hu, X. S.; Huang, J. W.; Wang, L.; She, H. D.; Wang, Q. Z. Acta Phys. -Chim. Sin. 2021, 37 (8), 2009022. doi: 10.3866/PKU.WHXB202009022  doi: 10.3866/PKU.WHXB202009022

    6. [6]

      Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2022, 38 (7), 2201008. doi: 10.3866/PKU.WHXB202201008  doi: 10.3866/PKU.WHXB202201008

    7. [7]

      Zhou, L.; Li, Y. F.; Zhang, Y. K.; Qiu, L. W.; Xing, Y. Acta Phys. -Chim. Sin. 2022, 38 (7), 2112027. doi: 10.3866/PKU.WHXB202112027  doi: 10.3866/PKU.WHXB202112027

    8. [8]

      Chen, Q.; Zhao, J.; Cheng, H. H.; Qu, L. T. Acta Phys. -Chim. Sin. 2022, 38 (1), 2101020. doi: 10.3866/PKU.WHXB202101020  doi: 10.3866/PKU.WHXB202101020

    9. [9]

      Chang, M. K.; Hu, N.; Li, Y.; Xian, D. F.; Zhou, W. Q.; Wang, J. Y.; Shi, Y. L.; Liu, C. L. Acta Phys. -Chim. Sin. 2022, 38 (3), 2003031. doi: 10.3866/PKU.WHXB202003031  doi: 10.3866/PKU.WHXB202003031

    10. [10]

      Liu, Z. Z.; Wan, S. W.; Wu, Y.; Wang, B. Y.; Ji, H. L. Acta Phys. -Chim. Sin. 2023, 39 (5), 2211019. doi: 10.3866/PKU.WHXB202211019  doi: 10.3866/PKU.WHXB202211019

    11. [11]

      Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Energy Environ. Sci. 2015, 8 (8), 2296. doi: 10.1039/C5EE00519A  doi: 10.1039/C5EE00519A

    12. [12]

      Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H. Y. Energy Environ. Sci. 2017, 10 (10), 2081. doi: 10.1039/C7EE00855D  doi: 10.1039/C7EE00855D

    13. [13]

      Kumar, S.; Aldaqqa, N. M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62 (35), e202302180. doi: 10.1002/anie.202302180  doi: 10.1002/anie.202302180

    14. [14]

      Xu, L.; Peng, S.; Mao, Y.; Zong, Y.; Zhang, X.; Wu, D. Water Res. 2022, 216, 118290. doi: 10.1016/j.watres.2022.118290  doi: 10.1016/j.watres.2022.118290

    15. [15]

      Jeon, S.-i.; Park, H.-R.; Yeo, J.-G.; Yang, S.; Cho, C. H.; Han, M. H.; Kim, D. K. Energy Environ. Sci. 2013, 6 (5), 1471. doi: 10.1039/C3EE24443A  doi: 10.1039/C3EE24443A

    16. [16]

      Rhee, H.; Kwak, R. Water Res. 2023, 244, 120436. doi: 10.1016/j.watres.2023.120436  doi: 10.1016/j.watres.2023.120436

    17. [17]

      Du, J.; Xing, W.; Yu, J.; Feng, J.; Tang, L.; Tang, W. Water Res. 2023, 235, 119831. doi: 10.1016/j.watres.2023.119831  doi: 10.1016/j.watres.2023.119831

    18. [18]

      Lu, M.; Liu, J. Y.; Cheng, J.; Wang, S. P.; Yang, J. M. Acta Phys. -Chim. Sin. 2014, 30 (12), 2263. doi: 10.3866/PKU.WHXB201410141  doi: 10.3866/PKU.WHXB201410141

    19. [19]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33 (7), 1338. doi: 10.3866/PKU.WHXB201704113  doi: 10.3866/PKU.WHXB201704113

    20. [20]

      Wang, X. W.; Jiang, F. T.; Suo, Q. L.; Fang, Y. Z.; Lu, Y. Acta Phys. -Chim. Sin. 2011, 27 (11), 2605. doi: 10.3866/PKU.WHXB20111116  doi: 10.3866/PKU.WHXB20111116

    21. [21]

      Wang, L.; Lin, S. Environ. Sci. Technol. 2019, 53 (10), 5797. doi: 10.1021/acs.est.9b00655  doi: 10.1021/acs.est.9b00655

    22. [22]

      Seo, S.-J.; Jeon, H.; Lee, J. K.; Kim, G.-Y.; Park, D.; Nojima, H.; Lee, J.; Moon, S.-H. Water Res. 2010, 44 (7), 2267. doi: 10.1016/j.watres.2009.10.020  doi: 10.1016/j.watres.2009.10.020

    23. [23]

      Uwayid, R.; Guyes, E. N.; Shocron, A. N.; Gilron, J.; Elimelech, M.; Suss, M. E. Water Res. 2022, 210, 117959. doi: 10.1016/j.watres.2021.117959  doi: 10.1016/j.watres.2021.117959

    24. [24]

      Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Desalination 2016, 392, 46. doi: 10.1016/j.desal.2016.03.019  doi: 10.1016/j.desal.2016.03.019

    25. [25]

      Wang, W.; Ma, P.; Li, H. Desalination 2023, 564, 116798. doi: 10.1016/j.desal.2023.116798  doi: 10.1016/j.desal.2023.116798

    26. [26]

      Yu, F.; Zhang, X.; Liu, P.; Chen, B.; Ma, J. Small 2023, 19 (10), 2205619. doi: 10.1002/smll.202205619  doi: 10.1002/smll.202205619

    27. [27]

      Kang, H.; Zhang, D.; Chen, X.; Zhao, H.; Yang, D.; Li, Y.; Bao, M.; Wang, Z. Water Res. 2023, 229, 119441. doi: 10.1016/j.watres.2022.119441  doi: 10.1016/j.watres.2022.119441

    28. [28]

      Wang, G.; Yan, T.; Shen, J.; Zhang, J.; Zhang, D. Environ. Sci. Technol. 2021, 55 (17), 11979. doi: 10.1021/acs.est.1c03228  doi: 10.1021/acs.est.1c03228

    29. [29]

      Cao, Y.; Yan, L.; Gang, H.; Wu, B.; Wei, D.; Chen, P.; Zhang, T.; Wang, H. Desalination 2023, 551, 116409. doi: 10.1016/j.desal.2023.116409  doi: 10.1016/j.desal.2023.116409

    30. [30]

      He, Y.; Huang, L.; Zhao, Y.; Yang, W.; Hao, T.; Wu, B.; Deng, H.; Wei, D.; Wang, H.; Luo, J. Environ. Sci.: Nano 2020, 7 (10), 3007. doi: 10.1039/D0EN00826E  doi: 10.1039/D0EN00826E

    31. [31]

      Lei, J.; Xiong, Y.; Yu, F.; Ma, J. Chem. Eng. J. 2022, 437, 135381. doi: 10.1016/j.cej.2022.135381  doi: 10.1016/j.cej.2022.135381

    32. [32]

      Wang, K.; Liu, Y.; Ding, Z.; Chen, Z.; Xu, X.; Wang, M.; Lu, T.; Pan, L. Chem. Eng. J. 2022, 433, 133578. doi: 10.1016/j.cej.2021.133578  doi: 10.1016/j.cej.2021.133578

    33. [33]

      Zhang, Z.; Li, H. Environ. Sci.: Nano 2021, 8 (7), 1886. doi: 10.1039/D1EN00350J  doi: 10.1039/D1EN00350J

    34. [34]

      Xiong, Y. C.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2022, 38 (5), 2006037. doi: 10.3866/PKU.WHXB202006037  doi: 10.3866/PKU.WHXB202006037

    35. [35]

      Cuong, D. V.; Wu, P.-C.; Liou, S. Y. H.; Hou, C.-H. J. Hazard. Mater. 2022, 423, 127084. doi: 10.1016/j.jhazmat.2021.127084  doi: 10.1016/j.jhazmat.2021.127084

    36. [36]

      Fan, C.-S.; Tseng, S.-C.; Li, K.-C.; Hou, C.-H. J. Hazard. Mater. 2016, 312, 208. doi: 10.1016/j.jhazmat.2016.03.055  doi: 10.1016/j.jhazmat.2016.03.055

    37. [37]

      Huang, X.; Guo, X.; Dong, Q.; Liu, L.; Tallon, R.; Chen, J. Environ. Sci.: Nano 2019, 6 (11), 3225. doi: 10.1039/C9EN00730J  doi: 10.1039/C9EN00730J

    38. [38]

      Liu, P.; Yan, T.; Zhang, J.; Shi, L.; Zhang, D. J. Mater. Chem. A 2017, 5 (28), 14748. doi: 10.1039/C7TA03515B  doi: 10.1039/C7TA03515B

    39. [39]

      Bharath, G.; Rambabu, K.; Banat, F.; Hai, A.; Arangadi, A. F.; Ponpandian, N. Sci. Total Environ. 2019, 691, 713. doi: 10.1016/j.scitotenv.2019.07.069  doi: 10.1016/j.scitotenv.2019.07.069

    40. [40]

      Hou, S.; Xu, X.; Wang, M.; Lu, T.; Sun, C. Q.; Pan, L. Chem. Eng. J. 2018, 337, 398. doi: 10.1016/j.cej.2017.12.120  doi: 10.1016/j.cej.2017.12.120

    41. [41]

      Xu, L.; Yu, C.; Mao, Y.; Zong, Y.; Zhang, B.; Chu, H.; Wu, D. J. Hazard. Mater. 2021, 402, 123568. doi: 10.1016/j.jhazmat.2020.123568  doi: 10.1016/j.jhazmat.2020.123568

    42. [42]

      Wang, S.; Zhuang, H.; Shen, X.; Zhao, L.; Pan, Z.; Liu, L.; Lv, S.; Wang, G. J. Hazard. Mater. 2023, 457, 131785. doi: 10.1016/j.jhazmat.2023.131785  doi: 10.1016/j.jhazmat.2023.131785

    43. [43]

      Deng, H.; Wei, W.; Yao, L.; Zheng, Z.; Li, B.; Abdelkader, A.; Deng, L. Adv. Sci. 2022, 9 (30), 2203189. doi: 10.1002/advs.202203189  doi: 10.1002/advs.202203189

    44. [44]

      Tian, Y.; Chen, N.; Yang, X.; Li, C.; He, W.; Ren, N.; Liu, G.; Yang, W. Water Res. 2023, 231, 119645. doi: 10.1016/j.watres.2023.119645  doi: 10.1016/j.watres.2023.119645

    45. [45]

      Xu, L.; Ding, R.; Mao, Y.; Peng, S.; Li, Z.; Zong, Y.; Wu, D. Water Res. 2021, 202, 117423. doi: 10.1016/j.watres.2021.117423  doi: 10.1016/j.watres.2021.117423

    46. [46]

      Bian, Y.; Chen, X.; Ren, Z. J. Environ. Sci. Technol. 2020, 54 (14), 9116. doi: 10.1021/acs.est.0c01836  doi: 10.1021/acs.est.0c01836

    47. [47]

      Sun, J.; Garg, S.; Waite, T. D. Environ. Sci. Technol. 2023, 57 (39), 14726. doi: 10.1021/acs.est.3c03922  doi: 10.1021/acs.est.3c03922

    48. [48]

      Chen, J.; Zuo, K.; Li, Y.; Huang, X.; Hu, J.; Yang, Y.; Wang, W.; Chen, L.; Jain, A.; Verduzco, R.; et al. Water Res. 2022, 216, 118351. doi: 10.1016/j.watres.2022.118351  doi: 10.1016/j.watres.2022.118351

    49. [49]

      Xiang, S.; Mao, H.; Geng, W.; Xu, Y.; Zhou, H. J. Hazard. Mater. 2022, 431, 128591. doi: 10.1016/j.jhazmat.2022.128591  doi: 10.1016/j.jhazmat.2022.128591

    50. [50]

      Tang, K.; Zheng, H.; Du, P.; Zhou, K. Environ. Sci. Technol. 2022, 56 (12), 8885. doi: 10.1021/acs.est.2c00982  doi: 10.1021/acs.est.2c00982

    51. [51]

      Pi, S.-Y.; Sun, M.-Y.; Zhao, Y.-F.; Chong, Y.-X.; Chen, D.; Liu, H. Chem. Eng. J. 2022, 435, 134967. doi: 10.1016/j.cej.2022.134967  doi: 10.1016/j.cej.2022.134967

    52. [52]

      Wang, Y.; El-Deen, A. G.; Li, P.; Oh, B. H. L.; Guo, Z.; Khin, M. M.; Vikhe, Y. S.; Wang, J.; Hu, R. G.; Boom, R. M.; et al. ACS Nano 2015, 9 (10). doi: 10.1021/acsnano.5b03763  doi: 10.1021/acsnano.5b03763

    53. [53]

      Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater. Sci. 2013, 58 (8), 1388. doi: 10.1016/j.pmatsci.2013.03.005  doi: 10.1016/j.pmatsci.2013.03.005

    54. [54]

      Avraham, E.; Noked, M.; Bouhadana, Y.; Soffer, A.; Aurbach, D. J. Electrochem. Soc. 2009, 156 (10), 157. doi: 10.1149/1.3193709  doi: 10.1149/1.3193709

    55. [55]

      Srimuk, P.; Zeiger, M.; Jäckel, N.; Tolosa, A.; Krüner, B.; Fleischmann, S.; Grobelsek, I.; Aslan, M.; Shvartsev, B.; Suss, M. E.; et al. Electrochim. Acta 2017, 224, 314. doi: 10.1016/j.electacta.2016.12.060  doi: 10.1016/j.electacta.2016.12.060

    56. [56]

      Lee, J.-B.; Park, K.-K.; Eum, H.-M.; Lee, C.-W. Desalination 2006, 196 (1), 125. doi: 10.1016/j.desal.2006.01.011  doi: 10.1016/j.desal.2006.01.011

    57. [57]

      Yang, F.; He, Y.; Rosentsvit, L.; Suss, M. E.; Zhang, X.; Gao, T.; Liang, P. Water Res. 2021, 200, 117222. doi: 10.1016/j.watres.2021.117222  doi: 10.1016/j.watres.2021.117222

    58. [58]

      Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Water Res. 2019, 150, 225. doi: 10.1016/j.watres.2018.11.064  doi: 10.1016/j.watres.2018.11.064

    59. [59]

      Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Chem. Soc. Rev. 2017, 46 (12), 3529. doi: 10.1039/C6CS00776G  doi: 10.1039/C6CS00776G

    60. [60]

      Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788. doi: 10.1021/cr500232y  doi: 10.1021/cr500232y

    61. [61]

      Pasta, M.; Wessells, C. D.; Cui, Y.; La Mantia, F. Nano Lett. 2012, 12 (2), 839. doi: 10.1021/nl203889e  doi: 10.1021/nl203889e

    62. [62]

      Byles, B. W.; Cullen, D. A.; More, K. L.; Pomerantseva, E. Nano Energy 2018, 44, 476. doi: 10.1016/j.nanoen.2017.12.015  doi: 10.1016/j.nanoen.2017.12.015

    63. [63]

      Yuan, S.; Liu, Y.-B.; Xu, D.; Ma, D.-L.; Wang, S.; Yang, X.-H.; Cao, Z.-Y.; Zhang, X.-B. Adv. Sci. 2015, 2 (3), 1400018. doi: 10.1002/advs.201400018  doi: 10.1002/advs.201400018

    64. [64]

      Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Nat. Commun. 2015, 6 (1), 6544. doi: 10.1038/ncomms7544  doi: 10.1038/ncomms7544

    65. [65]

      Bao, W.; Tang, X.; Guo, X.; Choi, S.; Wang, C.; Gogotsi, Y.; Wang, G. Joule 2018, 2 (4), 778. doi: 10.1016/j.joule.2018.02.018  doi: 10.1016/j.joule.2018.02.018

    66. [66]

      Ye, M.; Pasta, M.; Xie, X.; Cui, Y.; Criddle, C. S. Energy Environ. Sci. 2014, 7 (7), 2295. doi: 10.1039/C4EE01034E  doi: 10.1039/C4EE01034E

    67. [67]

      Nam, D.-H.; Choi, K.-S. J. Am. Chem. Soc. 2017, 139 (32), 11055. doi: 10.1021/jacs.7b01119  doi: 10.1021/jacs.7b01119

    68. [68]

      Li, Y.; Ding, Z.; Li, J.; Li, J.; Lu, T.; Pan, L. Desalination 2019, 469, 114098. doi: 10.1016/j.desal.2019.114098  doi: 10.1016/j.desal.2019.114098

    69. [69]

      Wu, Y.; Zeng, R.; Nan, J.; Shu, D.; Qiu, Y.; Chou, S.-L. Adv. Energy Mater. 2017, 7 (24), 1700278. doi: 10.1002/aenm.201700278  doi: 10.1002/aenm.201700278

    70. [70]

      Su, X.; Kushima, A.; Halliday, C.; Zhou, J.; Li, J.; Hatton, T. A. Nat. Commun. 2018, 9 (1), 4701. doi: 10.1038/s41467-018-07159-0  doi: 10.1038/s41467-018-07159-0

    71. [71]

      Li, Q.; Zheng, Y.; Xiao, D.; Or, T.; Gao, R.; Li, Z.; Feng, M.; Shui, L.; Zhou, G.; Wang, X.; Chen, Z. Adv. Sci. 2020, 7 (22), 2002213. doi: 10.1002/advs.202002213  doi: 10.1002/advs.202002213

    72. [72]

      Metzger, M.; Besli, M. M.; Kuppan, S.; Hellstrom, S.; Kim, S.; Sebti, E.; Subban, C. V.; Christensen, J. Energy Environ. Sci. 2020, 13 (6), 1544. doi: 10.1039/D0EE00725K  doi: 10.1039/D0EE00725K

    73. [73]

      Liu, S.; Do, V. Q.; Smith, K. C. Curr. Opin. Electrochem. 2020, 22, 72. doi: 10.1016/j.coelec.2020.05.003  doi: 10.1016/j.coelec.2020.05.003

    74. [74]

      Sun, K.; Tebyetekerwa, M.; Wang, C.; Wang, X.; Zhang, X.; Zhao, X. S. Adv. Funct. Mater. 2023, 33 (18), 2213578. doi: 10.1002/adfm.202213578  doi: 10.1002/adfm.202213578

    75. [75]

      Dutta, S.; de Luis, R. F.; Goscianska, J.; Demessence, A.; Ettlinger, R.; Wuttke, S. Adv. Funct. Mater. 2023, 2304790. doi: 10.1002/adfm.202304790  doi: 10.1002/adfm.202304790

    76. [76]

      Zuo, K.; Garcia-Segura, S.; Cerrón-Calle, G. A.; Chen, F.-Y.; Tian, X.; Wang, X.; Huang, X.; Wang, H.; Alvarez, P. J. J.; Lou, J.; et al. Nat. Rev. Mater. 2023, 8 (7), 472. doi: 10.1038/s41578-023-00564-y  doi: 10.1038/s41578-023-00564-y

    77. [77]

      Hao, Z.; Sun, X.; Chen, J.; Zhou, X.; Zhang, Y. Small 2023, 19 (33), 2300253. doi: 10.1002/smll.202300253  doi: 10.1002/smll.202300253

    78. [78]

      Murphy, G. W.; Caudle, D. D. Electrochim. Acta 1967, 12 (12), 1655. doi: 10.1016/0013-4686(67)80079-3  doi: 10.1016/0013-4686(67)80079-3

    79. [79]

      Johnson, A. M.; Newman, J. J. Electrochem. Soc. 1971, 118 (3), 510. doi: 10.1149/1.2408094.  doi: 10.1149/1.2408094

    80. [80]

      de Levie, R. Electrochim. Acta 1963, 8 (10), 751. doi: 10.1016/0013-4686(63)80042-0  doi: 10.1016/0013-4686(63)80042-0

    81. [81]

      Helmholtz, H. Ann. Phys. 1879, 243 (7), 337. doi: 10.1002/andp.18792430702  doi: 10.1002/andp.18792430702

    82. [82]

      Gouy, M. J. Phys. Theor. Appl. 1910, 9 (1), 457. doi: 10.1051/jphystap:019100090045700.Ajp  doi: 10.1051/jphystap:019100090045700.Ajp

    83. [83]

      Chapman, D. L. Lond. Edinb. Dubl. Phil. Mag. 1913, 25 (148), 475. doi: 10.1080/14786440408634187  doi: 10.1080/14786440408634187

    84. [84]

      Zhao, R.; Biesheuvel, P. M.; van der Wal, A. Energy Environ. Sci. 2012, 5 (11), 9520. doi: 10.1039/C2EE21737F  doi: 10.1039/C2EE21737F

    85. [85]

      Biesheuvel, P. M.; Zhao, R.; Porada, S.; van der Wal, A. J. Colloid Interface Sci. 2011, 360 (1), 239. doi: 10.1016/j.jcis.2011.04.049  doi: 10.1016/j.jcis.2011.04.049

    86. [86]

      Suss, M. E.; Biesheuvel, P. M.; Baumann, T. F.; Stadermann, M.; Santiago, J. G. Environ. Sci. Technol. 2014, 48 (3), 2008. doi: 10.1021/es403682n  doi: 10.1021/es403682n

    87. [87]

      Tang, W.; Kovalsky, P.; He, D.; Waite, T. D. Water Res. 2015, 84, 342. doi: 10.1016/j.watres.2015.08.012  doi: 10.1016/j.watres.2015.08.012

    88. [88]

      Gao, X.; Porada, S.; Omosebi, A.; Liu, K. L.; Biesheuvel, P. M.; Landon, J. Water Res. 2016, 92, 275. doi: 10.1016/j.watres.2016.01.048  doi: 10.1016/j.watres.2016.01.048

    89. [89]

      Biesheuvel, P. M.; Hamelers, H. V. M.; Suss, M. E. Colloids Interface Sci. Commun. 2015, 9, 1. doi: 10.1016/j.colcom.2015.12.001  doi: 10.1016/j.colcom.2015.12.001

    90. [90]

      Guyes, E. N.; Malka, T.; Suss, M. E. Environ. Sci. Technol. 2019, 53 (14), 8447. doi: 10.1021/acs.est.8b06954  doi: 10.1021/acs.est.8b06954

    91. [91]

      Hemmatifar, A.; Oyarzun, D. I.; Palko, J. W.; Hawks, S. A.; Stadermann, M.; Santiago, J. G. Water Res. 2017, 122, 387. doi: 10.1016/j.watres.2017.05.036  doi: 10.1016/j.watres.2017.05.036

    92. [92]

      Li, B.; Zheng, T.; Ran, S.; Sun, M.; Shang, J.; Hu, H.; Lee, P.-H.; Boles, S. T. Environ. Sci. Technol. 2020, 54 (3), 1848. doi: 10.1021/acs.est.9b04749  doi: 10.1021/acs.est.9b04749

    93. [93]

      Shi, C.; Wang, H.; Li, A.; Zhu, G.; Zhao, X.; Wu, F. Water Res. 2023, 230, 119517. doi: 10.1016/j.watres.2022.119517  doi: 10.1016/j.watres.2022.119517

    94. [94]

      Porada, S.; Borchardt, L.; Oschatz, M.; Bryjak, M.; Atchison, J. S.; Keesman, K. J.; Kaskel, S.; Biesheuvel, P. M.; Presser, V. Energy Environ. Sci. 2013, 6 (12), 3700. doi: 10.1039/C3EE42209G  doi: 10.1039/C3EE42209G

    95. [95]

      Patel, S. K.; Qin, M.; Walker, W. S.; Elimelech, M. Environ. Sci. Technol. 2020, 54 (6), 3663. doi: 10.1021/acs.est.9b07482  doi: 10.1021/acs.est.9b07482

    96. [96]

      Nordstrand, J.; Laxman, K.; Myint, M. T. Z.; Dutta, J. J. Phys. Chem. A 2019, 123 (30), 6628. doi: 10.1021/acs.jpca.9b05503  doi: 10.1021/acs.jpca.9b05503

    97. [97]

      Nordstrand, J.; Dutta, J. Langmuir 2020, 36 (5), 1338. doi: 10.1021/acs.langmuir.9b03571  doi: 10.1021/acs.langmuir.9b03571

    98. [98]

      Nordstrand, J.; Dutta, J. Langmuir 2022, 38 (11), 3350. doi: 10.1021/acs.langmuir.1c02806  doi: 10.1021/acs.langmuir.1c02806

    99. [99]

      Smith, K. C.; Dmello, R. J. Electrochem. Soc. 2016, 163 (3), A530. doi: 10.1149/2.0761603jes  doi: 10.1149/2.0761603jes

    100. [100]

      Smith, K. C. Electrochim. Acta 2017, 230, 333. doi: 10.1016/j.electacta.2017.02.006  doi: 10.1016/j.electacta.2017.02.006

    101. [101]

      Liu, S.; Smith, K. C. Electrochim. Acta 2018, 271, 652. doi: 10.1016/j.electacta.2018.03.065  doi: 10.1016/j.electacta.2018.03.065

    102. [102]

      Reale, E. R.; Shrivastava, A.; Smith, K. C. Water Res. 2019, 165, 114995. doi: 10.1016/j.watres.2019.114995  doi: 10.1016/j.watres.2019.114995

    103. [103]

      Singh, K.; Bouwmeester, H. J. M.; de Smet, L. C. P. M.; Bazant, M. Z.; Biesheuvel, P. M. Phys. Rev. Appl. 2018, 9 (6), 064036. doi: 10.1103/PhysRevApplied.9.064036  doi: 10.1103/PhysRevApplied.9.064036

    104. [104]

      He, F.; Biesheuvel, P. M.; Bazant, M. Z.; Hatton, T. A. Water Res. 2018, 132, 282. doi: 10.1016/j.watres.2017.12.073  doi: 10.1016/j.watres.2017.12.073

    105. [105]

      He, F.; Bazant, M. Z.; Hatton, T. A. J. Electrochem. Soc. 2021, 168 (5), 053501. doi: 10.1149/1945-7111/abfefd  doi: 10.1149/1945-7111/abfefd

    106. [106]

      Han, L.; Karthikeyan, K. G.; Anderson, M. A.; Gregory, K. B. J. Colloid Interface Sci. 2014, 430, 93. doi: 10.1016/j.jcis.2014.05.015  doi: 10.1016/j.jcis.2014.05.015

    107. [107]

      Han, B.; Cheng, G.; Wang, Y.; Wang, X. Chem. Eng. J. 2019, 360, 364. doi: 10.1016/j.cej.2018.11.236  doi: 10.1016/j.cej.2018.11.236

    108. [108]

      Zou, L.; Li, L.; Song, H.; Morris, G. Water Res. 2008, 42 (8), 2340. doi: 10.1016/j.watres.2007.12.022  doi: 10.1016/j.watres.2007.12.022

    109. [109]

      Tsouris, C.; Mayes, R.; Kiggans, J.; Sharma, K.; Yiacoumi, S.; DePaoli, D.; Dai, S. Environ. Sci. Technol. 2011, 45 (23), 10243. doi: 10.1021/es201551e  doi: 10.1021/es201551e

    110. [110]

      Li, L.; Zou, L.; Song, H.; Morris, G. Carbon 2009, 47 (3), 775. doi: 10.1016/j.carbon.2008.11.012  doi: 10.1016/j.carbon.2008.11.012

    111. [111]

      Mayes, R. T.; Tsouris, C.; Kiggans, J. O., Jr.; Mahurin, S. M.; DePaoli, D. W.; Dai, S. J. Mater. Chem. 2010, 20 (39), 8674. doi: 10.1039/C0JM01911A  doi: 10.1039/C0JM01911A

    112. [112]

      Porada, S.; Weinstein, L.; Dash, R.; van der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M. ACS Appl. Mater. Interfaces 2012, 4 (3), 1194. doi: 10.1021/am201683j  doi: 10.1021/am201683j

    113. [113]

      Shirbani, M.; Siavashi, M.; Hosseini, M.; Bidabadi, M. J. Energy Storage 2022, 52, 104744. doi: 10.1016/j.est.2022.104744  doi: 10.1016/j.est.2022.104744

    114. [114]

      Fang, W.-Z.; Tang, Y.-Q.; Ban, C.; Kang, Q.; Qiao, R.; Tao, W.-Q. Chem. Eng. J. 2019, 378, 122099. doi: 10.1016/j.cej.2019.122099  doi: 10.1016/j.cej.2019.122099

    115. [115]

      Zakirov, T. R.; Varfolomeev, M. A.; Yuan, C. Chem. Eng. Res. Des. 2023, 189, 14. doi: 10.1016/j.cherd.2022.10.046  doi: 10.1016/j.cherd.2022.10.046

    116. [116]

      Yoshida, H.; Kinjo, T.; Washizu, H. Commun. Nonlinear. Sci. 2014, 19 (10), 3570. doi: 10.1016/j.cnsns.2014.03.005  doi: 10.1016/j.cnsns.2014.03.005

    117. [117]

      Zhang, L.; Wang, M. J. Geophys. Res. Solid Earth 2015, 120 (5), 2877. doi: 10.1002/2014JB011812  doi: 10.1002/2014JB011812

    118. [118]

      Yang, Y.; Wang, M. Cem. Concr. Compos. 2018, 85, 92. doi: 10.1016/j.cemconcomp.2017.09.014  doi: 10.1016/j.cemconcomp.2017.09.014

    119. [119]

      Yang, Y.; Wang, M. J. Colloid Interface Sci. 2018, 514, 443. doi: 10.1016/j.jcis.2017.12.047  doi: 10.1016/j.jcis.2017.12.047

    120. [120]

      Liu, R.; Yao, S.; Li, Y.; Cheng, J. Int. J. Heat Mass Transf. 2019, 135, 769. doi: 10.1016/j.ijheatmasstransfer.2019.01.149  doi: 10.1016/j.ijheatmasstransfer.2019.01.149

    121. [121]

      Liu, R.; Chen, L.; Yao, S.; Shen, Y. J. Mol. Liq. 2021, 332, 115863. doi: 10.1016/j.molliq.2021.115863  doi: 10.1016/j.molliq.2021.115863

    122. [122]

      Liu, R.; Yao, S.; Shen, Y. Desalination 2022, 532, 115718. doi: 10.1016/j.desal.2022.115718  doi: 10.1016/j.desal.2022.115718

    123. [123]

      Liu, M.; Waugh, J.; Babu, S. K.; Spendelow, J. S.; Kang, Q. Desalination 2022, 526, 115520. doi: 10.1016/j.desal.2021.115520  doi: 10.1016/j.desal.2021.115520

    124. [124]

      Liu, R.; Luo, J.; Yao, S.; Yang, Y. Sep. Purif. Technol. 2022, 298, 121626. doi: 10.1016/j.seppur.2022.121626  doi: 10.1016/j.seppur.2022.121626

    125. [125]

      Yao, N.; Chen, X.; Fu, Z.-H.; Zhang, Q. Chem. Rev. 2022, 122 (12), 10970. doi: 10.1021/acs.chemrev.1c00904  doi: 10.1021/acs.chemrev.1c00904

    126. [126]

      Hawks, S. A.; Cerón, M. R.; Oyarzun, D. I.; Pham, T. A.; Zhan, C.; Loeb, C. K.; Mew, D.; Deinhart, A.; Wood, B. C.; Santiago, J. G.; et al. Environ. Sci. Technol. 2019, 53 (18), 10863. doi: 10.1021/acs.est.9b01374  doi: 10.1021/acs.est.9b01374

    127. [127]

      Bone, S. E.; Steinrück, H.-G.; Toney, M. F. Joule 2020, 4 (8), 1637. doi: 10.1016/j.joule.2020.06.020  doi: 10.1016/j.joule.2020.06.020

    128. [128]

      Xu, Y.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. ACS Appl. Mater. Interfaces 2020, 12 (37), 41437. doi: 10.1021/acsami.0c11233  doi: 10.1021/acsami.0c11233

    129. [129]

      Rikhtehgaran, S.; Lohrasebi, A. Desalination 2015, 365, 176. doi: 10.1016/j.desal.2015.02.040  doi: 10.1016/j.desal.2015.02.040

    130. [130]

      Cai, Y.; Zhang, W.; Fang, R.; Zhao, D.; Wang, Y.; Wang, J. Desalination 2021, 520, 115325. doi: 10.1016/j.desal.2021.115325  doi: 10.1016/j.desal.2021.115325

    131. [131]

      Saffarimiandoab, F.; Sabetvand, R.; Zhang, X. J. Mater. Chem. A 2022, 10 (43), 23332. doi: 10.1039/D2TA06006J.  doi: 10.1039/D2TA06006J

    132. [132]

      Noked, M.; Avraham, E.; Bohadana, Y.; Soffer, A.; Aurbach, D. J. Phys. Chem. C 2009, 113 (17), 7316. doi: 10.1021/jp811283b  doi: 10.1021/jp811283b

    133. [133]

      Thøgersen, J.; Réhault, J.; Odelius, M.; Ogden, T.; Jena, N. K.; Jensen, S. J. K.; Keiding, S. R.; Helbing, J. J. Phys. Chem. B 2013, 117 (12), 3376. doi: 10.1021/jp310090u  doi: 10.1021/jp310090u

    134. [134]

      Cerón, M. R.; Aydin, F.; Hawks, S. A.; Oyarzun, D. I.; Loeb, C. K.; Deinhart, A.; Zhan, C.; Pham, T. A.; Stadermann, M.; Campbell, P. G. ACS Appl. Mater. Interfaces 2020, 12 (38), 42644. doi: 10.1021/acsami.0c07903  doi: 10.1021/acsami.0c07903

    135. [135]

      Mao, Y.; Ardham, V. R.; Xu, L.; Cui, P.; Wu, D. Chem. Eng. J. 2021, 415, 128920. doi: 10.1016/j.cej.2021.128920  doi: 10.1016/j.cej.2021.128920

    136. [136]

      Mao, Y.; Zhou, T.; Xu, L.; Wu, W.; Wang, R.; Xiong, Z.; Wu, D.; Shi, H. Chem. Eng. J. 2022, 435, 134750. doi: 10.1016/j.cej.2022.134750  doi: 10.1016/j.cej.2022.134750

    137. [137]

      Bo, Z.; Yang, J.; Qi, H.; Yan, J.; Cen, K.; Han, Z. Energy Stor. Mater. 2020, 31, 64. doi: 10.1016/j.ensm.2020.06.001  doi: 10.1016/j.ensm.2020.06.001

    138. [138]

      Breitsprecher, K.; Janssen, M.; Srimuk, P.; Mehdi, B. L.; Presser, V.; Holm, C.; Kondrat, S. Nat. Commun. 2020, 11 (1), 6085. doi: 10.1038/s41467-020-19903-6  doi: 10.1038/s41467-020-19903-6

    139. [139]

      Deng, W.; Chen, Y.; Wang, Z.; Chen, X.; Gao, M.; Chen, F.; Chen, W.; Ao, T. Water Res. 2022, 222, 118927. doi: 10.1016/j.watres.2022.118927  doi: 10.1016/j.watres.2022.118927

    140. [140]

      Huo, S.; Song, X.; Zhao, Y.; Ni, W.; Wang, H.; Li, K. J. Mater. Chem. A 2020, 8 (38), 19927. doi: 10.1039/D0TA07014A  doi: 10.1039/D0TA07014A

    141. [141]

      Liang, M.; Liu, N.; Zhang, X.; Xiao, Y.; Yang, J.; Yu, F.; Ma, J. Adv. Funct. Mater. 2022, 32 (49), 2209741. doi: 10.1002/adfm.202209741  doi: 10.1002/adfm.202209741

    142. [142]

      Zhang, Z.; Li, H. Chem. Eng. J. 2022, 447, 137438. doi: 10.1016/j.cej.2022.137438  doi: 10.1016/j.cej.2022.137438

    143. [143]

      Liu, N.; Yu, L.; Liu, B.; Yu, F.; Li, L.; Xiao, Y.; Yang, J.; Ma, J. Adv. Sci. 2023, 10 (2), 2204041. doi: 10.1002/advs.202204041  doi: 10.1002/advs.202204041

    144. [144]

      Singh, K.; Li, G.; Lee, J.; Zuilhof, H.; Mehdi, B. L.; Zornitta, R. L.; de Smet, L. C. P. M. Adv. Funct. Mater. 2021, 31 (41), 2105203. doi: 10.1002/adfm.202105203  doi: 10.1002/adfm.202105203

    145. [145]

      Liu, Z.; Li, H. Energy Environ. Mater. 2023, 6 (1), e12255. doi: 10.1002/eem2.12255  doi: 10.1002/eem2.12255

    146. [146]

      Gong, S.; Liu, H.; Zhao, F.; Zhang, Y.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Li, C.; Peng, W.; et al. ACS Nano 2023, 17 (5), 4843. doi: 10.1021/acsnano.2c11430  doi: 10.1021/acsnano.2c11430

    147. [147]

      Tang, K.; Hong, T. Z. X.; You, L.; Zhou, K. J. Mater. Chem. A 2019, 7 (47), 26693. doi: 10.1039/C9TA08663C  doi: 10.1039/C9TA08663C

    148. [148]

      Dickinson, E. J. F.; Ekström, H.; Fontes, E. Electrochem. Commun. 2014, 40, 71. doi: 10.1016/j.elecom.2013.12.020  doi: 10.1016/j.elecom.2013.12.020

    149. [149]

      Zang, X.; Xue, Y.; Ni, W.; Li, C.; Hu, L.; Zhang, A.; Yang, Z.; Yan, Y.-M. ACS Appl. Mater. Interfaces 2020, 12 (2), 2180. doi: 10.1021/acsami.9b12744  doi: 10.1021/acsami.9b12744

    150. [150]

      Liu, M.; Xu, M.; Xue, Y.; Ni, W.; Huo, S.; Wu, L.; Yang, Z.; Yan, Y.-M. ACS Appl. Mater. Interfaces 2018, 10 (37), 31260. doi: 10.1021/acsami.8b08232  doi: 10.1021/acsami.8b08232

    151. [151]

      Zang, X.; Fu, Z.; Wang, D.; Yuan, Z.; Shi, N.; Yang, Z.; Yan, Y.-M. J. Mater. Chem. A 2022, 10 (18), 9988. doi: 10.1039/D2TA00611A  doi: 10.1039/D2TA00611A

    152. [152]

      Xiong, Y.; Yu, F.; Arnold, S.; Wang, L.; Presser, V.; Ren, Y.; Ma, J. Research 2021, 2021. doi: 10.34133/2021/9754145  doi: 10.34133/2021/9754145

    153. [153]

      Liu, X.; Xu, X.; Xuan, X.; Xia, W.; Feng, G.; Zhang, S.; Wu, Z.-G.; Zhong, B.; Guo, X.; Xie, K.; et al. J. Am. Chem. Soc. 2023, 145 (16), 9242. doi: 10.1021/jacs.3c01755  doi: 10.1021/jacs.3c01755

    154. [154]

      Nordstrand, J.; Zuili, L.; Toledo-Carrillo, E. A.; Dutta, J. Desalination 2022, 525, 115493. doi: 10.1016/j.desal.2021.115493  doi: 10.1016/j.desal.2021.115493

    155. [155]

      Nordstrand, J.; Dutta, J. SoftwareX 2022, 20, 101234. doi: 10.1016/j.softx.2022.101234  doi: 10.1016/j.softx.2022.101234

    156. [156]

      Nordstrand, J. Desalination 2023, 566, 116899. doi: 10.1016/j.desal.2023.116899  doi: 10.1016/j.desal.2023.116899

    157. [157]

      Nordstrand, J.; Dutta, J. Desalination 2023, 565, 116865. doi: 10.1016/j.desal.2023.116865  doi: 10.1016/j.desal.2023.116865

    158. [158]

      Laxman, K.; Husain, A.; Nasser, A.; Al Abri, M.; Dutta, J. Desalination 2019, 449, 111. doi: 10.1016/j.desal.2018.10.021  doi: 10.1016/j.desal.2018.10.021

    159. [159]

      Gaikwad, M. S.; Balomajumder, C.; Tiwari, A. K. Chemosphere 2020, 254, 126781. doi: 10.1016/j.chemosphere.2020.126781  doi: 10.1016/j.chemosphere.2020.126781

    160. [160]

      Yan, L.; Annor Asare, J.; Wu, B.; Gang, H.; Wei, D.; Cao, Y.; Chen, P.; Wang, H.; Huang, L. ACS ES&T Water 2023, 3 (8), 2753. doi: 10.1021/acsestwater.3c00242  doi: 10.1021/acsestwater.3c00242

    161. [161]

      He, C.; Lian, B.; Ma, J.; Zhang, C.; Wang, Y.; Mo, H.; Waite, T. D. Water Res. 2021, 203, 117498. doi: 10.1016/j.watres.2021.117498  doi: 10.1016/j.watres.2021.117498

    162. [162]

      Lado, J. J.; Cartolano, V.; García-Quismondo, E.; García, G.; Almonacid, I.; Senatore, V.; Naddeo, V.; Palma, J.; Anderson, M. A. Desalination 2021, 501, 114912. doi: 10.1016/j.desal.2020.114912  doi: 10.1016/j.desal.2020.114912

    163. [163]

      Zhang, X.; Zhou, H.; He, Z.; Zhang, H.; Zhao, H. Water Res. 2022, 220, 118642. doi: 10.1016/j.watres.2022.118642  doi: 10.1016/j.watres.2022.118642

    164. [164]

      Yoon, N.; Lee, S.; Park, S.; Son, M.; Cho, K. H. Desalination 2023, 561, 116676. doi: 10.1016/j.desal.2023.116676  doi: 10.1016/j.desal.2023.116676

    165. [165]

      Newhart, K. B.; Holloway, R. W.; Hering, A. S.; Cath, T. Y. Water Res. 2019, 157, 498. doi: 10.1016/j.watres.2019.03.030  doi: 10.1016/j.watres.2019.03.030

    166. [166]

      Jordan, M. I.; Mitchell, T. M. Science 2015, 349 (6245), 255. doi: 10.1126/science.aaa8415  doi: 10.1126/science.aaa8415

    167. [167]

      Saffarimiandoab, F.; Mattesini, R.; Fu, W.; Kuruoglu, E. E.; Zhang, X. J. Mater. Chem. A 2021, 9 (4), 2259. doi: 10.1039/D0TA09531A  doi: 10.1039/D0TA09531A

    168. [168]

      Saffarimiandoab, F.; Mattesini, R.; Fu, W.; Kuruoglu, E. E.; Zhang, X. Desalination 2021, 515, 115197. doi: 10.1016/j.desal.2021.115197  doi: 10.1016/j.desal.2021.115197

    169. [169]

      Dykstra, J. E.; Keesman, K. J.; Biesheuvel, P. M.; van der Wal, A. Water Res. 2017, 119, 178. doi: 10.1016/j.watres.2017.04.039  doi: 10.1016/j.watres.2017.04.039

    170. [170]

      Son, M.; Yoon, N.; Jeong, K.; Abass, A.; Logan, B. E.; Cho, K. H. Desalination 2021, 516, 115233. doi: 10.1016/j.desal.2021.115233  doi: 10.1016/j.desal.2021.115233

    171. [171]

      Park, S.; Angeles, A. T.; Son, M.; Shim, J.; Chon, K.; Cho, K. H. Desalination 2022, 537, 115826. doi: 10.1016/j.desal.2022.115826  doi: 10.1016/j.desal.2022.115826

    172. [172]

      Son, M.; Yoon, N.; Park, S.; Abbas, A.; Cho, K. H. Sci. Total Environ. 2023, 856, 159158. doi: 10.1016/j.scitotenv.2022.159158  doi: 10.1016/j.scitotenv.2022.159158

    173. [173]

      Salari, K.; Zarafshan, P.; Khashehchi, M.; Pipelzadeh, E.; Chegini, G. Desalination 2022, 540, 115992. doi: 10.1016/j.desal.2022.115992  doi: 10.1016/j.desal.2022.115992

    174. [174]

      Schmidhuber, J. Neural Netw. 2015, 61, 85. doi: 10.1016/j.neunet.2014.09.003  doi: 10.1016/j.neunet.2014.09.003

    175. [175]

      Zhu, L.; Cui, Y.; Takami, G.; Kanokogi, H.; Matsubara, T. Control. Eng. Pract. 2020, 97, 104331. doi: 10.1016/j.conengprac.2020.104331  doi: 10.1016/j.conengprac.2020.104331

    176. [176]

      Yoon, N.; Park, S.; Son, M.; Cho, K. H. Water Res. 2022, 227, 119337. doi: 10.1016/j.watres.2022.119337  doi: 10.1016/j.watres.2022.119337

    177. [177]

      Ullah, Z.; Yoon, N.; Tarus, B. K.; Park, S.; Son, M. Desalination 2023, 558, 116614. doi: 10.1016/j.desal.2023.116614  doi: 10.1016/j.desal.2023.116614

    178. [178]

      Zhu, Y.; Lian, B.; Wang, Y.; Miller, C.; Bales, C.; Fletcher, J.; Yao, L.; Waite, T. D. Water Res. 2022, 227, 119349. doi: 10.1016/j.watres.2022.119349  doi: 10.1016/j.watres.2022.119349

    179. [179]

      Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. J. Ind. Inf. Integration 2022, 30, 100383. doi: 10.1016/j.jii.2022.100383  doi: 10.1016/j.jii.2022.100383

    180. [180]

      Lian, B.; Zhu, Y.; Branchaud, D.; Wang, Y.; Bales, C.; Bednarz, T.; Waite, T. D. Desalination 2022, 525, 115482. doi: 10.1016/j.desal.2021.115482  doi: 10.1016/j.desal.2021.115482

    181. [181]

      Omosebi, A.; Li, Z.; Holubowitch, N.; Gao, X.; Landon, J.; Cramer, A.; Liu, K. Environ. Sci.: Water Res. Technol. 2020, 6 (2), 321. doi: 10.1039/C9EW00797K  doi: 10.1039/C9EW00797K

    182. [182]

      Hand, S.; Guest, J. S.; Cusick, R. D. Environ. Sci. Technol. 2019, 53 (22), 13353. doi: 10.1021/acs.est.9b04347  doi: 10.1021/acs.est.9b04347

    183. [183]

      Hasseler, T. D.; Ramachandran, A.; Tarpeh, W. A.; Stadermann, M.; Santiago, J. G. Water Res. 2020, 183, 116034. doi: 10.1016/j.watres.2020.116034  doi: 10.1016/j.watres.2020.116034

    184. [184]

      Kim, H.; Kim, S.; Kim, N.; Su, X.; Kim, C. Desalination 2023, 549, 116350. doi: 10.1016/j.desal.2022.116350  doi: 10.1016/j.desal.2022.116350

    185. [185]

      Xu, Z.; Duan, H.; Dou, Z.; Zheng, M.; Lin, Y.; Xia, Y.; Zhao, H.; Xia, Y. npj Comput. Mater. 2023, 9 (1), 105. doi: 10.1038/s41524-023-01049-w  doi: 10.1038/s41524-023-01049-w

    186. [186]

      Zhang, X.; Zhang, Z.; Yao, S.; Chen, A.; Zhao, X.; Zhou, Z. npj Comput. Mater. 2018, 4 (1), 13. doi: 10.1038/s41524-018-0070-2  doi: 10.1038/s41524-018-0070-2

    187. [187]

      Mundt, M.; Hong, Y.; Pliushch, I.; Ramesh, V. Neural Netw. 2023, 160, 306. doi: 10.1016/j.neunet.2023.01.014  doi: 10.1016/j.neunet.2023.01.014

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    8. [8]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    9. [9]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    10. [10]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    11. [11]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    16. [16]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    17. [17]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    18. [18]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    19. [19]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    20. [20]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

Metrics
  • PDF Downloads(13)
  • Abstract views(401)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return