Citation: Yu Guo, Zhiwei Huang, Yuqing Hu, Junzhe Li, Jie Xu. Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 231101. doi: 10.3866/PKU.WHXB202311015 shu

Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries

  • Corresponding author: Junzhe Li, ljz873936932@ahut.edu.cn Jie Xu, xu_jie@ahut.edu.cn
  • Received Date: 9 November 2023
    Revised Date: 11 December 2023
    Accepted Date: 12 December 2023

    Fund Project: the National Natural Science Foundations of China 52104129the National Natural Science Foundations of China 22309003

  • Sodium ion batteries (SIBs), characterized by high energy density, prolonged cycle life, and cost-effectiveness, have garnered substantial attention as scalable energy storage devices. However, the primary challenge facing SIBs is the identification of suitable electrode materials capable of accommodating sodium ions reversibly and sustainably. To transition SIBs from the experimental stage to practical applications, the identification of electrode materials exhibiting satisfactory electrochemical performance is imperative. Iron (Fe), as a widely utilized metal element, exhibits considerable potential for application as anode materials in SIBs due to its abundance, cost-effectiveness, and high specific capacity. Nonetheless, Fe-based electrode materials suffer from low conductivity and significant volume changes during charge and discharge processes, leading to poor rate performance and cyclic stability, thereby restricting their widespread application in SIBs. Various modification strategies, such as nanosizing electrode materials, heteroatom doping, heterostructure construction, and combination with fast ion conductors, have been reported to address these challenges. Importantly, engineering Fe-based electrode materials with heterogeneous structures, integrating two or more components via van der Waals forces or chemical bonds, is crucial for creating intricate heterogeneous interfaces. These interfaces generate self-built electric fields that expedite ion transport, enhance reaction kinetics, and mitigate structural damage due to volume changes during cycling, thereby significantly improving the overall electrochemical performance of Fe-based materials in SIBs. Given the rapid advancements in the utilization of Fe-based materials in SIBs, a comprehensive review is necessary to not only summarize recent progress but also provide insight and guidance on their application in SIBs. This review offers a detailed overview of the research progress on Fe-based anode materials with heterostructure in SIBs. Emphasis is placed on synthesis methods, characterization techniques, and energy storage mechanisms of heterostructure Fe-based electrode materials. Additionally, the sodium ion storage characteristics, modification strategies, and strengthening mechanisms of Fe-based materials, including Fe-based oxides, sulfides, phosphides, selenides, as well as dual-anion Fe-based anode materials, are summarized. Finally, the remaining challenges and future development prospects of Fe-based heterostructure anode materials are discussed, aiming to promote the rapid development and practical application of these materials for SIBs.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. -M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Li, Y.; Lai, X.; Qu, J.; Lai, Q.; Yi, T. Acta Phys. -Chim. Sin. 2022, 38, 2204049. doi: 10.3866/PKU.WHXB202204049  doi: 10.3866/PKU.WHXB202204049

    3. [3]

      Zhang, L.; Wang, R.; Liu, Z.; Wan, J.; Zhang, S.; Wang, S.; Hua, K.; Liu, X.; Zhou, X.; Luo, X. Adv. Mater. 2023, 26, 2210082. doi: 10.1002/adma.202210082  doi: 10.1002/adma.202210082

    4. [4]

      Shi, L.; Li, Y.; Zeng, F.; Ran, S.; Dong, C.; Leu, S. -Y.; Boles, S. T.; Lam, K. H. Chem. Eng. J. 2019, 356, 107. doi: 10.1016/j.cej.2018.09.018  doi: 10.1016/j.cej.2018.09.018

    5. [5]

      Wang, L.; Wei, Z.; Mao, M.; Wang, H.; Li, Y.; Ma, J. Energy Storage Mater. 2019, 16, 434. doi: 10.1016/j.ensm.2018.06.027  doi: 10.1016/j.ensm.2018.06.027

    6. [6]

      Wang, S.; Yang, G.; Nasir, M. S.; Wang, X.; Wang, J.; Yan, W. Acta Phys. -Chim. Sin. 2021, 37, 2001003. doi: 10.3866/PKU.WHXB202001003  doi: 10.3866/PKU.WHXB202001003

    7. [7]

      Wang, R.; Xin, S.; Chao, D.; Liu, Z.; Wan, J.; Xiong, P.; Luo, Q.; Hua, K.; Hao, J.; Zhang, C. Adv. Funct. Mater. 2022, 32, 2207751. doi: 10.1002/adfm.202207751  doi: 10.1002/adfm.202207751

    8. [8]

      Wan, J.; Wang, R.; Liu, Z.; Zhang, L.; Liang, F.; Zhou, T.; Zhang, S.; Zhang, L.; Lu, Q.; Zhang, C.; Guo, Z. ACS Nano 2023, 17, 1610. doi: 10.1021/acsnano.2c11357  doi: 10.1021/acsnano.2c11357

    9. [9]

      Chen, Y.; Dong, H.; Li, Y.; Liu, J. Acta Phys. -Chim. Sin. 2021, 37, 2007075. doi: 10.3866/PKU.WHXB202007075  doi: 10.3866/PKU.WHXB202007075

    10. [10]

      Lu, X.; Dong, S.; Chen, Z.; Wu, L; Zhang, X. Acta Phys. -Chim. Sin. 2020, 36, 1906024. doi: 10.3866/PKU.WHXB201906024  doi: 10.3866/PKU.WHXB201906024

    11. [11]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/C2EE02781J  doi: 10.1039/C2EE02781J

    12. [12]

      Chen, Y.; Guo, Z.; Jian, B.; Zheng, C.; Zhang, H. Nanomaterials 2019, 9, 1770. doi: 10.3390/nano9121770  doi: 10.3390/nano9121770

    13. [13]

      Zhao, Y.; Wang, F.; Wang, C.; Wang, S.; Wang, C.; Zhao, Z.; Duan, L.; Liu, Y.; Wu, Y.; Li, W. Nano Energy 2019, 56, 426. doi: 10.1016/j.nanoen.2018.11.040  doi: 10.1016/j.nanoen.2018.11.040

    14. [14]

      Zhang, S.; Qiu, L.; Zheng, Y.; Shi, Q.; Zhou, T.; Sencadas, V.; Xu, Y.; Zhang, S.; Zhang, L.; Zhang, C.; et al. Adv. Funct. Mater. 2020, 31, 2006425. doi: 10.1002/adfm.202006425  doi: 10.1002/adfm.202006425

    15. [15]

      Xu, R.; Wang, G.; Zhou, T.; Zhang, Q.; Cong, H. -P.; Xin, S.; Rao, J.; Zhang, C.; Liu, Y.; Guo, Z.; et al. Nano Energy 2017, 39, 253. doi: 10.1016/j.nanoen.2017.07.007  doi: 10.1016/j.nanoen.2017.07.007

    16. [16]

      Guo, Q.; Zhang, C.; Zhang, C.; Xin, S.; Zhang, P.; Shi, Q.; Zhang, D.; You, Y. J. Energy Chem. 2019, 41, 185. doi: 10.1016/j.jechem.2019.05.018  doi: 10.1016/j.jechem.2019.05.018

    17. [17]

      Fu, Y.; Zhu, C. Acta Phys. -Chim. Sin. 2023, 39, 2209002. doi: 10.3866/PKU.WHXB202209002  doi: 10.3866/PKU.WHXB202209002

    18. [18]

      Zhang, C.; Li, H.; Zeng, X.; Xi, S.; Wang, R.; Zhang, L.; Liang, G.; Davey, K.; Liu, Y.; Zhang, L.; et al. Adv. Energy Mater. 2022, 12, 2202577. doi: 10.1002/aenm.202202577  doi: 10.1002/aenm.202202577

    19. [19]

      Alferov, Z. I. Semiconductors 1998, 32, 1. doi: 10.1134/1.1187350  doi: 10.1134/1.1187350

    20. [20]

      Peng, Q.; Hu, K.; Sa, B.; Zhou, J.; Wu, B.; Hou, X.; Sun, Z. Nano Res. 2017, 10, 3136. doi: 10.1007/s12274-017-1531-5  doi: 10.1007/s12274-017-1531-5

    21. [21]

      Pan, L.; Grutter, A.; Zhang, P.; Che, X.; Nozaki, T.; Stern, A.; Street, M.; Zhang, B.; Casas, B.; He, Q. L. Adv. Mater. 2020, 32, 2001460. doi: 10.1002/adma.202001460  doi: 10.1002/adma.202001460

    22. [22]

      Shin, I.; Cho, W. J.; An, E. S.; Park, S.; Jeong, H. W.; Jang, S.; Baek, W. J.; Park, S. Y.; Yang, D. H.; Seo, J. H. Adv. Mater. 2022, 34, 2101730. doi: 10.1002/adma.202101730  doi: 10.1002/adma.202101730

    23. [23]

      Wang, S.; Liu, S.; Li, X.; Li, C.; Zang, R.; Man, Z.; Wu, Y.; Li, P.; Wang, G. Chem. -Eur. J. 2018, 24, 3873. doi: 10.1002/chem.201705855  doi: 10.1002/chem.201705855

    24. [24]

      Ni, J.; Sun, M.; Li, L. Adv. Mater. 2019, 31, 1902603. doi: 10.1002/adma.201902603  doi: 10.1002/adma.201902603

    25. [25]

      Liang, L.; Gu, W.; Wu, Y.; Zhang, B.; Wang, G.; Yang, Y.; Ji, G. Adv. Mater. 2022, 34, 2106195. doi: 10.1002/adma.202106195  doi: 10.1002/adma.202106195

    26. [26]

      Wang, S.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z.; Tang, Z.; Li, J. Nano Energy 2017, 32, 294. doi: 10.1016/j.nanoen.2016.12.052  doi: 10.1016/j.nanoen.2016.12.052

    27. [27]

      Liu, Z. X.; Wang, R.; Ma, Q. W.; Wan, J. D.; Zhang, S. L.; Zhang, L. H.; Li, H. B.; Luo, Q. Q.; Wu, J.; Zhou, T. F.; et al. Adv. Funct. Mater. 2023, 2214538. doi: 10.1002/adfm.202214538  doi: 10.1002/adfm.202214538

    28. [28]

      Zeng, F.; Yu, M.; Cheng, W.; He, W.; Pan, Y.; Qu, Y.; Yuan, C. Small 2020, 16, 2001905. doi: 10.1002/smll.202001905  doi: 10.1002/smll.202001905

    29. [29]

      Qian, G.; Chen, J.; Luo, L.; Yu, T.; Wang, Y.; Jiang, W.; Xu, Q.; Feng, S.; Yin, S. ACS Sustain. Chem. Eng. 2020, 8, 12063. doi: 10.1021/acssuschemeng.0c03263  doi: 10.1021/acssuschemeng.0c03263

    30. [30]

      Wang, L. X.; Zhu, B. C.; Zhang, J. J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. G. Matter 2022, 5, 4187. doi: 10.1016/j.matt.2022.09.009  doi: 10.1016/j.matt.2022.09.009

    31. [31]

      Gao, B.; Hu, J.; Tang, S.; Xiao, X.; Chen, H.; Zuo, Z.; Qi, Q.; Peng, Z.; Wen, J.; Zou, D. Adv. Sci. 2021, 8, 2102081. doi: 10.1002/advs.202102081  doi: 10.1002/advs.202102081

    32. [32]

      Miao, J.; Liu, X.; Jo, K.; He, K.; Saxena, R.; Song, B.; Zhang, H.; He, J.; Han, M. -G.; Hu, W.; Jariwala, D. Nano Lett. 2020, 20, 2907. doi: 10.1021/acs.nanolett.0c00741  doi: 10.1021/acs.nanolett.0c00741

    33. [33]

      Yu, X. -X.; Wang, L.; Yin, H. Appl. Mater. Today 2019, 15, 582. doi: 10.1016/j.apmt.2019.04.006  doi: 10.1016/j.apmt.2019.04.006

    34. [34]

      Xu, E.; Zhang, Y.; Wang, H.; Zhu, Z.; Quan, J.; Chang, Y.; Li, P.; Yu, D.; Jiang, Y. Chem. Eng. J. 2019, 385, 123839. doi: 10.1016/j.cej.2019.123839  doi: 10.1016/j.cej.2019.123839

    35. [35]

      Zhang, W.; Cao, P.; Li, L.; Yang, K.; Wang, K.; Liu, S.; Yu, Z. Chem. Eng. J. 2018, 348, 599. doi: 10.1016/j.cej.2018.05.024  doi: 10.1016/j.cej.2018.05.024

    36. [36]

      Zhang, C.; Han, F.; Wang, F.; Liu, Q.; Zhou, D.; Zhang, F.; Xu, S.; Fan, C.; Li, X.; Liu, J. Energy Storage Mater. 2019, 24, 208. doi: 10.1016/j.ensm.2019.08.018  doi: 10.1016/j.ensm.2019.08.018

    37. [37]

      Xiao, Y.; Miao, Y.; Wan, S.; Sun, Y. -K.; Chen, S. Small 2022, 18, 2202582. doi: 10.1002/smll.202202582  doi: 10.1002/smll.202202582

    38. [38]

      Li, Y.; Zhang, J.; Chen, Q.; Xia, X.; Chen, M. Adv. Mater. 2021, 33, 2100855. doi: 10.1002/adma.202100855  doi: 10.1002/adma.202100855

    39. [39]

      Dong, H.; Wang, X.; Jiang, J.; Lin, W.; Liu, E.; Kang, J.; Shi, C.; Sha, J.; Chen, B.; Ma, L. Chem. Eng. J. 2023, 460, 141827. doi: 10.1016/j.cej.2023.141827  doi: 10.1016/j.cej.2023.141827

    40. [40]

      Huang, S.; Wang, Z.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D.; Yang, H. Y. Adv. Energy Mater. 2021, 11, 2003689. doi: 10.1002/aenm.202003689  doi: 10.1002/aenm.202003689

    41. [41]

      Luo, P.; Wang, F.; Qu, J.; Liu, K.; Hu, X.; Liu, K.; Zhai, T. Adv. Funct. Mater. 2020, 31, 2008351. doi: 10.1002/adfm.202008351  doi: 10.1002/adfm.202008351

    42. [42]

      Das, P.; Fu, Q.; Bao, X.; Wu, Z. -S. J. Mater. Chem. A 2018, 6, 21747. doi: 10.1039/c8ta04618b  doi: 10.1039/c8ta04618b

    43. [43]

      Yu, L.; He, X.; Peng, B.; Wang, W.; Wan, G.; Ma, X.; Zeng, S.; Zhang, G. Matter 2023, 6, 1604. doi: 10.1016/j.matt.2023.03.013  doi: 10.1016/j.matt.2023.03.013

    44. [44]

      Peng, B.; Wan, G.; Ahmad, N.; Yu, L.; Ma, X.; Zhang, G. Adv. Energy Mater. 2023, 13, 2300334. doi: 10.1002/aenm.202300334  doi: 10.1002/aenm.202300334

    45. [45]

      Wang, T.; Lv, W.; Meng, D.; Liu, Q.; Rong, Z.; Qiu, H. J. Alloys Compd. 2022, 925, 166810. doi: 10.1016/j.jallcom.2022.166810  doi: 10.1016/j.jallcom.2022.166810

    46. [46]

      Wang, Q.; Zhang, W.; Guo, C.; Liu, Y.; Wang, C.; Guo, Z. Adv. Funct. Mater. 2017, 27, 1703390. doi: 10.1002/adfm.201703390  doi: 10.1002/adfm.201703390

    47. [47]

      Liu, F.; Wang, C.; Sui, X.; Riaz, M. A.; Xu, M.; Wei, L.; Chen, Y. Carbon Energy 2019, 1, 173. doi: 10.1002/cey2.14  doi: 10.1002/cey2.14

    48. [48]

      Liu, Y.; Zhang, S.; He, J.; Wang, Z. M.; Liu, Z. Nano-Micro Lett. 2019, 2, 11. doi: 10.1007/s40820-019-0245-5  doi: 10.1007/s40820-019-0245-5

    49. [49]

      Bian, H.; Li, Z.; Pan, J.; Lyu, F.; Xiao, X.; Tang, J.; Schmuki, P.; Liu, C.; Lu, J.; Li, Y. Y. J. Power Sources 2020, 484, 229268. doi: 10.1016/j.jpowsour.2020.229268  doi: 10.1016/j.jpowsour.2020.229268

    50. [50]

      Zhang, L. X.; Peng, F.; Zhang, M.; Li, D.; Pan, Q. C.; Yang, G. H.; Zheng, F. H.; Huang, Y. G.; Wang, H. Q.; Li, Q. Y. Appl. Surf. Sci. 2022, 606, 154864. doi: 10.1016/j.apsusc.2022.154864  doi: 10.1016/j.apsusc.2022.154864

    51. [51]

      Miao, Y.; Xiao, Y.; Hu, S. L.; Chen, S. M. Nano Res. 2022, 16, 2347. doi: 10.1007/s12274-022-4943-9  doi: 10.1007/s12274-022-4943-9

    52. [52]

      Sun, H.; Chu, X.; Zhu, Y.; Wang, B.; Wang, G.; Bai, J. J. Electroanal. Chem. 2023, 932, 117219. doi: 10.1016/j.jelechem.2023.117219  doi: 10.1016/j.jelechem.2023.117219

    53. [53]

      Kim, H. -S.; Lee, C. -R.; Im, J. -H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. -J.; Humphry-Baker, R.; Yum, J. -H.; Moser, J. E.; et al. Sci. Rep. 2012, 2, 591. doi: 10.1038/srep00591  doi: 10.1038/srep00591

    54. [54]

      Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. RSC Adv. 2017, 7, 20084. doi: 10.1039/c7ra00134g  doi: 10.1039/c7ra00134g

    55. [55]

      Ma, L. L.; Zhou, X. M.; Sun, J.; Zhang, P.; Hou, B. X.; Zhang, S. H.; Shang, N. Z.; Song, J. J.; Ye, H. J.; Shao, H.; et al. J. Energy Chem. 2023, 82, 268. doi: 10.1016/j.jechem.2023.03.011  doi: 10.1016/j.jechem.2023.03.011

    56. [56]

      Yang, C.; Liang, X.; Ou, X.; Zhang, Q.; Zheng, H. -S.; Zheng, F.; Wang, J. -H.; Huang, K.; Liu, M. Adv. Funct. Mater. 2019, 29, 1807971. doi: 10.1002/adfm.201807971  doi: 10.1002/adfm.201807971

    57. [57]

      Song, P.; Yang, J.; Wang, C.; Wang, T.; Gao, H.; Wang, G.; Li, J. Nano-Micro Lett. 2023, 15, 118. doi: 10.1007/s40820-023-01082-w  doi: 10.1007/s40820-023-01082-w

    58. [58]

      Fan, H. N.; Wang, X. Y.; Yu, H. B.; Gu, Q. F.; Chen, S. L.; Liu, Z.; Chen, X. H.; Luo, W. B.; Liu, H. K. Adv. Energy Mater. 2020, 10, 1904162. doi: 10.1002/aenm.201904162  doi: 10.1002/aenm.201904162

    59. [59]

      Fu, C.; Mahadevegowda, A.; Grant, P. S. J. Mater. Chem. A 2016, 4, 2597. doi: 10.1039/c5ta09141a  doi: 10.1039/c5ta09141a

    60. [60]

      David, B.; Schneeweiss, O.; Pizúrová, N.; Dumitrache, F.; Fleaca, C.; Alexandrescu, R. Surf. Interf. Anal. 2010, 42, 699. doi: 10.1002/sia.3389  doi: 10.1002/sia.3389

    61. [61]

      Li, D.; Wu, S.; Wang, F.; Jia, S.; Liu, Y.; Han, X.; Zhang, L.; Zhang, S.; Wu, Y. Mater. Lett. 2016, 178, 48. doi: 10.1016/j.matlet.2016.04.200  doi: 10.1016/j.matlet.2016.04.200

    62. [62]

      Wang, Q.; Ma, Y.; Liu, L.; Yao, S.; Wu, W.; Wang, Z.; Lv, P.; Zheng, J.; Yu, K.; Wei, W. Nanomaterials 2020, 10, 782. doi: 10.3390/nano10040782  doi: 10.3390/nano10040782

    63. [63]

      Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17, 582. doi: 10.1002/adma.200401101  doi: 10.1002/adma.200401101

    64. [64]

      Luo, S.; Chen, C.; Feng, R.; Chen, X.; Chen, W.; Wu, Z.; Kong, X. IOP Conf. Ser. : Earth Environ. Sci. 2021, 844, 012008. doi: 10.1088/1755-1315/844/1/012008  doi: 10.1088/1755-1315/844/1/012008

    65. [65]

      Cui, L.; Tan, C.; Li, Y.; Pan, Q.; Zhang, L.; Zhang, M.; Chen, Z.; Zheng, F.; Wang, H.; Li, Q. ACS Appl. Energy Mater. 2021, 4, 3757. doi: 10.1021/acsaem.1c00167  doi: 10.1021/acsaem.1c00167

    66. [66]

      Cheng, D.; Ye, L.; Wei, A.; Xu, G.; Cao, Z.; Zhu, P.; Chen, Y. Chem. Eng. J. 2023, 457, 141243. doi: 10.1016/j.cej.2022.141243  doi: 10.1016/j.cej.2022.141243

    67. [67]

      Liu, P.; Han, J.; Zhu, K.; Dong, Z.; Jiao, L. Adv. Energy Mater. 2020, 10, 2000741. doi: 10.1002/aenm.202000741  doi: 10.1002/aenm.202000741

    68. [68]

      Ma, C.; Hou, D.; Jiang, J.; Fan, Y.; Li, X.; Li, T.; Ma, Z.; Ben, H.; Xiong, H. Adv. Sci. 2022, 9, 2204837. doi: 10.1002/advs.202204837  doi: 10.1002/advs.202204837

    69. [69]

      Sultana, I.; Rahman, M. M.; Mateti, S.; Ahmadabadi, V. G.; Glushenkov, A. M.; Chen, Y. Nanoscale 2017, 9, 3646. doi: 10.1039/C6NR09613A  doi: 10.1039/C6NR09613A

    70. [70]

      Li, X.; Qi, S. -H.; Zhang, W. -C.; Feng, Y. -Z.; Ma, J. -M. Rare Metals 2020, 39, 1239. doi: 10.1007/s12598-020-01492-4  doi: 10.1007/s12598-020-01492-4

    71. [71]

      Yin, W.; Li, W.; Wang, K.; Chai, W.; Ye, W.; Rui, Y.; Tang, B. Electrochim. Acta 2019, 318, 673. doi: 10.1016/j.electacta.2019.05.152  doi: 10.1016/j.electacta.2019.05.152

    72. [72]

      Zhang, J.; Li, Z.; Chen, Y.; Gao, S.; Lou, X. W. Angew. Chem. 2018, 130, 11110. doi: 10.1002/ange.201805972  doi: 10.1002/ange.201805972

    73. [73]

      Chen, S.; Huang, S.; Hu, J.; Fan, S.; Shang, Y.; Pam, M. E.; Li, X.; Wang, Y.; Xu, T.; Shi, Y.; et al. Nano-Micro Lett. 2019, 11, 1. doi: 10.1007/s40820-019-0311-z  doi: 10.1007/s40820-019-0311-z

    74. [74]

      Zhang, Z.; Zhao, J.; Xu, M.; Wang, H.; Gong, Y.; Xu, J. Nanotechnology 2018, 29, 335401. doi: 10.1088/1361-6528/aac645  doi: 10.1088/1361-6528/aac645

    75. [75]

      Je, J.; Lim, H.; Jung, H. W.; Kim, S. -O. Small 2021, 18, 2105310. doi: 10.1002/smll.202105310  doi: 10.1002/smll.202105310

    76. [76]

      Yue, L.; Song, W.; Wu, Z.; Zhao, W.; Zhang, L.; Luo, Y.; Zheng, D.; Zhong, B.; Liu, Q.; Sun, S. Chem. Eng. J. 2023, 455, 140824. doi: 10.1016/j.cej.2022.140824  doi: 10.1016/j.cej.2022.140824

    77. [77]

      Pan, L.; Wang, S.; Xie, J.; Wang, L.; Zhang, X.; Zou, J. -J. Nano Energy 2016, 28, 296. doi: 10.1016/j.nanoen.2016.08.054  doi: 10.1016/j.nanoen.2016.08.054

    78. [78]

      Yue, L.; Wu, D.; Wu, Z.; Zhao, W.; Wang, D.; Zhong, B.; Liu, Q.; Liu, Y.; Gao, S.; Asiri, A. M.; et al. J. Mater. Chem. A 2021, 9, 24024. doi: 10.1039/d1ta06760e  doi: 10.1039/d1ta06760e

    79. [79]

      Pan, Q.; Zheng, F.; Liu, Y.; Li, Y.; Zhong, W.; Chen, G.; Hu, J.; Yang, C.; Liu, M. J. Mater. Chem. A 2019, 7, 20229. doi: 10.1039/C9TA07302G  doi: 10.1039/C9TA07302G

    80. [80]

      Cao, L.; Gao, X.; Zhang, B.; Ou, X.; Zhang, J.; Luo, W. B. ACS Nano 2020, 14, 3610. doi: 10.1021/acsnano.0c00020  doi: 10.1021/acsnano.0c00020

    81. [81]

      Wang, Y.; Wu, C.; Wu, Z.; Cui, G.; Xie, F.; Guo, X.; Sun, X. Chem. Commun. 2018, 54, 9341. doi: 10.1039/C8CC03827A  doi: 10.1039/C8CC03827A

    82. [82]

      Li, W. -J.; Chou, S. -L.; Wang, J. -Z.; Liu, H. -K.; Dou, S. -X. Chem. Commun. 2015, 51, 3682. doi: 10.1039/C4CC09604E  doi: 10.1039/C4CC09604E

    83. [83]

      Zhao, Y.; Wang, J.; Ma, C.; Li, Y.; Shi, J.; Shao, Z. Chem. Eng. J. 2019, 378, 122168. doi: 10.1016/j.cej.2019.122168  doi: 10.1016/j.cej.2019.122168

    84. [84]

      Lu, Z.; Wang, W.; Zhou, J.; Bai, Z. Chin. J. Chem. Eng. 2020, 28, 2699. doi: 10.1016/j.cjche.2020.07.011  doi: 10.1016/j.cjche.2020.07.011

    85. [85]

      Yuvaraj, S.; Veerasubramani, G. K.; Park, M. -S.; Thangavel, P.; Kim, D. -W. J. Alloys Compd. 2020, 821, 153222. doi: 10.1016/j.jallcom.2019.153222  doi: 10.1016/j.jallcom.2019.153222

    86. [86]

      Yang, Y.; Hu, J.; Ren, G.; Wen, Y.; Lin, Q.; Yao, Z. Z. Anorg. Allg. Chem. 2023, 649, e202300158. doi: 10.1002/zaac.202300158  doi: 10.1002/zaac.202300158

    87. [87]

      Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W. Q. Adv. Energy Mater. 2022, 12, 2202052. doi: 10.1002/aenm.202202052  doi: 10.1002/aenm.202202052

    88. [88]

      Chen, Y.; Liu, H.; Guo, X.; Zhu, S.; Zhao, Y.; Iikubo, S.; Ma, T. ACS Appl. Mater. Interf. 2021, 13, 39248. doi: 10.1021/acsami.1c08801  doi: 10.1021/acsami.1c08801

    89. [89]

      Cui, L. S.; Tan, C. L.; Pan, Q. C.; Huang, Y. G.; Li, Y. H.; Wang, H. Q.; Zheng, F. H.; Li, Q. Y. Appl. Surf. Sci. 2022, 613, 155992. doi: 10.1016/j.apsusc.2022.155992  doi: 10.1016/j.apsusc.2022.155992

    90. [90]

      Ren, G.; Tang, T.; Song, S.; Sun, J.; Xia, Q.; Yao, Z.; Shen, S.; Yang, Y. ACS Appl. Nano Mater. 2023, 6, 18071. doi: 10.1021/acsanm.3c03360  doi: 10.1021/acsanm.3c03360

    91. [91]

      Li, Z.; Zhang, L.; Ge, X.; Li, C.; Dong, S.; Wang, C.; Yin, L. Nano Energy 2017, 32, 494. doi: 10.1016/j.nanoen.2017.01.009  doi: 10.1016/j.nanoen.2017.01.009

    92. [92]

      Han, L.; Zhang, M.; Wang, H.; Li, P.; Wei, W.; Shi, J.; Huang, M.; Shi, Z.; Liu, W.; Chen, S. Nanoscale 2020, 12, 24477. doi: 10.1039/D0NR07359H  doi: 10.1039/D0NR07359H

    93. [93]

      Ma, C.; Hou, Y.; Jiang, K.; Zhao, L.; Olsen, T.; Fan, Y.; Jiang, J.; Xu, Z.; Ma, Z.; Legut, D.; et al. Chem. Eng. J. 2020, 413, 127449. doi: 10.1016/j.cej.2020.127449  doi: 10.1016/j.cej.2020.127449

    94. [94]

      Chen, G.; Gao, L.; Zhang, L.; Yang, X. J. Electroanal. Chem. 2021, 895, 115420. doi: 10.1016/j.jelechem.2021.115420  doi: 10.1016/j.jelechem.2021.115420

    95. [95]

      Zhou, Y. Z.; Chen, Y.; Yang, C. J.; Jiang, Y.; Wang, Z. H.; Xie, M. J. Power Sources 2022, 546, 231940. doi: 10.1016/j.jpowsour.2022.231940  doi: 10.1016/j.jpowsour.2022.231940

    96. [96]

      Wang, X.; Yang, Z.; Wang, C.; Ma, L.; Zhao, C.; Chen, J.; Zhang, X.; Xue, M. Nanoscale 2018, 10, 800. doi: 10.1039/C7NR08255J  doi: 10.1039/C7NR08255J

    97. [97]

      Park, G. D.; Cho, J. S.; Lee, J. -K.; Kang, Y. C. Sci. Rep. 2016, 6, 22432. doi: 10.1038/srep22432  doi: 10.1038/srep22432

    98. [98]

      Wei, X.; Tang, C.; An, Q.; Yan, M.; Wang, X.; Hu, P.; Cai, X.; Mai, L. Nano Res. 2017, 10, 3202. doi: 10.1007/s12274-017-1537-z  doi: 10.1007/s12274-017-1537-z

    99. [99]

      Choi, J. H.; Park, S. K.; Kang, Y. C. Small 2019, 15, 1803043. doi: 10.1002/smll.201803043  doi: 10.1002/smll.201803043

    100. [100]

      Pan, Q.; Zhang, M.; Zhang, L.; Li, Y.; Li, Y.; Tan, C.; Zheng, F.; Huang, Y.; Wang, H.; Li, Q. ACS Nano 2020, 14, 17683. doi: 10.1021/acsnano.0c08818  doi: 10.1021/acsnano.0c08818

    101. [101]

      Fan, H.; Yu, H.; Zhang, Y.; Guo, J.; Wang, Z.; Wang, H.; Zhao, N.; Zheng, Y.; Du, C.; Dai, Z. Energy Storage Mater. 2018, 10, 48. doi: 10.1016/j.ensm.2017.08.006  doi: 10.1016/j.ensm.2017.08.006

    102. [102]

      Liu, J.; Xiao, S.; Li, X.; Li, Z.; Li, X.; Zhang, W.; Xiang, Y.; Niu, X.; Chen, J. S. Chem. Eng. J. 2021, 417, 129279. doi: 10.1016/j.cej.2021.129279  doi: 10.1016/j.cej.2021.129279

    103. [103]

      Ji, P. -G.; Liu, Y.; Han, S. -B.; Yan, Y. -F.; Tolochko, O. V.; Strativnov, E.; Kurbanov, M. S.; Wang, H.; Zhang, C. -W.; Wang, G. -K. Rare Metals 2022, 41, 2470. doi: 10.1007/s12598-022-01995-2  doi: 10.1007/s12598-022-01995-2

    104. [104]

      Zhang, Y.; Huang, X. L.; Tan, P.; Bao, S.; Zhang, X.; Xu, M. Compos. Pt. B-Eng. 2021, 224, 109166. doi: 10.1016/j.compositesb.2021.109166  doi: 10.1016/j.compositesb.2021.109166

    105. [105]

      Wang, J.; Wang, B.; Sun, H.; Wang, G.; Bai, J.; Wang, H. Energy Storage Mater. 2022, 46, 394. doi: 10.1016/j.ensm.2022.01.025  doi: 10.1016/j.ensm.2022.01.025

    106. [106]

      Li, S.; Zhang, H.; Cao, Y.; Zhang, S.; Liu, Z.; Yang, C.; Wang, Y.; Wan, B. Nanoscale 2023, 15, 5655. doi: 10.1039/D2NR06672F  doi: 10.1039/D2NR06672F

    107. [107]

      Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Angew. Chem. Int. Ed. 2018, 57, 626. doi: 10.1002/anie.201706426  doi: 10.1002/anie.201706426

    108. [108]

      Chen, B.; Chao, D.; Liu, E.; Jaroniec, M.; Zhao, N.; Qiao, S. -Z. Energy Environ. Sci. 2020, 13, 1096. doi: 10.1039/C9EE03549D  doi: 10.1039/C9EE03549D

    109. [109]

      Zhang, P.; Ma, Z.; Jiang, W.; Wang, Y.; Pan, Y.; Lu, C. AIP Adv. 2016, 6, 015107. doi: 10.1063/1.4940131  doi: 10.1063/1.4940131

    110. [110]

      Liu, C.; Yang, Y.; Li, J.; Chen, S. Nanotechnology 2018, 29, 265401. doi: 10.1088/1361-6528/aabd6e  doi: 10.1088/1361-6528/aabd6e

    111. [111]

      Ding, S.; Zhou, B.; Chen, C.; Huang, Z.; Li, P.; Wang, S.; Cao, G.; Zhang, M. ACS Nano 2020, 14, 9626. doi: 10.1021/acsnano.0c00101  doi: 10.1021/acsnano.0c00101

    112. [112]

      Fang, Y.; Luan, D.; Lou, X. W. Adv. Mater. 2020, 32, 2002976. doi: 10.1002/adma.202002976  doi: 10.1002/adma.202002976

    113. [113]

      Lu, Q.; Xu, Y. -Y.; Mu, S. -J.; Li, W. -C. New Carbon Mater. 2017, 32, 442. doi: 10.1016/S1872-5805[17]60133-1  doi: 10.1016/S1872-5805[17]60133-1

    114. [114]

      Ding, Y.; Chen, Y.; Xu, N.; Lian, X.; Li, L.; Hu, Y.; Peng, S. Nano-Micro Lett. 2020, 12, 1. doi: 10.1007/s40820-020-0381-y  doi: 10.1007/s40820-020-0381-y

    115. [115]

      Ma, Y.; Lian, X.; Xu, N.; Jiang, H.; Li, L.; Zhang, D.; Hu, G.; Peng, S. Chem. Eng. J. 2021, 427, 130882. doi: 10.1016/j.cej.2021.130882  doi: 10.1016/j.cej.2021.130882

    116. [116]

      Yuan, S. H.; Zhao, W. Q.; Zeng, Z. H.; Dong, Y.; Jiang, F.; Wang, L.; Yang, Y.; Zhu, J. L.; Ji, X. B.; Ge, P. J. Mater. Chem. A 2022, 10, 22645. doi:10.1039/d2ta04174j  doi: 10.1039/d2ta04174j

  • 加载中
    1. [1]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    6. [6]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    16. [16]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    17. [17]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    18. [18]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

Metrics
  • PDF Downloads(0)
  • Abstract views(82)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return