Citation:
Xingchao Zhao, Xiaoming Li, Ming Liu, Zijin Zhao, Kaixuan Yang, Pengtian Liu, Haolan Zhang, Jintai Li, Xiaoling Ma, Qi Yao, Yanming Sun, Fujun Zhang. 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 231102.
doi:
10.3866/PKU.WHXB202311021
-
我们以宽带隙聚合物聚(3-己基噻吩) (P3HT)为给体,窄带隙聚合物聚{2,2'-((2Z,2'Z)-((12,13-双(2-癸基十四烷基)-6-(2-乙基己基)-4,8-二甲基-6,8,12,13-四氢-4氢-苯并[1,2,3]三唑并噻吩[2'',3'':4',5']并吡咯[2',3':4,5]并吡咯[3,2-g]并噻吩[2',3':4,5]并吡咯[3,2-b]并[4,5-e]吲哚-2,10-二基)双(甲烷亚甲基))双(5,5’-3-氧-2,3-二氢-1氢-2,1-二亚基茚))二丙二腈-连-2,5-二噻吩} (PTz-PT)为受体,研制了基于氧化铟锡(ITO)/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸) (PEDOT:PSS)/有源层/Al结构的倍增型全聚合物光电探测器(PM-APDs)。我们制备了P3HT : PTz-PT质量比为100 : 1、100 : 4、100 : 7和100 : 10的四种不同比例的二元PM-APDs。在黑暗条件下,由于Al的功函数和P3HT的最高已占据分子轨道(HOMO)之间存在0.8 eV的能级差距,空穴难以从铝电极注入到有源层中。有源层中的PTz-PT含量较低,缺乏连续的电子传输通道,导致有源层的电子传输能力较差。在光照条件下,由于有源层中PTz-PT含量较低,并且P3HT和PTz-PT的最低未占据分子轨道(LUMO)相差0.84 eV,光生电子会被孤立的PTz-PT捕获。Al电极附近的受陷电子会引起界面能带弯曲,实现空穴隧穿注入,从而导致外量子效率(EQE)值大于100%。在-8 V偏压下,基于P3HT : PTz-PT (100:4 wt/wt)的最优二元PM-APDs在300-1100 nm的光谱范围内具有超过100%的EQE。PM-APDs的EQE光谱形状取决于铝电极附近的受陷电子分布。通过引入聚合物聚(2-(4,8-双(4-(2-乙基己基)环戊二烯并-1,3-啶-1-基)苯并[1,2-b:4,5-b']二噻吩-2-基)-5,5-二氟-10-(5-(2-己基癸基)噻吩-2-基)-3,7-二甲基-5H-4λ4,5λ4-二吡咯[1,2-c:2',1'-f][1,3,2]二氮杂硼嗪) (PMBBDT)作为第三组分,PM-APDs的EQE光谱形状变得更平坦。我们制备了P3HT : PMBBDT : PTz-PT质量比分别为90 : 10 : 4和80 : 20 : 4的三元PM-APDs。三元PM-APDs的EQE值在420-600 nm的范围内提高,而在630-870 nm的范围内降低。三元PM-APDs具有更平坦的EQE光谱是由于其在Al电极附近的受陷电子分布更均匀。此外,在连续光照和外加偏压的条件下,三元PM-APDs的稳定性高于最优二元PM-APDs。在-12 V偏压下,最优三元PM-APDs的EQE值在350 nm处为3500%,在550 nm处为1250%,在900 nm处为1500%。在-10 V偏压下,最优三元PM-APDs的比探测度(D*shot)值在520 nm处为3.7 × 1012 Jones,在850 nm处为1.9 × 1013 Jones。最优三元PM-APDs在-10 V偏压下被白光连续照射170 min后,光电流为初始值的87%。我们利用最优三元PM-APDs搭建了光电容积描记(PPG)传感器并成功地测量了人体心率(HR),测得的HR与人体正常心率相符。
-
-
-
[1]
-
[2]
(2) Xu, W.; Zhang, M.; Ma, X.; Zhu, X.; Jeong, S. Y.; Woo, H. Y.; Zhang, J.; Du, W.; Wang, J.; Liu, X.; et al. Adv. Funct. Mater. 2023, 33 (28), 2215204. doi: 10.1002/adfm.202215204
-
[3]
-
[4]
(4) Yan, T.; Li, Z.; Su, L.; Wu, L.; Fang, X. Adv. Funct. Mater. 2023, 33 (31), 2302746. doi: 10.1002/adfm.202302746
-
[5]
-
[6]
(6) Xing, S.; Kublitski, J.; Hanisch, C.; Winkler, L. C.; Li, T. Y.; Kleemann, H.; Benduhn, J.; Leo, K. Adv. Sci. 2022, 9 (7), 2105113. doi: 10.1002/advs.202105113
-
[7]
(7) Suthar, G.; Hsiao, Y. T.; Tsai, K. W.; Liao, C. Y.; Chu, C. W.; Chang, Y. M.; Chen, F. C. Adv. Funct. Mater. 2023, 33 (32), 2301538. doi: 10.1002/adfm.202301538
-
[8]
(8) Xu, Y.; Lin, Q. Appl. Phys. Rev. 2020, 7, 011315. doi: 10.1063/1.5144840
-
[9]
(9) Lan, Z.; Lee, M.; Zhu, F. Adv. Intell. Syst. 2021, 4 (3), 2100167. doi: 10.1002/aisy.202100167
-
[10]
(10) Bai, S.; Li, R.; Huang, H.; Qi, Y.; Xu, Y.; Song, J.; Yao, F.; Sandberg, O. J.; Meredith, P.; Armin, A.; et al. Appl. Phys. Rev. 2022, 9, 021405. doi: 10.1063/5.0083361
-
[11]
(11) Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F. Sci. Rep. 2015, 5, 9181. doi: 10.1038/srep09181
-
[12]
(12) Li, L.; Zhang, F.; Wang, W.; Fang, Y.; Huang, J. Phys. Chem. Chem. Phys. 2015, 17, 30712. doi: 10.1039/C5CP05557A
-
[13]
(13) Wang, J.; Zhao, Z.; Yang, K.; Chen, L.; Liu, M.; Zhang, F. Acta Polym. Sin. 2022, 53 (4), 331. doi: 10.11777/j.issn1000-3304.2021.21328
-
[14]
(14) Liu, M.; Miao, J.; Wang, J.; Zhao, Z.; Yang, K.; Zhang, X.; Peng, H.; Zhang, F. J. Mater. Chem. C 2020, 8, 9854. doi: 10.1039/D0TC01793K
-
[15]
(15) Liu, Z.; Ma, X.; Xu, W.; Zhang, S.; Xu, C.; Jeong, S. Y; Woo, H. Y; Zhou, Z.; Zhang, F. Chem. Eng. J. 2022, 450, 138146. doi: 10.1016/j.cej.2022.138146
-
[16]
(16) Wang, J.; Chen, S.; Yin, Z.; Zheng, Q. J. Mater. Chem. C 2020, 8, 14049. doi: 10.1039/D0TC02708A
-
[17]
(17) Zhao, Z.; Wang, J.; Xu, C.; Yang, K.; Zhao, F.; Wang, K.; Zhang, X.; Zhang, F. J. Phys. Chem. Lett. 2020, 11 (2), 366. doi: 10.1021/acs.jpclett.9b03323
-
[18]
(18) Yang, K.; Wang, J.; Zhao, Z.; Zhou, Z.; Liu, M.; Zhang, J.; He, Z.; Zhang, F. ACS Appl. Mater. Interfaces 2021, 13 (18), 21565. doi: 10.1021/acsami.1c06486
-
[19]
(19) Yang, K.; Zhao, Z.; Liu, M.; Niu, L.; Zhao, X.; Yuan, G.; Ma, X.; Zhang, F. J. Mater. Chem. C 2022, 10, 10888. doi: 10.1039/D2TC02144G
-
[20]
(20) Zhao, Z.; Liu, B.; Xie, C.; Ma, Y.; Wang, J.; Liu, M.; Yang, K.; Xu, Y.; Zhang, J.; Li, W.; et al. Sci. China Chem. 2021, 64, 1302. doi: 10.1007/s11426-021-1008-9
-
[21]
(21) Wu, Y.; Fukuda, K.; Yokota, T.; Someya, T. Adv. Mater. 2019, 31 (43), 1903687. doi: 10.1002/adma.201903687
-
[22]
(22) Yoon, S.; Lee, G. S.; Sim, K. M.; Kim, M. J.; Kim, Y. H.; Chung, D.S. Adv. Funct. Mater. 2021, 31 (1), 2006448. doi: 10.1002/adfm.202006448
-
[23]
(23) Yang, L.; Guo, D.; Li, J.; He, G.; Yang, D.; Vadim, A.; Ma, D. Adv. Funct. Mater. 2022, 32 (20), 2108839. doi: 10.1002/adfm.202108839
-
[24]
(24) Liu, M.; Fan, Q.; Yang, K.; Zhao, Z.; Zhao, X.; Zhou, Z.; Zhang, J.; Lin, F.; Jen, A. K. Y.; Zhang, F. Sci. China Chem. 2022, 65, 1642. doi: 10.1007/s11426-022-1296-2
-
[25]
(25) Zhang, H.; Liu, M.; Zhao, X.; Ma, X.; Yuan, G.; Li, J.; Zhang, F. Appl. Phys. Lett. 2023, 123, 111101. doi: 10.1063/5.0168626
-
[26]
(26) Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Adv. Funct. Mater. 2018, 28 (11), 1706690. doi: 10.1002/adfm.201706690
-
[27]
(27) Ren, Z.; Sun, J.; Li, H.; Mao, P.; Wei, Y.; Zhong, X.; Hu, J.; Yang, S.; Wang, J. Mater. 2017, 29 (33), 1702055. doi: 10.1002/adma.201702055
-
[28]
(28) Simone, G.; Dyson, M. J.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Adv. Funct. Mater. 2020, 30 (20), 1904205. doi: 10.1002/adfm.201904205
-
[29]
(29) Zhong, Z.; Peng, F.; Huang, Z.; Ying, L.; Yu, G.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2020, 12 (40), 45092. doi: 10.1021/acsami.0c13833
-
[30]
(30) Zhao, Z.; Xu, C.; Niu, L.; Zhang, X.; Zhang, F. Laser Photon. Rev. 2020, 14 (11), 2000262. doi: 10.1002/lpor.202000262
-
[31]
(31) Guo, D.; Xu, Z.; Yang, D.; Ma, D.; Tang, B.; Vadim, A. Nanoscale 2020, 12 (4), 2648. doi: 10.1039/c9nr09386a
-
[32]
(32) Liu, Z.; Zhang, M.; Zhang, L.; Jeong, S.; Geng, S.; Woo, H.; Zhang, J.; Zhang, F.; Ma, X. Chem. Eng. J. 2023, 47, 144711. doi: 10.1016/j.cej.2023.144711
-
[33]
(33) Yan, X.; Wu, J.; Lv, J.; Zhang, L.; Zhang, R.; Guo, X.; Zhang, M. J. Mater. Chem. A 2022, 10, 15605. doi: 10.1039/D2TA03941A
-
[34]
(34) Kielar, M.; Hamid, T.; Wiemer, M.; Windels, F.; Hirsch, L.; Sah, P.; Pandey, A. K. Adv. Funct. Mater. 2020, 30 (9), 1907964. doi: 10.1002/adfm.201907964
-
[35]
(35) Li, R.; Peng, J.; Xu, Y.; Li, W.; Cui, L.; Li, Y.; Lin, Q. Adv. Opt. Mater. 2021, 9 (2), 2001587. doi: 10.1002/adom.202001587
-
[36]
(36) Guo, D.; Yang, L.; Zhao, J.; Li, J.; He, G.; Yang, D.; Wang, L.; Vadim, A.; Ma, D. Mater. Horizons 2021, 8, 2293. doi: 10.1039/D1MH00776A
-
[37]
(37) Li, C.; Wang, H.; Wang, F.; Li, T.; Xu, M.; Wang, H.; Wang, Z.; Zhan, X.; Hu, W.; Shen, L. Light Sci. Appl. 2020, 9, 31. doi: 10.1038/s41377-020-0264-5
-
[38]
(38) Zhang, X.; Zheng, E.; Esopi, M. R.; Cai, C.; Yu, Q. ACS Appl. Mater. Interfaces 2018, 10 (28), 24064. doi: 10.1021/acsami.8b06861
-
[39]
(39) Arquer, G. F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Nat. Rev. Mater. 2017, 2, 16100. doi: 10.1038/natrevmats.2016.100
-
[40]
(40) Weng, S.; Zhao, M.; Jiang, D. J. Phys. Chem. C 2021, 125 (37),20639. doi: 10.1021/acs.jpcc.1c06291
-
[41]
(41) Xing, S.; Nikolis, V. C.; Kublitski, J.; Guo, E.; Jia, X.; Wang, Y.; Spoltore, D.; Vandewal, K.; Kleemann, H.; Benduhn, J.; et al. Adv.Mater. 2021, 33 (44), 2102967. doi: 10.1002/adma.202102967
-
[42]
(42) Zhang, K.; Lv, L.; Wang, X.; Mi, Y.; Chai, R.; Liu, X.; Shen, G.; Peng, A.; Huang, H. ACS Appl. Mater. Interfaces 2018, 10 (2), 1917. doi: 10.1021/acsami.7b15245
-
[43]
(43) Gao, L.; Ge, C.; Li, W.; Jia, C.; Zeng, K.; Pan W.; Wu H.; Zhao Y.; He, Y.; He, J.; et al. Adv. Funct. Mater. 2017, 27 (33), 1702360. doi: 10.1002/adfm.201702360
-
[44]
(44) Kublitski, J.; Fischer, A.; Xing, S.; Baisinger, L.; Bittrich, E.; Spoltore, D.; Benduhn, J.; Vandewal, K.; Leo, K. Nat. Commun. 2021, 12, 4259. doi: 10.1038/s41467-021-24500-2
-
[45]
(45) Ollearo, R.; Ma, X.; Akkerman, H. B.; Fattori, M.; Dyson, M. J.; Breemen, A. J. J. M.; Meskers, S. C. J.; Dijkstra, W.; Janssen, R. A. J.; Gelinck, G. H. Sci. Adv. 2023, 9 (7), adf9861. doi: 10.1126/sciadv.adf9861
-
[46]
(46) Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. Nat. Commun. 2014, 5, 5745. doi: 10.1038/ncomms6745
-
[47]
(47) Simone, G.; Tordera, D.; Delvitto, E.; Peeters, B.; Breemen, A. J. J. M.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Adv. Opt. Mater. 2020, 8 (10), 1901989. doi: 10.1002/adom.201901989
-
[48]
(48) Simões, J.; Dong, T.; Yang, Z. Adv. Mater. Interfaces 2022, 9 (10), 2101897. doi: 10.1002/admi.202101897
-
[49]
(49) Cao, Y.; Yang, X.; Liu, C.; Huang, F. Acta Polym. Sin. 2022, 53 (4), 307. doi: 10.11777/j.issn1000-3304.2021.21391
-
[50]
(50) Zhao, Z.; Liu, B.; Xu, C.; Li, L.; Liu, M.; Yang, K.; Jeong, S. Y.; Woo, H. Y.; Yuan, G.; Li, W.; et al. J. Mater. Chem. C 2022, 10, 7822. doi: 10.1039/D2TC01297A
-
[51]
(51) Kim, J. H.; Liess, A.; Stolte, M.; Krause, A. M.; Stepanenko, V.; Zhong, C.; Bialas, D.; Spano, F.; Wurthner, F. Adv. Mater. 2021, 33 (26), 2100582. doi: 10.1002/adma.202100582
-
[52]
(52) Kang, M.; Ko, S. M.; Kim, J.; Hassan, S. Z.; Jee, D. W.; Chung D. S. Mater. Horizons 2020, 7, 3034. doi: 10.1039/D0MH01234C
-
[1]
-
-
-
[1]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004
-
[2]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
-
[3]
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
-
[4]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[5]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[6]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[7]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[8]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[9]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[10]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[11]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[12]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[13]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042
-
[14]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[15]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[16]
Xuefei Leng , Yanshai Wang , Hai Wang , Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105
-
[17]
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
-
[18]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[19]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[20]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(140)
- HTML views(25)