Citation: Xingchao Zhao, Xiaoming Li, Ming Liu, Zijin Zhao, Kaixuan Yang, Pengtian Liu, Haolan Zhang, Jintai Li, Xiaoling Ma, Qi Yao, Yanming Sun, Fujun Zhang. Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100007. doi: 10.3866/PKU.WHXB202311021 shu

Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor

  • Corresponding author: Yanming Sun, sunym@buaa.edu.cn Fujun Zhang, fjzhang@bjtu.edu.cn
  • Received Date: 13 November 2023
    Revised Date: 15 December 2023
    Accepted Date: 18 December 2023

    Fund Project: the Fundamental Research Funds for the Central Universities of China 2023YJS080Beijing Natural Science Foundation 4232073National Natural Science Foundation of China U22A6002National Natural Science Foundation of China 62105017

  • Photomultiplication-type all-polymer photodetectors (PM-APDs) based on structure of ITO/poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS)/active layer/Al were developed with wide bandgap polymer poly(3-hexylthiophene) (P3HT) as donor and narrow bandgap polymer poly{2, 2'-((2Z, 2'Z)-((12, 13-bis(2-decyltetradecyl)-6-(2-ethylhexyl)-4, 8-dimethyl-6, 8, 12, 13-tetrahydro-4H-thieno[2'', 3'': 4', 5']pyrrolo[2', 3': 4, 5]pyrrolo[3, 2-g]thieno[2', 3': 4, 5]pyrrolo[3, 2-b][1, 2, 3] triazolo[4, 5-e]indole-2, 10-diyl)bis(methaneylylidene))bis(5, 5'-3-oxo-2, 3-dihydro-1H-indene-2, 1-diylidene))dimalononitrile-alt-2, 5-dithiophene} (PTz-PT) as acceptor. A series of binary PM-APDs were prepared with P3HT : PTz-PT weight ratios of 100 : 1, 100 : 4, 100 : 7, and 100 : 10. In the dark, the holes are difficultly injected from Al electrode into the active layer due to the 0.8 eV injection barriers from the work function of Al onto the highest occupied molecular orbital (HOMO) level of P3HT. The limited PTz-PT content in the active layer results in the absence of continuous electron transport channel, leading to poor electron transport ability. The photogenerated electrons are trapped in isolated PTz-PT under light illumination due to the scarce PTz-PT content in active layer and 0.84 eV difference between the lowest unoccupied molecular orbital (LUMO) of P3HT and PTz-PT. The trapped electrons near the Al electrode induce interfacial band bending for hole tunneling injection, leading to external quantum efficiency (EQE) values exceeding 100%. The optimal binary PM-APDs based on P3HT : PTz-PT (100 : 4 wt/wt) exhibit a spectral response range from 300 to 1100 nm with EQE values over 100% at -8 V bias. The EQE spectral shape of PM-APDs is determined by the distribution of trapped electrons near the Al electrode. The shape of EQE spectra is further flattened by introducing polymer poly(2-(4, 8-bis(4-(2-ethylhexyl)cyclopenta-1, 3-dien-1-yl)benzo[1, 2-b: 4, 5-b']dithiophen-2-yl)-5, 5-difluoro-10-(5-(2-hexyldecyl)thiophen-2-yl)-3, 7-dimethyl-5H-4λ4, 5λ4-dipyrrolo[1, 2-c: 2', 1'-f][1, 3, 2]diazaborinine) (PMBBDT) as the third component. A series of ternary PM-APDs with P3HT : PMBBDT : PTz-PT weight ratios of 90 : 10 : 4 and 80 : 20 : 4 were prepared. The EQE values of ternary PM-APDs are increased in the range from 420 to 600 nm and decreased in the range from 630 to 870 nm. The flatter EQE spectra of ternary PM-APDs are derived from more uniform distribution of trapped electrons near the Al electrode. Furthermore, the ternary PM-APDs exhibit higher stability under continuous illumination and applied bias than the optimal binary PM-APDs. The optimal ternary PM-APDs exhibit EQE values of 3500% at 350 nm, 1250% at 550 nm and 1500% at 900 nm under −12 V bias, as well as specific detectivity (Dshot*) values of 3.7 × 1012 Jones at 520 nm and 1.9 × 1013 Jones at 850 nm under −10 V bias. After 170 min continuous white light illumination at −10 V bias, the optimal ternary PM-APDs possess photocurrent of 87% initial value. A photoplethysmography (PPG) sensor was successfully realized by employing the optimal ternary PM-APDs to measure human heart rate (HR), with the measured HR consistent with the normal value of human HR.
  • 加载中
    1. [1]

      Hu, C.; Hu, J.; Liu, M.; Zhou, Y.; Rong, J.; Zhou, J. Acta Phys. -Chim. Sin. 2022, 38 (1), 2012083.  doi: 10.3866/PKU.WHXB202012083

    2. [2]

      Xu, W.; Zhang, M.; Ma, X.; Zhu, X.; Jeong, S. Y.; Woo, H. Y.; Zhang, J.; Du, W.; Wang, J.; Liu, X.; et al. Adv. Funct. Mater. 2023, 33 (28), 2215204. doi: 10.1002/adfm.202215204  doi: 10.1002/adfm.202215204

    3. [3]

      Liu, B.; Gao, H.; Hu, S.; Liu, C. Acta Phys. -Chim. Sin. 2022, 38 (12), 2204052.  doi: 10.3866/PKU.WHXB202204052

    4. [4]

      Yan, T.; Li, Z.; Su, L.; Wu, L.; Fang, X. Adv. Funct. Mater. 2023, 33 (31), 2302746. doi: 10.1002/adfm.202302746  doi: 10.1002/adfm.202302746

    5. [5]

      Xue, G.; Li, J.; Chen, J.; Chen, D.; Hu, C.; Tang, L.; Chen, B.; Yi, R.; Shen, Y.; Chen, L. Acta Phys. -Chim. Sin. 2023, 39 (8), 2205012.  doi: 10.3866/PKU.WHXB202205012

    6. [6]

      Xing, S.; Kublitski, J.; Hanisch, C.; Winkler, L. C.; Li, T. Y.; Kleemann, H.; Benduhn, J.; Leo, K. Adv. Sci. 2022, 9 (7), 2105113. doi: 10.1002/advs.202105113  doi: 10.1002/advs.202105113

    7. [7]

      Suthar, G.; Hsiao, Y. T.; Tsai, K. W.; Liao, C. Y.; Chu, C. W.; Chang, Y. M.; Chen, F. C. Adv. Funct. Mater. 2023, 33 (32), 2301538. doi: 10.1002/adfm.202301538  doi: 10.1002/adfm.202301538

    8. [8]

      Xu, Y.; Lin, Q. Appl. Phys. Rev. 2020, 7, 011315. doi: 10.1063/1.5144840  doi: 10.1063/1.5144840

    9. [9]

      Lan, Z.; Lee, M.; Zhu, F. Adv. Intell. Syst. 2021, 4 (3), 2100167. doi: 10.1002/aisy.202100167  doi: 10.1002/aisy.202100167

    10. [10]

      Bai, S.; Li, R.; Huang, H.; Qi, Y.; Xu, Y.; Song, J.; Yao, F.; Sandberg, O. J.; Meredith, P.; Armin, A.; et al. Appl. Phys. Rev. 2022, 9, 021405. doi: 10.1063/5.0083361  doi: 10.1063/5.0083361

    11. [11]

      Li, L.; Zhang, F.; Wang, J.; An, Q.; Sun, Q.; Wang, W.; Zhang, J.; Teng, F. Sci. Rep. 2015, 5, 9181. doi: 10.1038/srep09181  doi: 10.1038/srep09181

    12. [12]

      Li, L.; Zhang, F.; Wang, W.; Fang, Y.; Huang, J. Phys. Chem. Chem. Phys. 2015, 17, 30712. doi: 10.1039/C5CP05557A  doi: 10.1039/C5CP05557A

    13. [13]

      Wang, J.; Zhao, Z.; Yang, K.; Chen, L.; Liu, M.; Zhang, F. Acta Polym. Sin. 2022, 53 (4), 331. doi: 10.11777/j.issn1000-3304.2021.21328  doi: 10.11777/j.issn1000-3304.2021.21328

    14. [14]

      Liu, M.; Miao, J.; Wang, J.; Zhao, Z.; Yang, K.; Zhang, X.; Peng, H.; Zhang, F. J. Mater. Chem. C 2020, 8, 9854. doi: 10.1039/D0TC01793K  doi: 10.1039/D0TC01793K

    15. [15]

      Liu, Z.; Ma, X.; Xu, W.; Zhang, S.; Xu, C.; Jeong, S. Y; Woo, H. Y; Zhou, Z.; Zhang, F. Chem. Eng. J. 2022, 450, 138146. doi: 10.1016/j.cej.2022.138146  doi: 10.1016/j.cej.2022.138146

    16. [16]

      Wang, J.; Chen, S.; Yin, Z.; Zheng, Q. J. Mater. Chem. C 2020, 8, 14049. doi: 10.1039/D0TC02708A  doi: 10.1039/D0TC02708A

    17. [17]

      Zhao, Z.; Wang, J.; Xu, C.; Yang, K.; Zhao, F.; Wang, K.; Zhang, X.; Zhang, F. J. Phys. Chem. Lett. 2020, 11 (2), 366. doi: 10.1021/acs.jpclett.9b03323  doi: 10.1021/acs.jpclett.9b03323

    18. [18]

      Yang, K.; Wang, J.; Zhao, Z.; Zhou, Z.; Liu, M.; Zhang, J.; He, Z.; Zhang, F. ACS Appl. Mater. Interfaces 2021, 13 (18), 21565. doi: 10.1021/acsami.1c06486  doi: 10.1021/acsami.1c06486

    19. [19]

      Yang, K.; Zhao, Z.; Liu, M.; Niu, L.; Zhao, X.; Yuan, G.; Ma, X.; Zhang, F. J. Mater. Chem. C 2022, 10, 10888. doi: 10.1039/D2TC02144G  doi: 10.1039/D2TC02144G

    20. [20]

      Zhao, Z.; Liu, B.; Xie, C.; Ma, Y.; Wang, J.; Liu, M.; Yang, K.; Xu, Y.; Zhang, J.; Li, W.; et al. Sci. China Chem. 2021, 64, 1302. doi: 10.1007/s11426-021-1008-9  doi: 10.1007/s11426-021-1008-9

    21. [21]

      Wu, Y.; Fukuda, K.; Yokota, T.; Someya, T. Adv. Mater. 2019, 31 (43), 1903687. doi: 10.1002/adma.201903687  doi: 10.1002/adma.201903687

    22. [22]

      Yoon, S.; Lee, G. S.; Sim, K. M.; Kim, M. J.; Kim, Y. H.; Chung, D. S. Adv. Funct. Mater. 2021, 31 (1), 2006448. doi: 10.1002/adfm.202006448  doi: 10.1002/adfm.202006448

    23. [23]

      Yang, L.; Guo, D.; Li, J.; He, G.; Yang, D.; Vadim, A.; Ma, D. Adv. Funct. Mater. 2022, 32 (20), 2108839. doi: 10.1002/adfm.202108839  doi: 10.1002/adfm.202108839

    24. [24]

      Liu, M.; Fan, Q.; Yang, K.; Zhao, Z.; Zhao, X.; Zhou, Z.; Zhang, J.; Lin, F.; Jen, A. K. Y.; Zhang, F. Sci. China Chem. 2022, 65, 1642. doi: 10.1007/s11426-022-1296-2  doi: 10.1007/s11426-022-1296-2

    25. [25]

      Zhang, H.; Liu, M.; Zhao, X.; Ma, X.; Yuan, G.; Li, J.; Zhang, F. Appl. Phys. Lett. 2023, 123, 111101. doi: 10.1063/5.0168626  doi: 10.1063/5.0168626

    26. [26]

      Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Adv. Funct. Mater. 2018, 28 (11), 1706690. doi: 10.1002/adfm.201706690  doi: 10.1002/adfm.201706690

    27. [27]

      Ren, Z.; Sun, J.; Li, H.; Mao, P.; Wei, Y.; Zhong, X.; Hu, J.; Yang, S.; Wang, J. Mater. 2017, 29 (33), 1702055. doi: 10.1002/adma.201702055  doi: 10.1002/adma.201702055

    28. [28]

      Simone, G.; Dyson, M. J.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Adv. Funct. Mater. 2020, 30 (20), 1904205. doi: 10.1002/adfm.201904205  doi: 10.1002/adfm.201904205

    29. [29]

      Zhong, Z.; Peng, F.; Huang, Z.; Ying, L.; Yu, G.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2020, 12 (40), 45092. doi: 10.1021/acsami.0c13833  doi: 10.1021/acsami.0c13833

    30. [30]

      Zhao, Z.; Xu, C.; Niu, L.; Zhang, X.; Zhang, F. Laser Photon. Rev. 2020, 14 (11), 2000262. doi: 10.1002/lpor.202000262  doi: 10.1002/lpor.202000262

    31. [31]

      Guo, D.; Xu, Z.; Yang, D.; Ma, D.; Tang, B.; Vadim, A. Nanoscale 2020, 12 (4), 2648. doi: 10.1039/c9nr09386a  doi: 10.1039/c9nr09386a

    32. [32]

      Liu, Z.; Zhang, M.; Zhang, L.; Jeong, S.; Geng, S.; Woo, H.; Zhang, J.; Zhang, F.; Ma, X. Chem. Eng. J. 2023, 47, 144711. doi: 10.1016/j.cej.2023.144711  doi: 10.1016/j.cej.2023.144711

    33. [33]

      Yan, X.; Wu, J.; Lv, J.; Zhang, L.; Zhang, R.; Guo, X.; Zhang, M. J. Mater. Chem. A 2022, 10, 15605. doi: 10.1039/D2TA03941A  doi: 10.1039/D2TA03941A

    34. [34]

      Kielar, M.; Hamid, T.; Wiemer, M.; Windels, F.; Hirsch, L.; Sah, P.; Pandey, A. K. Adv. Funct. Mater. 2020, 30 (9), 1907964. doi: 10.1002/adfm.201907964  doi: 10.1002/adfm.201907964

    35. [35]

      Li, R.; Peng, J.; Xu, Y.; Li, W.; Cui, L.; Li, Y.; Lin, Q. Adv. Opt. Mater. 2021, 9 (2), 2001587. doi: 10.1002/adom.202001587  doi: 10.1002/adom.202001587

    36. [36]

      Guo, D.; Yang, L.; Zhao, J.; Li, J.; He, G.; Yang, D.; Wang, L.; Vadim, A.; Ma, D. Mater. Horizons 2021, 8, 2293. doi: 10.1039/D1MH00776A  doi: 10.1039/D1MH00776A

    37. [37]

      Li, C.; Wang, H.; Wang, F.; Li, T.; Xu, M.; Wang, H.; Wang, Z.; Zhan, X.; Hu, W.; Shen, L. Light Sci. Appl. 2020, 9, 31. doi: 10.1038/s41377-020-0264-5  doi: 10.1038/s41377-020-0264-5

    38. [38]

      Zhang, X.; Zheng, E.; Esopi, M. R.; Cai, C.; Yu, Q. ACS Appl. Mater. Interfaces 2018, 10 (28), 24064. doi: 10.1021/acsami.8b06861  doi: 10.1021/acsami.8b06861

    39. [39]

      Arquer, G. F. P.; Armin, A.; Meredith, P.; Sargent, E. H. Nat. Rev. Mater. 2017, 2, 16100. doi: 10.1038/natrevmats.2016.100  doi: 10.1038/natrevmats.2016.100

    40. [40]

      Weng, S.; Zhao, M.; Jiang, D. J. Phys. Chem. C 2021, 125 (37), 20639. doi: 10.1021/acs.jpcc.1c06291  doi: 10.1021/acs.jpcc.1c06291

    41. [41]

      Xing, S.; Nikolis, V. C.; Kublitski, J.; Guo, E.; Jia, X.; Wang, Y.; Spoltore, D.; Vandewal, K.; Kleemann, H.; Benduhn, J.; et al. Adv. Mater. 2021, 33 (44), 2102967. doi: 10.1002/adma.202102967  doi: 10.1002/adma.202102967

    42. [42]

      Zhang, K.; Lv, L.; Wang, X.; Mi, Y.; Chai, R.; Liu, X.; Shen, G.; Peng, A.; Huang, H. ACS Appl. Mater. Interfaces 2018, 10 (2), 1917. doi: 10.1021/acsami.7b15245  doi: 10.1021/acsami.7b15245

    43. [43]

      Gao, L.; Ge, C.; Li, W.; Jia, C.; Zeng, K.; Pan W.; Wu H.; Zhao Y.; He, Y.; He, J.; et al. Adv. Funct. Mater. 2017, 27 (33), 1702360. doi: 10.1002/adfm.201702360  doi: 10.1002/adfm.201702360

    44. [44]

      Kublitski, J.; Fischer, A.; Xing, S.; Baisinger, L.; Bittrich, E.; Spoltore, D.; Benduhn, J.; Vandewal, K.; Leo, K. Nat. Commun. 2021, 12, 4259. doi: 10.1038/s41467-021-24500-2  doi: 10.1038/s41467-021-24500-2

    45. [45]

      Ollearo, R.; Ma, X.; Akkerman, H. B.; Fattori, M.; Dyson, M. J.; Breemen, A. J. J. M.; Meskers, S. C. J.; Dijkstra, W.; Janssen, R. A. J.; Gelinck, G. H. Sci. Adv. 2023, 9 (7), adf9861. doi: 10.1126/sciadv.adf9861  doi: 10.1126/sciadv.adf9861

    46. [46]

      Lochner, C. M.; Khan, Y.; Pierre, A.; Arias, A. C. Nat. Commun. 2014, 5, 5745. doi: 10.1038/ncomms6745  doi: 10.1038/ncomms6745

    47. [47]

      Simone, G.; Tordera, D.; Delvitto, E.; Peeters, B.; Breemen, A. J. J. M.; Meskers, S. C. J.; Janssen, R. A. J.; Gelinck, G. H. Adv. Opt. Mater. 2020, 8 (10), 1901989. doi: 10.1002/adom.201901989  doi: 10.1002/adom.201901989

    48. [48]

      Simões, J.; Dong, T.; Yang, Z. Adv. Mater. Interfaces 2022, 9 (10), 2101897. doi: 10.1002/admi.202101897  doi: 10.1002/admi.202101897

    49. [49]

      Cao, Y.; Yang, X.; Liu, C.; Huang, F. Acta Polym. Sin. 2022, 53 (4), 307. doi: 10.11777/j.issn1000-3304.2021.21391  doi: 10.11777/j.issn1000-3304.2021.21391

    50. [50]

      Zhao, Z.; Liu, B.; Xu, C.; Li, L.; Liu, M.; Yang, K.; Jeong, S. Y.; Woo, H. Y.; Yuan, G.; Li, W.; et al. J. Mater. Chem. C 2022, 10, 7822. doi: 10.1039/D2TC01297A  doi: 10.1039/D2TC01297A

    51. [51]

      Kim, J. H.; Liess, A.; Stolte, M.; Krause, A. M.; Stepanenko, V.; Zhong, C.; Bialas, D.; Spano, F.; Wurthner, F. Adv. Mater. 2021, 33 (26), 2100582. doi: 10.1002/adma.202100582  doi: 10.1002/adma.202100582

    52. [52]

      Kang, M.; Ko, S. M.; Kim, J.; Hassan, S. Z.; Jee, D. W.; Chung D. S. Mater. Horizons 2020, 7, 3034. doi: 10.1039/D0MH01234C  doi: 10.1039/D0MH01234C

  • 加载中
    1. [1]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    11. [11]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    15. [15]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    16. [16]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(0)
  • Abstract views(218)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return