Citation: Rui Li, Huan Liu, Yinan Jiao, Shengjian Qin, Jie Meng, Jiayu Song, Rongrong Yan, Hang Su, Hengbin Chen, Zixuan Shang, Jinjin Zhao. Emerging Irreversible and Reversible Ion Migrations in Perovskites[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 231101. doi: 10.3866/PKU.WHXB202311011 shu

Emerging Irreversible and Reversible Ion Migrations in Perovskites

  • Corresponding author: Jinjin Zhao, jinjinzhao2012@163.com; jinjinzhao2023@hebtu.edu.cn
  • These authors contribute equally to this work.
  • Received Date: 8 November 2023
    Revised Date: 17 December 2023
    Accepted Date: 8 January 2024
    Available Online: 12 January 2024

    Fund Project: the National Natural Science Foundation of China U2130128Yanzhao Young Scientist Project from Natural Science Foundation of Hebei Province B2023205040Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region H2022205047Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region 22JCZXJC00060Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region E3B33911DFCentral Government Guiding Local Science and Technology Development Project 216Z4302GHebei Administration for Market Supervision Science and Technology Project List 2023ZC03Innovation Capability Improvement Plan Project of Hebei Province 22567604HPh.D Scientific Research Start-up Fund of Hebei Normal University L2023B18

  • Metal halide perovskite (MHP) materials show great prospects in applications such as solar cells, luminescent displays, and biomedicines, owing to their outstanding visible light absorption, photoelectric conversion, adjustable energy level structure, and low energy consumption. Their exceptional properties, such as high visible light absorption, efficient photoelectric conversion, adjustable energy level structure, and low energy consumption, have attracted significant attention. However, the presence of ion migration in MHPs has been identified as a critical challenge, leading to reduced energy conversion efficiency and device instability. Overcoming this obstacle is crucial for the commercialization of perovskite-based technologies. In recent years, extensive research has been conducted to understand the conditions and mechanisms of ion migration in perovskite materials, as well as develop strategies to mitigate its adverse effects. This paper adopts a dialectical perspective on ion migration, with a specific focus on energy barriers. A comprehensive review is provided, covering the fundamental concepts and formation mechanisms of both irreversible unidirectional and reversible bidirectional ion migrations. This paper begins by presenting a detailed summary of the degradation processes caused by irreversible unidirectional ion migrations phenomena induced by external fields, including illumination, stress/strain, thermal and electrical fields. Understanding the underlying mechanisms of such degradation is essential to address the stability concerns associated with perovskite devices. Moreover, the overview of bidirectional reversible ion migration phenomena in perovskite is presented. The cyclic formation and restoration of Schottky barriers at the interface can significantly influence the photoelectrical properties and impact the overall performance of perovskite devices. Various strategies for regulating ion migrations under external fields are discussed, aiming to enhance device stability and performance. By understanding the energy landscape and migration pathways, researchers can develop effective strategies to control and optimize ion migrations, ultimately improving the photoelectric conversion performance of perovskite devices. This paper provides comprehensive analysis of ion migration in perovskite materials, addressing fundamental concepts, ion migration mechanisms, and strategies for regulating ion migrations. By providing a clear understanding of the challenges associated with ion migration, this work contributes to the advancement of perovskite-based technologies and facilitates their commercialization. Ultimately, the optimization of ion migration control will lead to improved performance and stability of perovskite devices, enabling their widespread adoption in various applications.
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/cell-efficiency.html (accessed on Nov 7, 2023).

    2. [2]

      Chen, C.; Zhang, S.; Liu, T.; Wu, S.; Yang, Z.; Chen, W.; Chen, R.; Chen, W. Rare Met. 2020, 39 (2), 131. doi: 10.1007/s12598-019-01341-z  doi: 10.1007/s12598-019-01341-z

    3. [3]

      Zhao, J.; Kong, G.; Chen, S.; Li, Q.; Huang, B.; Liu, Z.; San, X.; Wang, Y.; Wang, C.; Zhen, Y. Sci. Bull. 2017, 62 (17), 1173. doi: 10.1016/j.scib.2017.08.022  doi: 10.1016/j.scib.2017.08.022

    4. [4]

      Zhao, J.; Wei, L.; Jia, C.; Tang, H.; Su, X.; Ou, Y.; Liu, Z.; Wang, C.; Zhao, X.; Jin, H. J. Mater. Chem. A 2018, 6 (41), 20224. doi: 10.1039/C8TA05282D  doi: 10.1039/C8TA05282D

    5. [5]

      Zhao, J.; Su, X.; Mi, Z.; Zhang, Y.; Hu, Y.; Guo, H.; Jiao, Y.; Zhang, Y.; Shi, Y.; Hao, W.-Z.; et al. Rare Met. 2022, 41 (1), 96. doi: 10.1007/s12598-021-01800-6  doi: 10.1007/s12598-021-01800-6

    6. [6]

      Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499 (7458), 316. doi: 10.1038/nature12340  doi: 10.1038/nature12340

    7. [7]

      Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.; Berry, J. J.; Van Hest, M. F. Nat. Energy 2017, 2 (5), 17038. doi: 10.1038/nenergy.2017.38  doi: 10.1038/nenergy.2017.38

    8. [8]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8 (7), 506. doi: 10.1038/nphoton.2014.134  doi: 10.1038/nphoton.2014.134

    9. [9]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342 (6156), 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    10. [10]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science 2015, 347 (6225), 967. doi: 10.1126/science.aaa5760  doi: 10.1126/science.aaa5760

    11. [11]

      Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. Science 2015, 347 (6221), 519. doi: 10.1126/science.aaa2725  doi: 10.1126/science.aaa2725

    12. [12]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26 (10), 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    13. [13]

      Li, S.; Cao, Y.; Li, W.; Bo, Z. Rare Met. 2021, 40, 1. doi: 10.1007/s12598-020-01691-z  doi: 10.1007/s12598-020-01691-z

    14. [14]

      Qiu, L.; Si, G.; Bao, X.; Liu, J.; Guan, M.; Wu, Y.; Qi, X.; Xing, G.; Dai, Z.; Bao, Q.; Li, G. Chem. Soc. Rev. 2023, 52, 212. doi: 10.1039/D2CS00218C  doi: 10.1039/D2CS00218C

    15. [15]

      Yu, S.; Zhao, Z.; Zhao, J.; Xiao, S.; Shi, Y.; Gao, C.; Su, X.; Hu, Y.; Zhao, Z.; Wang, J. J. Inorg. Mater. 2020, 35 (6), 623. doi: 10.15541/jim20190342  doi: 10.15541/jim20190342

    16. [16]

      Meng, G.; Ye, Y.; Fan, L.; Wang, S.; Gnatyuk, V.; Fang, X. J. Inorg. Mater. 2020, 35 (11), 1203. doi: 10.15541/jim20190394  doi: 10.15541/jim20190394

    17. [17]

      Wageh, S.; Al-Ghamdi, A. A.; Zhao, L. Acta Phys. -Chim. Sin. 2022, 38 (7), 2111009. doi: 10.3866/PKU.WHXB202111009  doi: 10.3866/PKU.WHXB202111009

    18. [18]

      Chen, Q.; Zhang, Y.; Liu, S.; Han, T.; Chen, X.; Xu, Y.; Meng, Z.; Zhang, G.; Zheng, X.; Zhao, J. Adv. Intell. Syst. 2020, 2 (9), 2000122. doi: 10.1002/aisy.202000122  doi: 10.1002/aisy.202000122

    19. [19]

      Liu, X.; Ren, S.; Li, Z.; Guo, J.; Yi, S.; Yang, Z.; Hao, W.; Li, R.; Zhao, J. Adv. Funct. Mater. 2022, 32, 2202951. doi: 10.1002/adfm.202202951  doi: 10.1002/adfm.202202951

    20. [20]

      He, C.; Meng, Z.; Ren, S.; Li, J.; Wang, Y.; Wu, H.; Bu, H.; Zhang, Y.; Hao, W.; Chen, S.; et al. Rare Met. 2023, 42 (5), 1624. doi: 10.1007/s12598-022-02222-8  doi: 10.1007/s12598-022-02222-8

    21. [21]

      Bu, H.; He, C.; Xu, Y.; Xing, L.; Liu, X.; Ren, S.; Yi, S.; Chen, L.; Wu, H.; Zhang, G. Adv. Electron. Mater. 2022, 8 (5), 2101204. doi: 10.1002/aelm.202101204  doi: 10.1002/aelm.202101204

    22. [22]

      Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y.; Huang, J. Chem. Soc. Rev. 2019, 48 (14), 3842. doi: 10.1039/C8CS00853A  doi: 10.1039/C8CS00853A

    23. [23]

      Bi, E.; Song, Z.; Li, C.; Wu, Z.; Yan, Y. Trends Chem. 2021, 3 (7), 575. doi: 10.1016/j.trechm.2021.04.004  doi: 10.1016/j.trechm.2021.04.004

    24. [24]

      Chen, S.; Wu, C.; Han, B.; Liu, Z.; Mi, Z.; Hao, W.; Zhao, J.; Wang, X.; Zhang, Q.; Liu, K.; et al. Nat. Commun. 2021, 12 (1), 5516. doi: 10.1038/s41467-021-25832-9  doi: 10.1038/s41467-021-25832-9

    25. [25]

      Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Nat. Rev. Mater. 2017, 2 (7), 1. doi: 10.1038/natrevmats.2017.42  doi: 10.1038/natrevmats.2017.42

    26. [26]

      Lee, J.-W.; Tan, S.; Seok, S. I.; Yang, Y.; Park, N. G. Science 2022, 375 (6583), eabj1186. doi: 10.1126/science.abj1186  doi: 10.1126/science.abj1186

    27. [27]

      Tu, Q.; Kim, D.; Shyikh, M.; Kanatzidis, M. G. Matter 2021, 4 (9), 2765. doi: 10.1016/j.matt.2021.06.028  doi: 10.1016/j.matt.2021.06.028

    28. [28]

      Liu, D.; Luo, D.; Iqbal, A. N.; Orr, K. W.; Doherty, T. A.; Lu, Z.-H.; Stranks, S. D.; Zhang, W. Nat. Mater. 2021, 20 (10), 1337. doi: 10.1038/s41563-021-01097-x  doi: 10.1038/s41563-021-01097-x

    29. [29]

      Mela, I.; Poudel, C.; Anaya, M.; Delport, G.; Frohna, K.; Macpherson, S.; Doherty, T. A.; Scheeder, A.; Stranks, S. D.; Kaminski, C. F. Adv. Funct. Mater. 2021, 31 (23), 2100293. doi: 10.1002/adfm.202100293  doi: 10.1002/adfm.202100293

    30. [30]

      Eames, C.; Frost, J. M.; Barnes, P. R.; O'regan, B. C.; Walsh, A.; Islam, M. S. Nat. Commun. 2015, 6 (1), 7497. doi: 10.1038/ncomms8497  doi: 10.1038/ncomms8497

    31. [31]

      Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y. J. Am. Chem. Soc. 2015, 137 (32), 10048. doi: 10.1021/jacs.5b03615  doi: 10.1021/jacs.5b03615

    32. [32]

      Yuan, Y.; Huang, J. Acc. Chem. Res. 2016, 49 (2), 286. doi: 10.1021/acs.accounts.5b00420  doi: 10.1021/acs.accounts.5b00420

    33. [33]

      Chen, R.; Wang, J.; Liu, Z.; Ren, F.; Liu, S.; Zhou, J.; Wang, H.; Meng, X.; Zhang, Z.; Guan, X.; et al. Nat. Energy 2023, 8 (8), 839. doi: 10.1038/s41560-023-01288-7  doi: 10.1038/s41560-023-01288-7

    34. [34]

      Zhang, H.; Xiang, W.; Zuo, X.; Gu, X.; Zhang, S.; Du, Y.; Wang, Z.; Liu, Y.; Wu, H.; Wang, P. Angew. Chem. 2023, 135 (6), e202216634. doi: 10.1002/ange.202216634  doi: 10.1002/ange.202216634

    35. [35]

      Zhou, J.; Liu, Z.; Yu, P.; Tong, G.; Chen, R.; Ono, L. K.; Chen, R.; Wang, H.; Ren, F.; Liu, S.; Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Nat. Rev. Mater. 2017, 2 (7), 1. doi: 10.1038/natrevmats.2017.42  doi: 10.1038/natrevmats.2017.42

    36. [36]

      Li, Y.; Xie, H.; Lim, E. L.; Hagfeldt, A.; Bi, D. Adv. Energy Mater. 2022, 12 (5), 2102730. doi: 10.1002/aenm.202102730  doi: 10.1002/aenm.202102730

    37. [37]

      Divitini, G.; Cacovich, S.; Matteocci, F.; Cinà, L.; Di Carlo, A.; Ducati, C. Nat. Energy 2016, 1 (2), 15012. doi: 10.1038/nenergy.2015.12  doi: 10.1038/nenergy.2015.12

    38. [38]

      DeQuilettes, D. W.; Zhang, W.; Burlakov, V. M.; Graham, D. J.; Leijtens, T.; Osherov, A.; Bulović, V.; Snaith, H. J.; Ginger, D. S.; Stranks, S. D. Nat. Commun. 2016, 7 (1), 11683. doi: 10.1038/ncomms11683  doi: 10.1038/ncomms11683

    39. [39]

      Bae, S.; Kim, S.; Lee, S.-W.; Cho, K. J.; Park, S.; Lee, S.; Kang, Y.; Lee, H.-S.; Kim, D. J. Phys. Chem. Lett. 2016, 7 (16), 3091. doi: 10.1021/acs.jpclett.6b01176  doi: 10.1021/acs.jpclett.6b01176

    40. [40]

      Wu, S.; Chen, R.; Zhang, S.; Babu, B. H.; Yue, Y.; Zhu, H.; Yang, Z.; Chen, C.; Chen, W.; Huang, Y.; et al. Nat. Commun. 2019, 10 (1), 1161. doi: 10.1038/s41467-019-09167-0  doi: 10.1038/s41467-019-09167-0

    41. [41]

      Mei, A.; Sheng, Y.; Ming, Y.; Hu, Y.; Rong, Y.; Zhang, W.; Luo, S.; Na, G.; Tian, C.; Hou, X. Joule 2020, 4 (12), 2646. doi: 10.1016/j.joule.2020.09.010  doi: 10.1016/j.joule.2020.09.010

    42. [42]

      Zhang, G.; Xu, Y.; Yang, S.; Ren, S.; Jiao, Y.; Wang, Y.; Ma, X.; Li, H.; Hao, W.; He, C. Nano Energy 2023, 106, 108074. doi: 10.1016/j.nanoen.2022.108074  doi: 10.1016/j.nanoen.2022.108074

    43. [43]

      Yang, S.; Xu, Y. X.; Hao, Z. K.; Qin, S. J.; Zhang, R. P.; Han, Y.; Du, L. W.; Zhu, Z. Y.; Du, A. N.; Chen, X.; et al. Acta Phys. -Chim. Sin. 2023, 39 (5), 2211025. doi: 10.3866/PKU.WHXB202211025  doi: 10.3866/PKU.WHXB202211025

    44. [44]

      Jiménez-López, J.; Puscher, B. M.; Guldi, D. M.; Palomares, E. J. Am. Chem. Soc. 2019, 142 (3), 1236. doi: 10.1021/jacs.9b09182  doi: 10.1021/jacs.9b09182

    45. [45]

      Moia, D.; Maier, J. ACS Energy Lett. 2021, 6 (4), 1566. doi: 10.1021/acsenergylett.1c00227  doi: 10.1021/acsenergylett.1c00227

    46. [46]

      Li, D.; Wu, H.; Cheng, H.-C.; Wang, G.; Huang, Y.; Duan, X. ACS Nano 2016, 10 (7), 6933. doi: 10.1021/acsnano.6b02795  doi: 10.1021/acsnano.6b02795

    47. [47]

      Wang, X.; Ling, Y.; Chiu, Y.-C.; Du, Y.; Barreda, J. L.; Perez-Orive, F.; Ma, B.; Xiong, P.; Gao, H. Nano Lett. 2017, 17 (8), 4831. doi: 10.1021/acs.nanolett.7b01665  doi: 10.1021/acs.nanolett.7b01665

    48. [48]

      Zhang, H.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C.; William, W. Y.; Wang, X.; Zhang, Y.; Xiao, M. Nat. Commun. 2019, 10 (1), 1. doi: 10.1038/s41467-019-09047-7  doi: 10.1038/s41467-019-09047-7

    49. [49]

      Jung, M.; Ji, S.-G.; Kim, G.; Seok, S. I. Chem. Soc. Rev. 2019, 48 (7), 2011. doi: 10.1039/C8CS00656C  doi: 10.1039/C8CS00656C

    50. [50]

      Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. J. Phys. Chem. Lett. 2014, 5 (8), 1312. doi: 10.1021/jz500370k  doi: 10.1021/jz500370k

    51. [51]

      Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104 (6), 063903. doi: 10.1063/1.4864778  doi: 10.1063/1.4864778

    52. [52]

      Son, D.-Y.; Kim, S.-G.; Seo, J.-Y.; Lee, S.-H.; Shin, H.; Lee, D.; Park, N.-G. J. Am. Chem. Soc. 2018, 140 (4), 1358. doi: 10.1021/jacs.7b10430  doi: 10.1021/jacs.7b10430

    53. [53]

      Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Energy Environ. Sci. 2015, 8 (7), 2118. doi: 10.1039/C5EE01265A  doi: 10.1039/C5EE01265A

    54. [54]

      Motti, S. G.; Meggiolaro, D.; Barker, A. J.; Mosconi, E.; Perini, C. A. R.; Ball, J. M.; Gandini, M.; Kim, M.; De Angelis, F.; Petrozza, A. Nat. Photon. 2019, 13 (8), 532. doi: 10.1038/s41566-019-0435-1  doi: 10.1038/s41566-019-0435-1

    55. [55]

      Meggiolaro, D.; Motti, S. G.; Mosconi, E.; Barker, A. J.; Ball, J.; Perini, C. A. R.; Deschler, F.; Petrozza, A.; De Angelis, F. Energy Environ. Sci. 2018, 11 (3), 702. doi: 10.1039/C8EE00124C  doi: 10.1039/C8EE00124C

    56. [56]

      Leijtens, T.; Eperon, G. E.; Barker, A. J.; Grancini, G.; Zhang, W.; Ball, J. M.; Kandada, A. R. S.; Snaith, H. J.; Petrozza, A. Energy Environ. Sci. 2016, 9 (11), 3472. doi: 10.1039/C6EE01729K  doi: 10.1039/C6EE01729K

    57. [57]

      Yang, J.-H.; Yin, W.-J.; Park, J.-S.; Wei, S.-H. J. Mater. Chem. A 2016, 4 (34), 13105. doi: 10.1039/C6TA03599J  doi: 10.1039/C6TA03599J

    58. [58]

      Henstridge, M.; Först, M.; Rowe, E.; Fechner, M.; Cavalleri, A. Nat. Phys. 2022, 18 (4), 457. doi: 10.1038/s41567-022-01512-3  doi: 10.1038/s41567-022-01512-3

    59. [59]

      Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. Science 2016, 351 (6280), aad3000. doi: 10.1126/science.aad3000  doi: 10.1126/science.aad3000

    60. [60]

      Meggiolaro, D.; Mosconi, E.; De Angelis, F. ACS Energy Lett. 2019, 4 (3), 779. doi: 10.1021/acsenergylett.9b00247  doi: 10.1021/acsenergylett.9b00247

    61. [61]

      Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A. Energy Environ. Sci. 2016, 9 (5), 1752. doi: 10.1039/C6EE00413J  doi: 10.1039/C6EE00413J

    62. [62]

      Zhang, T.; Chen, H.; Bai, Y.; Xiao, S.; Zhu, L.; Hu, C.; Xue, Q.; Yang, S. Nano Energy 2016, 26, 620. doi: 10.1016/j.nanoen.2016.05.052  doi: 10.1016/j.nanoen.2016.05.052

    63. [63]

      Futscher, M. H.; Lee, J. M.; McGovern, L.; Muscarella, L. A.; Wang, T.; Haider, M. I.; Fakharuddin, A.; Schmidt-Mende, L.; Ehrler, B. Mater. Horiz. 2019, 6 (7), 1497. doi: 10.1039/C9MH00445A  doi: 10.1039/C9MH00445A

    64. [64]

      Jong, U.-G.; Yu, C.-J.; Ri, G.-C.; McMahon, A. P.; Harrison, N. M.; Barnes, P. R.; Walsh, A. J. Mater. Chem. A 2018, 6 (3), 1067. doi: 10.1039/C7TA09112E  doi: 10.1039/C7TA09112E

    65. [65]

      Tan, S.; Yavuz, I.; De Marco, N.; Huang, T.; Lee, S. J.; Choi, C. S.; Wang, M.; Nuryyeva, S.; Wang, R.; Zhao, Y. Adv. Mater. 2020, 32 (11), 1906995. doi: 10.1002/adma.201906995  doi: 10.1002/adma.201906995

    66. [66]

      Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. ACS Energy Lett. 2017, 2 (7), 1571. doi: 10.1021/acsenergylett.7b00442  doi: 10.1021/acsenergylett.7b00442

    67. [67]

      Zhou, W.; Zhao, Y.; Zhou, X.; Fu, R.; Li, Q.; Zhao, Y.; Liu, K.; Yu, D.; Zhao, Q. J. Phys. Chem. Lett. 2017, 8 (17), 4122. doi: 10.1021/acs.jpclett.7b01851  doi: 10.1021/acs.jpclett.7b01851

    68. [68]

      Yang, T. Y.; Gregori, G.; Pellet, N.; Grätzel, M.; Maier, J. Angew. Chem. 2015, 127 (27), 8016. doi: 10.1002/ange.201500014  doi: 10.1002/ange.201500014

    69. [69]

      Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahti, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D. J. Am. Chem. Soc. 2015, 137 (40), 13130. doi: 10.1021/jacs.5b08535  doi: 10.1021/jacs.5b08535

    70. [70]

      Leoncini, M.; Giannuzzi, R.; Giuri, A.; Colella, S.; Listorti, A.; Maiorano, V.; Rizzo, A.; Gigli, G.; Gambino, S. J. Sci. : Adv. Mater. Devices. 2021, 6 (4), 543. doi: 10.1016/j.jsamd.2021.07.006  doi: 10.1016/j.jsamd.2021.07.006

    71. [71]

      Xing, J.; Wang, Q.; Dong, Q.; Yuan, Y.; Fang, Y.; Huang, J. Phys. Chem. Chem. Phys. 2016, 18 (44), 30484. doi: 10.1039/C6CP06496E  doi: 10.1039/C6CP06496E

    72. [72]

      Lin, D.; Shi, T.; Xie, H.; Wan, F.; Ren, X.; Liu, K.; Zhao, Y.; Ke, L.; Lin, Y.; Gao, Y. Adv. Energy Mater. 2021, 11 (8), 2002552. doi: 10.1002/aenm.202002552  doi: 10.1002/aenm.202002552

    73. [73]

      Mahapatra, A.; Runjhun, R.; Nawrocki, J.; Lewiński, J.; Kalam, A.; Kumar, P.; Trivedi, S.; Tavakoli, M. M.; Prochowicz, D.; Yadav, P. Phys. Chem. Chem. Phys. 2020, 22 (20), 11467. doi: 10.1039/D0CP01119C  doi: 10.1039/D0CP01119C

    74. [74]

      Zhao, Y.-C.; Zhou, W.-K.; Zhou, X.; Liu, K.-H.; Yu, D.-P.; Zhao, Q. Light Sci. Appl. 2017, 6 (5), e16243. doi: 10.1038/lsa.2016.243  doi: 10.1038/lsa.2016.243

    75. [75]

      Sheng, Y.; Liu, C.; Yu, L.; Yang, Y.; Hu, F.; Sheng, C.; Di, Y.; Dong, L.; Gan, Z. Nanoscale 2021, 13 (34), 14450. doi: 10.1039/D1NR02511B  doi: 10.1039/D1NR02511B

    76. [76]

      Scheidt, R. A.; Kamat, P. V. J. Chem. Phys. 2019, 151 (13). doi: 10.1063/1.5120270  doi: 10.1063/1.5120270

    77. [77]

      Mizusaki, J.; Arai, K.; Fueki, K. Solid State Ion. 1983, 11 (3), 203. doi: 10.1016/0167-2738(83)90025-5  doi: 10.1016/0167-2738(83)90025-5

    78. [78]

      Pazoki, M.; Wolf, M. J.; Edvinsson, T.; Kullgren, J. Nano Energy 2017, 38, 537. doi: 10.1016/j.nanoen.2017.06.024  doi: 10.1016/j.nanoen.2017.06.024

    79. [79]

      Li, N.; Jia, Y.; Guo, Y.; Zhao, N. J. A. M. Adv. Mater. 2022, 2108102. doi: 10.1002/adma.202108102  doi: 10.1002/adma.202108102

    80. [80]

      Laidler, K. J. Chemical Kinetics, 3rd ed. Harper & Row: : New York City, US. 1987; pp. 40-45.

    81. [81]

      Shi, J.; Xu, X.; Zhang, H.; Luo, Y.; Li, D.; Meng, Q. Appl. Phys. Lett. 2015, 107 (16), 163901. doi: 10.1063/1.4934633  doi: 10.1063/1.4934633

    82. [82]

      Walsh, A.; Stranks, S. D. ACS Energy Lett. 2018, 3 (8), 1983. doi: 10.1021/acsenergylett.8b00764  doi: 10.1021/acsenergylett.8b00764

    83. [83]

      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Nano Lett. 2014, 14 (5), 2584. doi: 10.1021/nl500390f  doi: 10.1021/nl500390f

    84. [84]

      Yamilova, O. R.; Danilov, A. V.; Mangrulkar, M.; Fedotov, Y. S.; Luchkin, S. Y.; Babenko, S. D.; Bredikhin, S. I.; Aldoshin, S. M.; Stevenson, K. J.; Troshin, P. A. J. Phys. Chem. Lett. 2020, 11 (1), 221. doi: 10.1021/acs.jpclett.9b03161  doi: 10.1021/acs.jpclett.9b03161

    85. [85]

      Lanzetta, L.; Webb, T.; Zibouche, N.; Liang, X.; Ding, D.; Min, G.; Westbrook, R. J.; Gaggio, B.; Macdonald, T. J.; Islam, M. S. Nat. Commun. 2021, 12 (1), 2853. doi: 10.1038/s41467-021-22864-z  doi: 10.1038/s41467-021-22864-z

    86. [86]

      Song, J.; Kong, T.; Zhang, Y.; Liu, X.; Saliba, M.; Bi, D. Adv. Funct. Mater. 2023, 2304201. doi: 10.1002/adfm.202304201  doi: 10.1002/adfm.202304201

    87. [87]

      Chen, S.; Zhang, X.; Zhao, J.; Zhang, Y.; Kong, G.; Li, Q.; Li, N.; Yu, Y.; Xu, N.; Zhang, J. Nat. Commun. 2018, 9 (1), 4807. doi: 10.1038/s41467-018-07177-y  doi: 10.1038/s41467-018-07177-y

    88. [88]

      Chen, S.; Zhang, Y.; Zhang, X.; Zhao, J.; Zhao, Z.; Su, X.; Hua, Z.; Zhang, J.; Cao, J.; Feng, J.; et al. Adv. Mater. 2020, 32, 2001107. doi: 10.1002/adma.202001107  doi: 10.1002/adma.202001107

    89. [89]

      Li, Y.; Lim, E. L.; Zhang, Y.; Kong, T.; Liu, X.; Song, J.; Xie, H.; Bi, D. ACS Appl. Energy Mater. 2022, 5 (12), 15233. doi: 10.1021/acsaem.2c02875  doi: 10.1021/acsaem.2c02875

    90. [90]

      Xue, D.-J.; Hou, Y.; Liu, S.-C.; Wei, M.; Chen, B.; Huang, Z.; Li, Z.; Sun, B.; Proppe, A. H.; Dong, Y.; et al. Nat. Commun. 2020, 11 (1), 1514. doi: 10.1038/s41467-020-15338-1  doi: 10.1038/s41467-020-15338-1

    91. [91]

      Wang, L.; Song, Q.; Pei, F.; Chen, Y.; Dou, J.; Wang, H.; Shi, C.; Zhang, X.; Fan, R.; Zhou, W.; et al. Adv. Mater. 2022, 34 (26), 2201315. doi: 10.1002/adma.202201315  doi: 10.1002/adma.202201315

    92. [92]

      Ramirez, C.; Yadavalli, S. K.; Garces, H. F.; Zhou, Y.; Padture, N. P. Scripta Mater. 2018, 150, 36. doi: 10.1016/j.scriptamat.2018.02.022  doi: 10.1016/j.scriptamat.2018.02.022

    93. [93]

      Liu, Y.; Collins, L.; Proksch, R.; Kim, S.; Watson, B. R.; Doughty, B.; Calhoun, T. R.; Ahmadi, M.; Ievlev, A. V.; Jesse, S. Nat. Mater. 2018, 17 (11), 1013. doi: 10.1038/s41563-018-0152-z  doi: 10.1038/s41563-018-0152-z

    94. [94]

      Kim, M.; Jun, H.; Lee, H.; Nahdi, H.; Tondelier, D.; Bonnassieux, Y.; Bourée, J. É.; Geffroy, B. Eur. J. Inorg. Chem. 2021, 2021 (46), 4781. doi: 10.1002/ejic.202100654  doi: 10.1002/ejic.202100654

    95. [95]

      Lu, Y.; Ge, Y.; Sui, M. L. Acta Phys. -Chim. Sin. 2022, 38 (5), 2007088. doi: 10.3866/PKU.WHXB202007088  doi: 10.3866/PKU.WHXB202007088

    96. [96]

      Zheng, F.; Wen, X.; Bu, T.; Chen, S.; Yang, J.; Chen, W.; Huang, F.; Cheng, Y.; Jia, B. ACS Appl. Mater. Interfaces. 2018, 10 (37), 31452. doi: 10.1021/acsami.8b13932  doi: 10.1021/acsami.8b13932

    97. [97]

      Mahapatra, A.; Parikh, N.; Kumari, H.; Pandey, M. K.; Kumar, M.; Prochowicz, D.; Kalam, A.; Tavakoli, M. M.; Yadav, P. J. Appl. Phys. 2020, 127 (18), 185501. doi: 10.1063/5.0005369  doi: 10.1063/5.0005369

    98. [98]

      Zhao, Y.; Yavuz, I.; Wang, M.; Weber, M. H.; Xu, M.; Lee, J.-H.; Tan, S.; Huang, T.; Meng, D.; Wang, R. Nat. Mater. 2022, 21 (12), 1396. doi: 10.1038/s41563-022-01390-3  doi: 10.1038/s41563-022-01390-3

    99. [99]

      Holekevi Chandrappa, M. L.; Zhu, Z.; Fenning, D. P.; Ong, S. P. Chem. Mater. 2021, 33 (12), 4672. doi: 10.1021/acs.chemmater.1c01175  doi: 10.1021/acs.chemmater.1c01175

    100. [100]

      Yang, W.; Ding, B.; Lin, Z.; Sun, J.; Meng, Y.; Ding, Y.; Sheng, J.; Yang, Z.; Ye, J.; Dyson, P. J.; Nazeeruddin, M. K. Adv. Mater. 2023, 35 (35), 2302071. doi: 10.1002/adma.202302071  doi: 10.1002/adma.202302071

    101. [101]

      Zhang, X.; Zhou, W.; Chen, X.; Chen, Y.; Li, X.; Wang, M.; Zhou, Y.; Yan, H.; Zheng, Z.; Zhang, Y. Adv. Mater. 2022, 12 (26), 2201105. doi: 10.1002/aenm.202201105  doi: 10.1002/aenm.202201105

    102. [102]

      Ferdani, D. W.; Pering, S. R.; Ghosh, D.; Kubiak, P.; Walker, A. B.; Lewis, S. E.; Johnson, A. L.; Baker, P. J.; Islam, M. S.; Cameron, P. J. Energy Environ. Sci. 2019, 12 (7), 2264. doi: 10.1039/C9EE00476A  doi: 10.1039/C9EE00476A

    103. [103]

      Xiao, X.; Dai, J.; Fang, Y.; Zhao, J.; Zheng, X.; Tang, S.; Rudd, P. N.; Zeng, X. C.; Huang, J. ACS Energy Lett. 2018, 3 (3), 684. doi: 10.1021/acsenergylett.8b00047  doi: 10.1021/acsenergylett.8b00047

    104. [104]

      Sutanto, A. A.; Drigo, N.; Queloz, V. I.; Garcia-Benito, I.; Kirmani, A. R.; Richter, L. J.; Schouwink, P. A.; Cho, K. T.; Paek, S.; Nazeeruddin, M. K. J. Mater. Chem. A 2020, 8 (5), 2343. doi: 10.1039/C9TA12489F  doi: 10.1039/C9TA12489F

    105. [105]

      Zhou, T.; Lai, H.; Liu, T.; Lu, D.; Wan, X.; Zhang, X.; Liu, Y.; Chen, Y. Adv. Mater. 2019, 31 (32), 1901242. doi: 10.1002/adma.201901242  doi: 10.1002/adma.201901242

    106. [106]

      Jiang, X.; Zhang, J.; Liu, Y.; Wang, Z.; Liu, X.; Guo, X.; Li, C. Nano Energy 2021, 90, 106521. doi: 10.1016/j.nanoen.2021.106521  doi: 10.1016/j.nanoen.2021.106521

    107. [107]

      Wang, Y.; Wu, T.; Barbaud, J.; Kong, W.; Cui, D.; Chen, H.; Yang, X.; Han, L. Science 2019, 365 (6454), 687. doi: 10.1126/science.aax8018  doi: 10.1126/science.aax8018

    108. [108]

      Wei, D.; Ma, F.; Wang, R.; Dou, S.; Cui, P.; Huang, H.; Ji, J.; Jia, E.; Jia, X.; Sajid, S. Adv. Mater. 2018, 30 (31), 1707583. doi: 10.1002/adma.201707583  doi: 10.1002/adma.201707583

    109. [109]

      Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Angew. Chem. 2020, 132 (49), 22181. doi: 10.1002/ange.202010252  doi: 10.1002/ange.202010252

    110. [110]

      Zhang, Y.; Kong, T.; Xie, H.; Song, J.; Li, Y.; Ai, Y.; Han, Y.; Bi, D. ACS Energy Lett. 2022, 7 (3), 929. doi: 10.1021/acsenergylett.1c02545  doi: 10.1021/acsenergylett.1c02545

    111. [111]

      Egger, D. A.; Kronik, L.; Rappe, A. M. Angew. Chem. Int. Ed. 2015, 54 (42), 12437. doi: 10.1002/anie.201502544  doi: 10.1002/anie.201502544

    112. [112]

      Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. ACS Nano 2016, 10 (6), 6306. doi: 10.1021/acsnano.6b02613  doi: 10.1021/acsnano.6b02613

    113. [113]

      Li, Z.; Xiao, C.; Yang, Y.; Harvey, S. P.; Kim, D. H.; Christians, J. A.; Yang, M.; Schulz, P.; Nanayakkara, S. U.; Jiang, C.-S. Energy Environ. Sci. 2017, 10 (5), 1234. doi: 10.1039/C7EE00358G  doi: 10.1039/C7EE00358G

    114. [114]

      Zhang, J.; Chen, R.; Wu, Y.; Shang, M.; Zeng, Z.; Zhang, Y.; Zhu, Y.; Han, L. Adv. Energy Mater. 2018, 8 (5), 1701981. doi: 10.1002/aenm.201701981  doi: 10.1002/aenm.201701981

    115. [115]

      Ren, S. X.; Yang, Z.; An, S. L.; Meng, J.; Liu, X. M.; Zhao, J. J. Acta Phys. -Chim. Sin. 2023, 39 (12), 2301033. doi: 10.3866/PKU.WHXB202301033  doi: 10.3866/PKU.WHXB202301033

    116. [116]

      Kamat, P. V.; Kuno, M. Acc. Chem. Res. 2021, 54 (3), 520. doi: 10.1021/acs.accounts.0c00749  doi: 10.1021/acs.accounts.0c00749

    117. [117]

      Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chem. Sci. 2015, 6 (1), 613. doi: 10.1039/C4SC03141E  doi: 10.1039/C4SC03141E

    118. [118]

      Wang, H.; Zhang, X.; Sui, N.; Hu, Y.; Colvin, V. L.; Bai, X.; Zhang, Y.; Rogach, A. L.; Yu, W. W. J. Phys. Chem. Lett. 2020, 11 (15), 6168. doi: 10.1021/acs.jpclett.0c01844  doi: 10.1021/acs.jpclett.0c01844

    119. [119]

      Samu, G. F.; Janaky, C.; Kamat, P. V. ACS Energy Lett. 2017, 2 (8), 1860. doi: 10.1021/acsenergylett.7b00589  doi: 10.1021/acsenergylett.7b00589

    120. [120]

      Giridharagopal, R.; Precht, J. T.; Jariwala, S.; Collins, L.; Jesse, S.; Kalinin, S. V.; Ginger, D. S. ACS nano 2019, 13 (3), 2812. doi: 10.1021/acsnano.8b08390  doi: 10.1021/acsnano.8b08390

    121. [121]

      Yuan, Y.; Chae, J.; Shao, Y.; Wang, Q.; Xiao, Z.; Centrone, A.; Huang, J. Adv. Energy Mater. 2015, 5 (15), 1500615. doi: 10.1002/aenm.201500615  doi: 10.1002/aenm.201500615

    122. [122]

      Liu, Y.; Ievlev, A.; Collins, L.; Borodinov, N.; Kalinin, S.; Ovchinnikova, O. Microsc. Microanal. 2020, 26 (S2), 2046. doi: 10.1017/S1431927620020267  doi: 10.1017/S1431927620020267

    123. [123]

      Liu, Y.; Ievlev, A. V.; Borodinov, N.; Lorenz, M.; Xiao, K.; Ahmadi, M.; Hu, B.; Kalinin, S. V.; Ovchinnikova, O. S. Adv. Funct. Mater. 2021, 31 (8), 2008777. doi: 10.1002/adfm.202008777  doi: 10.1002/adfm.202008777

    124. [124]

      Tress, W.; Marinova, N.; Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Energy Environ. Sci. 2015, 8 (3), 995. doi: 10.1039/C4EE03664F  doi: 10.1039/C4EE03664F

    125. [125]

      Deng, X.; Wen, X.; Lau, C. F. J.; Young, T.; Yun, J.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. J. Mater. Chem. C 2016, 4 (38), 9060. doi: 10.1039/C6TC03206K  doi: 10.1039/C6TC03206K

    126. [126]

      Leijtens, T.; Hoke, E. T.; Grancini, G.; Slotcavage, D. J.; Eperon, G. E.; Ball, J. M.; De Bastiani, M.; Bowring, A. R.; Martino, N.; Wojciechowski, K. Adv. Energy Mater. 2015, 5 (20), 1500962. doi: 10.1002/aenm.201500962  doi: 10.1002/aenm.201500962

    127. [127]

      Jacobs, D. L.; Scarpulla, M. A.; Wang, C.; Bunes, B. R.; Zang, L. J. Phys. Chem. C 2016, 120 (15), 7893. doi: 10.1021/acs.jpcc.5b11973  doi: 10.1021/acs.jpcc.5b11973

    128. [128]

      Haque, F.; Mativenga, M. Jpn. J. Appl. Phys. 2020, 59 (8), 081002. doi: 10.35848/1347-4065/aba5e1  doi: 10.35848/1347-4065/aba5e1

    129. [129]

      Zhu, X.; Lee, J.; Lu, W. D. Adv. Mater. 2017, 29 (29), 1700527. doi: 10.1002/adma.201700527  doi: 10.1002/adma.201700527

    130. [130]

      Qian, W. H.; Cheng, X. F.; Zhou, J.; He, J. H.; Li, H.; Xu, Q. F.; Li, N. J.; Chen, D. Y.; Yao, Z. G.; Lu, J. M. InfoMat 2020, 2 (4), 743. doi: 10.1002/inf2.12066  doi: 10.1002/inf2.12066

    131. [131]

      Liu, Z.; Cheng, P.; Li, Y.; Kang, R.; Zhang, Z.; Zuo, Z.; Zhao, J. ACS Appl. Mater. Interfaces. 2021, 13 (49), 58885. doi: 10.1021/acsami.1c13561  doi: 10.1021/acsami.1c13561

    132. [132]

      Liu, Y.; Borodinov, N.; Collins, L.; Ahmadi, M.; Kalinin, S. V.; Ovchinnikova, O. S.; Ievlev, A. V. ACS Nano 2021, 15 (5), 9017. doi: 10.1021/acsnano.1c02097  doi: 10.1021/acsnano.1c02097

    133. [133]

      Lee, H.; Gaiaschi, S.; Chapon, P.; Marronnier, A.; Lee, H.; Vanel, J.-C.; Tondelier, D.; Boureé, J.-E.; Bonnassieux, Y.; Geffroy, B. ACS Energy Lett. 2017, 2 (4), 943. doi: 10.1021/acsenergylett.7b00150  doi: 10.1021/acsenergylett.7b00150

    134. [134]

      Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D. Energy Environ. Sci. 2014, 7 (11), 3690. doi: 10.1039/C4EE02465F  doi: 10.1039/C4EE02465F

    135. [135]

      Wang, S.; Dong, X.; Xiong, Y.; Sha, J.; Cao, Y.; Wu, Y.; Li, W.; Yin, Y.; Wang, Y. Adv. Electron. Mater. 2021, 7 (5), 2100014. doi: 10.1002/aelm.202100014  doi: 10.1002/aelm.202100014

    136. [136]

      Pavlovetc, I. M.; Brennan, M. C.; Draguta, S.; Ruth, A.; Moot, T.; Christians, J. A.; Aleshire, K.; Harvey, S. P.; Toso, S.; Nanayakkara, S. U. ACS Energy Lett. 2020, 5 (9), 2802. doi: 10.1021/acsenergylett.0c01207  doi: 10.1021/acsenergylett.0c01207

    137. [137]

      Lee, H.; Boonmongkolras, P.; Jun, S.; Kim, D.; Park, Y.; Koh, J.; Cho, Y.-H.; Shin, B.; Park, J. Y. ACS Appl. Energy Mater. 2023, 6 (3), 1565. doi: 10.1021/acsaem.2c03438.  doi: 10.1021/acsaem.2c03438

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    3. [3]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    4. [4]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    5. [5]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    6. [6]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    12. [12]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    13. [13]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    15. [15]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    20. [20]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

Metrics
  • PDF Downloads(7)
  • Abstract views(335)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return