Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage
- Corresponding author: Ruiqi Wang, wangruiqi@ucas.ac.cn Fuqiang Huang, huangfq@pku.edu.cn
Citation:
Xueyu Lin, Ruiqi Wang, Wujie Dong, Fuqiang Huang. Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage[J]. Acta Physico-Chimica Sinica,
;2025, 41(3): 231100.
doi:
10.3866/PKU.WHXB202311005
Xie, L.; Tang, C.; Bi, Z.; Song, M.; Fan, Y.; Yan, C.; Li, X.; Su, F.; Zhang, Q.; Chen, C. Adv. Energy Mater. 2021, 11, 2101650. doi: 10.1002/aenm.202101650
doi: 10.1002/aenm.202101650
Ding, X.; Huang, Q.; Xiong, X. Acta Phys. -Chim. Sin. 2022, 38, 2204057. doi: 10.3866/PKU.WHXB202204057
doi: 10.3866/PKU.WHXB202204057
Han, C.; He, Y. -B.; Wang, S.; Wang, C.; Du, H.; Qin, X.; Lin, Z.; Li, B.; Kang, F. ACS Appl. Mater. Interf. 2016, 8, 18788. doi: 10.1021/acsami.6b04239
doi: 10.1021/acsami.6b04239
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2
doi: 10.1038/s41560-018-0107-2
Dong, C.; Dong, W.; Lin, X.; Zhao, Y.; Li, R.; Huang, F. EnergyChem 2020, 2, 100045. doi: 10.1016/j.enchem.2020.100045
doi: 10.1016/j.enchem.2020.100045
Reddy, M. V.; Subba Rao, G.; Chowdari, B. Chem. Rev. 2013, 113, 5364. doi: 10.1021/cr3001884
doi: 10.1021/cr3001884
Aravindan, V.; Lee, Y. S.; Madhavi, S. Adv. Energy Mater. 2015, 5, 1402225. doi: 10.1002/aenm.201402225
doi: 10.1002/aenm.201402225
Ahmed, B.; Shahid, M.; Nagaraju, D. H.; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N. ACS Appl. Mater. Interf. 2015, 7, 13154. doi: 10.1021/acsami.5b03395
doi: 10.1021/acsami.5b03395
Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X. Nano Lett. 2015, 15, 565. doi: 10.1021/nl504038s
doi: 10.1021/nl504038s
Chen, Z.; Zhang, C.; Zhang, Z.; Li, J. Phys. Chem. Chem. Phys. 2014, 16, 13255. doi: 10.1039/c4cp00855c
doi: 10.1039/c4cp00855c
Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526. doi: 10.1039/B819629J
doi: 10.1039/B819629J
Chiu, H. C.; Lu, X.; Zhou, J.; Gu, L.; Reid, J.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Adv. Energy Mater. 2017, 7, 1601825. doi: 10.1002/aenm.201601825
doi: 10.1002/aenm.201601825
Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. -L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes.
doi: 10.1149/2.040405jes
Ding, J.; Abbas, S. A.; Hanmandlu, C.; Lin, L.; Lai, C. -S.; Wang, P. -C.; Li, L. -J.; Chu, C. -W.; Chang, C. -C. J. Power Sources 2017, 348, 270. doi: 10.1016/j.jpowsour.2017.03.007
doi: 10.1016/j.jpowsour.2017.03.007
Hemalatha, K.; Prakash, A.; Guruprakash, K.; Jayakumar, M. J. Mater. Chem. A 2014, 2, 1757. doi: 10.1039/C3TA13352D
doi: 10.1039/C3TA13352D
Hou, C.; Wang, J.; Du, W.; Wang, J.; Du, Y.; Liu, C.; Zhang, J.; Hou, H.; Dang, F.; Zhao, L. J. Mater. Chem. A 2019, 7, 13460. doi: 10.1039/C9TA03551F
doi: 10.1039/C9TA03551F
Li, T.; Nam, G.; Liu, K.; Wang, J. -H.; Zhao, B.; Ding, Y.; Soule, L.; Avdeev, M.; Luo, Z.; Zhang, W. Energy Environ. Sci. 2022, 15, 254. doi: 10.1039/D1EE02664J
doi: 10.1039/D1EE02664J
Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H. J. Mater. Chem. 2011, 21, 3046. doi: 10.1039/C0JM03132A
doi: 10.1039/C0JM03132A
Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80. doi: 10.1016/j.jpowsour.2017.06.023
doi: 10.1016/j.jpowsour.2017.06.023
Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. Electrochem. Energy Rev. 2018, 1, 35. doi: 10.1007/s41918-018-0001-4
doi: 10.1007/s41918-018-0001-4
Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Adv. Mater. 2019, 31, 1805754. doi: 10.1002/adma.201805754
doi: 10.1002/adma.201805754
Sun, Y.; Wang, J.; Zhao, B.; Cai, R.; Ran, R.; Shao, Z. J. Mater. Chem. A 2013, 1, 4736. doi: 10.1039/C3TA01285A
doi: 10.1039/C3TA01285A
Wang, J.; Liu, Z.; Yang, W.; Han, L.; Wei, M. Chem. Commun. 2018, 54, 7346. doi: 10.1039/C8CC03875A
doi: 10.1039/C8CC03875A
Wang, L.; Zhang, Y.; Guo, H.; Li, J.; Stach, E. A.; Tong, X.; Takeuchi, E. S.; Takeuchi, K. J.; Liu, P.; Marschilok, A. C. Chem. Mater. 2018, 30, 671. doi: 10.1021/acs.chemmater.7b03847
doi: 10.1021/acs.chemmater.7b03847
Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi: 10.1039/c7cs00863e
doi: 10.1039/c7cs00863e
Wu, L.; Zheng, J.; Wang, L.; Xiong, X.; Shao, Y.; Wang, G.; Wang, J. H.; Zhong, S.; Wu, M. Angew. Chem. 2019, 131, 821. doi: 10.1002/ange.201811784
doi: 10.1002/ange.201811784
Yan, B.; Li, X.; Bai, Z.; Li, M.; Dong, L.; Xiong, D.; Li, D. J. Alloys Compd. 2015, 634, 50. doi: 10.1016/j.jallcom.2015.01.292
doi: 10.1016/j.jallcom.2015.01.292
Yang, L.; Liu, L.; Zhu, Y.; Wang, X.; Wu, Y. J. Mater. Chem. 2012, 22, 13148. doi: 10.1039/C2JM31364B
doi: 10.1039/C2JM31364B
Yao, Z.; Xia, X.; Xie, D.; Wang, Y.; Zhou, C. A.; Liu, S.; Deng, S.; Wang, X.; Tu, J. Adv. Funct. Mater. 2018, 28, 1802756. doi: 10.1002/adfm.201802756
doi: 10.1002/adfm.201802756
Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources 2010, 195, 4997. doi: 10.1016/j.jpowsour.2010.02.020
doi: 10.1016/j.jpowsour.2010.02.020
Zhou, J.; Lin, N.; Wang, L.; Zhang, K.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3, 7463. doi: 10.1039/C5TA00516G
doi: 10.1039/C5TA00516G
Zhu, K.; Wang, X.; Liu, J.; Li, S.; Wang, H.; Yang, L.; Liu, S.; Xie, T. ACS Sustain. Chem. Eng. 2017, 5, 8025. doi: 10.1021/acssuschemeng.7b01595
doi: 10.1021/acssuschemeng.7b01595
Lu, Y.; Yu, L.; Lou, X. W. D. Chem 2018, 4, 972. doi: 10.1016/j.chempr.2018.01.003
doi: 10.1016/j.chempr.2018.01.003
Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13
doi: 10.1038/natrevmats.2016.13
Heligman, B. T.; Manthiram, A. ACS Energy Lett. 2021, 6, 2666. doi: 10.1021/acsenergylett.1c01145
doi: 10.1021/acsenergylett.1c01145
Park, C. -M.; Kim, J. -H.; Kim, H.; Sohn, H. -J. Chem. Soc. Rev. 2010, 39, 3115. doi: 10.1039/b919877f
doi: 10.1039/b919877f
Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Small 2021, 17, 1903194. doi: 10.1002/smll.201903194
doi: 10.1002/smll.201903194
Yu, S. -H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H. D. Acc. Chem. Res. 2018, 51, 273. doi: 10.1021/acs.accounts.7b00487
doi: 10.1021/acs.accounts.7b00487
Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878. doi: 10.1149/1.1801451
doi: 10.1149/1.1801451
Luo, Y. -R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007.
Kim, M. -S.; Lee, B. -H.; Park, J. -H.; Lee, H. S.; Hooch Antink, W.; Jung, E.; Kim, J.; Yoo, T. Y.; Lee, C. W.; Ahn, C. -Y. J. Am. Chem. Soc. 2020, 142, 13406. doi: 10.1021/jacs.0c02203
doi: 10.1021/jacs.0c02203
Lou, S.; Zhao, Y.; Wang, J.; Yin, G.; Du, C.; Sun, X. Small 2019, 15, 1904740. doi: 10.1002/smll.201904740
doi: 10.1002/smll.201904740
Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Adv. Funct. Mater. 2015, 25, 3341. doi: 10.1002/adfm.201404348
doi: 10.1002/adfm.201404348
Dong, W.; Huang, F. eScience 2023, 100158. doi: 10.1016/j.esci.2023.100158
doi: 10.1016/j.esci.2023.100158
Dong, W.; Xie, M.; Zhao, S.; Qin, Q.; Huang, F. Mater. Sci. Eng., R 2023, 152, 100713. doi: 10.1016/j.mser.2022.100713
doi: 10.1016/j.mser.2022.100713
Fang, S.; Bresser, D.; Passerini, S. Adv. Energy Mater. 2020, 10, 1902485. doi: 10.1002/aenm.201902485
doi: 10.1002/aenm.201902485
Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.; Sui, M. Adv. Mater. 2017, 29, 1700136. doi: 10.1002/adma.201700136
doi: 10.1002/adma.201700136
Xu, J.; Dong, W.; Song, C.; Tang, Y.; Zhao, W.; Hong, Z.; Huang, F. J. Mater. Chem. A 2016, 4, 15698. doi: 10.1039/C6TA05645H
doi: 10.1039/C6TA05645H
Xu, J.; Wang, D.; Kong, S.; Li, R.; Hong, Z.; Huang, F. J. Mater. Chem. A 2020, 8, 5744. doi: 10.1039/C9TA13602A
doi: 10.1039/C9TA13602A
Wen, G.; Ren, B.; Park, M. G.; Yang, J.; Dou, H.; Zhang, Z.; Deng, Y. P.; Bai, Z.; Yang, L.; Gostick, J. Angew. Chem. Int. Ed. 2020, 59, 12860. doi: 10.1002/anie.202004149
doi: 10.1002/anie.202004149
Li, X.; Li, J.; Ali, R. N.; Wang, Z.; Hu, G.; Xiang, B. Chem. Eng. J. 2019, 368, 764. doi: 10.1016/j.cej.2019.03.020
doi: 10.1016/j.cej.2019.03.020
Liang, S.; Cheng, Y. J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. Small Methods 2020, 4, 2000218. doi: 10.1002/smtd.202000218
doi: 10.1002/smtd.202000218
Pan, J.; Zhang, Y.; Li, L.; Cheng, Z.; Li, Y.; Yang, X.; Yang, J.; Qian, Y. Small Methods 2019, 3, 1900231. doi: 10.1002/smtd.201900231
doi: 10.1002/smtd.201900231
Lin, X.; Dong, C.; Zhao, S.; Peng, B.; Zhou, C.; Wang, R.; Huang, F. Adv. Sci. 2022, 9, 2202026. doi: 10.1002/advs.202202026
doi: 10.1002/advs.202202026
Li, R.; Xu, J.; Lv, Z.; Dong, W.; Huang, F. Sci. China Mater. 2022, 65, 695. doi: 10.1007/s40843-021-1783-0
doi: 10.1007/s40843-021-1783-0
Liu, P.; Hao, Q.; Xia, X.; Lei, W.; Xia, H.; Chen, Z.; Wang, X. Electrochim. Acta 2016, 214, 1. doi: 10.1016/j.electacta.2016.08.022
doi: 10.1016/j.electacta.2016.08.022
Bresser, D.; Passerini, S.; Scrosati, B. Energy Environ. Sci. 2016, 9, 3348. doi: 10.1039/C6EE02346K
doi: 10.1039/C6EE02346K
Zhao, Y.; Li, X.; Yan, B.; Xiong, D.; Li, D.; Lawes, S.; Sun, X. Adv. Energy Mater. 2016, 6, 1502175. doi: 10.1002/aenm.201502175
doi: 10.1002/aenm.201502175
Kim, Y.; Um, J. H.; Lee, H.; Choi, W.; Choi, W. I.; Lee, H. S.; Kim, O. H.; Kim, J. M.; Cho, Y. H.; Yoon, W. S. Small 2020, 16, 1905868. doi: 10.1002/smll.201905868
doi: 10.1002/smll.201905868
Kim, S.; Evmenenko, G.; Xu, Y.; Buchholz, D. B.; Bedzyk, M.; He, K.; Wu, J.; Dravid, V. P. Adv. Funct. Mater. 2018, 28, 1805723. doi: 10.1002/adfm.201805723.
doi: 10.1002/adfm.201805723
Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. J. Mater. Chem. A 2017, 5, 18737. doi: 10.1039/C7TA05798A
doi: 10.1039/C7TA05798A
Zhao, Z.; Tian, G.; Sarapulova, A.; Melinte, G.; Gómez-Urbano, J. L.; Li, C.; Liu, S.; Welter, E.; Etter, M.; Dsoke, S. ACS Appl. Mater. Interf. 2019, 11, 29888. doi: 10.1021/acsami.9b08539
doi: 10.1021/acsami.9b08539
Zhen, X.; Guo, X. -J. Acta Phys. -Chim. Sin. 2017, 33, 845. doi: 10.3866/PKU.WHXB201612222
doi: 10.3866/PKU.WHXB201612222
Yu, J.; Wang, Y.; Mou, L.; Fang, D.; Chen, S.; Zhang, S. ACS Nano 2018, 12, 2035. doi: 10.1021/acsnano.8b00168
doi: 10.1021/acsnano.8b00168
Zhang, J.; Liang, J.; Zhu, Y.; Wei, D.; Fan, L.; Qian, Y. J. Mater. Chem. A 2014, 2, 2728. doi: 10.1039/C3TA13228E
doi: 10.1039/C3TA13228E
Wang, X.; Dong, C.; Lou, M.; Dong, W.; Yuan, X.; Tang, Y.; Huang, F. J. Power Sources 2017, 360, 124. doi: 10.1016/j.jpowsour.2017.05.104
doi: 10.1016/j.jpowsour.2017.05.104
Dong, W.; Zhao, Y.; Wang, X.; Yuan, X.; Bu, K.; Dong, C.; Wang, R.; Huang, F. Adv. Mater. 2018, 30, 1801409. doi: 10.1002/adma.201801409
doi: 10.1002/adma.201801409
Dong, W.; Li, R.; Xu, J.; Tang, Y.; Huang, F. Cell Rep. Phys. Sci. 2022, 3, 101109. doi: 10.1016/j.xcrp.2022.101109
doi: 10.1016/j.xcrp.2022.101109
Becker, S. M.; Scheuermann, M.; Sepelak, V.; Eichhöfer, A.; Chen, D.; Mönig, R.; Ulrich, A. S.; Hahn, H.; Indris, S. Phys. Chem. Chem. Phys. 2011, 13, 19624. doi: 10.1039/C1CP22298H
doi: 10.1039/C1CP22298H
Ma, J.; Zhang, Z.; Mentbayeva, A.; Yuan, G.; Wang, B.; Wang, H.; Wang, G. Electrochim. Acta 2019, 312, 31. doi: 10.1016/j.electacta.2019.04.167
doi: 10.1016/j.electacta.2019.04.167
Li, W.; Yin, Y. -X.; Xin, S.; Song, W. -G.; Guo, Y. -G. Energy Environ. Sci. 2012, 5, 8007. doi: 10.1039/C2EE21580B
doi: 10.1039/C2EE21580B
Li, L.; Peng, S.; Wang, J.; Cheah, Y. L.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. ACS Appl. Mater. Interf. 2012, 4, 6005 doi: 10.1021/am301664e
doi: 10.1021/am301664e
Li, R.; Zhang, R.; Lou, Z.; Huang, T.; Jiang, K.; Chen, D.; Shen, G. Nanoscale 2019, 11, 12116. doi: 10.1039/C9NR03641E
doi: 10.1039/C9NR03641E
Veerappan, G.; Zhang, K.; Ma, M.; Kang, B.; Park, J. H. Electrochim. Acta 2016, 214, 31. doi: 10.1016/j.electacta.2016.07.076
doi: 10.1016/j.electacta.2016.07.076
Li, W.; Chen, D.; Shen, G. J. Mater. Chem. A 2015, 3, 20673. doi: 10.1039/C5TA04175A
doi: 10.1039/C5TA04175A
Xu, S.; Peng, B.; Pang, X.; Huang, F. ACS Mater. Lett. 2022, 4, 2195. doi: 10.1021/acsmaterialslett.2c00810
doi: 10.1021/acsmaterialslett.2c00810
Wang, L. P.; Leconte, Y.; Feng, Z.; Wei, C.; Zhao, Y.; Ma, Q.; Xu, W.; Bourrioux, S.; Azais, P.; Srinivasan, M. Adv. Mater. 2016, 29, 1603286. doi: 10.1002/adma.201603286
doi: 10.1002/adma.201603286
Liu, X.; Teng, D.; Li, T.; Yu, Y.; Shao, X.; Yang, X. J. Power Sources 2014, 272, 614. doi: 10.1016/j.jpowsour.2014.08.084
doi: 10.1016/j.jpowsour.2014.08.084
Dong, C.; Dong, W.; Zhang, Q.; Huang, X.; Gu, L.; Chen, I. -W.; Huang, F. J. Mater. Chem. A 2020, 8, 626. doi: 10.1039/C9TA11330D
doi: 10.1039/C9TA11330D
Xu, H.; Zhou, Y. -N.; Lu, F.; Fu, Z. -W. J. Electrochem. Soc. 2011, 158, A285. doi: 10.1149/1.3532037
doi: 10.1149/1.3532037
Kwon, C.; Kim, H.; Toupance, T.; Jousseaume, B.; Campet, G.; Fluorine-Doped Tin Oxide Electrods for Lithium Batteries. In Fluorinated Materials for Energy Conversion; Elsevier: The Netherlands, 2005; p. 103.
Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L. J. Power Sources 2017, 362, 20. doi: 10.1016/j.jpowsour.2017.07.024
doi: 10.1016/j.jpowsour.2017.07.024
Lin, Y.; Zhong, K.; Zheng, J.; Liang, M.; Xu, G.; Feng, Q.; Li, J.; Huang, Z. ACS Appl. Energy Mater. 2021, 4, 9848. doi:10.1021/acsaem.1c01883
doi: 10.1021/acsaem.1c01883
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040