Citation: Xueyu Lin, Ruiqi Wang, Wujie Dong, Fuqiang Huang. Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 231100. doi: 10.3866/PKU.WHXB202311005 shu

Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage

  • Corresponding author: Ruiqi Wang, wangruiqi@ucas.ac.cn Fuqiang Huang, huangfq@pku.edu.cn
  • Received Date: 3 November 2023
    Revised Date: 8 December 2023
    Accepted Date: 11 December 2023

    Fund Project: the National Natural Science Foundation of China 22005006

  • The rapid advancement of scientific technology leads to a growing need for energy storage equipment in modern society. Lithium-ion batteries (LIBs) are extensively utilized in portable electronics, handy electric tools, medical electronics, and other industries due to their exceptional features such as high energy density, high power density, long lifespan, low self-discharge rate, wide operating temperature range and environmentally-friendly nature. However, the recent rapid development of mobile electronics and electric vehicles requires energy storage devices with even higher energy and power densities. To achieve this goal, it is essential to develop advanced electrode materials featuring high capacity, high rate capability, and long cycle life. The design of high-performance anode materials is an important aspect of constructing the ideal LIB devices. Besides the commercialized graphite, many metal oxides can also act as anode in the LIBs. In detail, the oxides that served as LIB anodes can be classified into intercalation-type, conversion-type and conversion-alloying-type anodes based on their Li+ storage mechanisms. Due to their robust metal-oxygen bonds, intercalation-type anodes, such as d0 metal oxides, exhibit stable cycling performance and high-rate capability. However, the limited valence change of intercalation-type metal ions often results in low theoretical capacities. In comparison, conversion-alloying type anodes, exemplified by p-block metal oxides, offer high theoretical capacities and low Li+ extraction potential, making them suitable for high-energy-density LIBs. Nevertheless, the Li+ intercalation process induces severe phase agglomeration and volume expansion, leading to rapid capacity decay and poor rate capability. Therefore, these drawbacks severely limit the wild utilization s of metal oxide anodes in commercialized LIBs. Recently, substantial efforts have been made to design novel bimetallic oxide anodes. Among these anodes, the incorporation of intercalation-type or conversion-type motifs into conversion-alloying-type metal oxides enables the creation of bimetallic oxide anodes with optimized electronic and ionic conductivities. This approach has the potential to combine the advantages of high capacity, high-rate capability, and long cycle life in a single system. To uncover the underlying Li+ storage mechanisms, this review analyzes the bond situations and electronic structures of various metal oxides. Additionally, it introduces a new graphic representation of the Li+-ion charge/discharge process using density-of-states (DOS) graphs. The multi-step lithium storage mechanisms in bimetallic oxide anodes are also discussed. Drawing on recent progress in the field, this review provides fundamental academic insights and practical perspectives for the development of high-capacity, high-rate, and robust bimetallic compound anodes.
  • 加载中
    1. [1]

      Xie, L.; Tang, C.; Bi, Z.; Song, M.; Fan, Y.; Yan, C.; Li, X.; Su, F.; Zhang, Q.; Chen, C. Adv. Energy Mater. 2021, 11, 2101650. doi: 10.1002/aenm.202101650  doi: 10.1002/aenm.202101650

    2. [2]

      Ding, X.; Huang, Q.; Xiong, X. Acta Phys. -Chim. Sin. 2022, 38, 2204057. doi: 10.3866/PKU.WHXB202204057  doi: 10.3866/PKU.WHXB202204057

    3. [3]

      Han, C.; He, Y. -B.; Wang, S.; Wang, C.; Du, H.; Qin, X.; Lin, Z.; Li, B.; Kang, F. ACS Appl. Mater. Interf. 2016, 8, 18788. doi: 10.1021/acsami.6b04239  doi: 10.1021/acsami.6b04239

    4. [4]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    5. [5]

      Dong, C.; Dong, W.; Lin, X.; Zhao, Y.; Li, R.; Huang, F. EnergyChem 2020, 2, 100045. doi: 10.1016/j.enchem.2020.100045  doi: 10.1016/j.enchem.2020.100045

    6. [6]

      Reddy, M. V.; Subba Rao, G.; Chowdari, B. Chem. Rev. 2013, 113, 5364. doi: 10.1021/cr3001884  doi: 10.1021/cr3001884

    7. [7]

      Aravindan, V.; Lee, Y. S.; Madhavi, S. Adv. Energy Mater. 2015, 5, 1402225. doi: 10.1002/aenm.201402225  doi: 10.1002/aenm.201402225

    8. [8]

      Ahmed, B.; Shahid, M.; Nagaraju, D. H.; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N. ACS Appl. Mater. Interf. 2015, 7, 13154. doi: 10.1021/acsami.5b03395  doi: 10.1021/acsami.5b03395

    9. [9]

      Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X. Nano Lett. 2015, 15, 565. doi: 10.1021/nl504038s  doi: 10.1021/nl504038s

    10. [10]

      Chen, Z.; Zhang, C.; Zhang, Z.; Li, J. Phys. Chem. Chem. Phys. 2014, 16, 13255. doi: 10.1039/c4cp00855c  doi: 10.1039/c4cp00855c

    11. [11]

      Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526. doi: 10.1039/B819629J  doi: 10.1039/B819629J

    12. [12]

      Chiu, H. C.; Lu, X.; Zhou, J.; Gu, L.; Reid, J.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Adv. Energy Mater. 2017, 7, 1601825. doi: 10.1002/aenm.201601825  doi: 10.1002/aenm.201601825

    13. [13]

      Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. -L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes.  doi: 10.1149/2.040405jes

    14. [14]

      Ding, J.; Abbas, S. A.; Hanmandlu, C.; Lin, L.; Lai, C. -S.; Wang, P. -C.; Li, L. -J.; Chu, C. -W.; Chang, C. -C. J. Power Sources 2017, 348, 270. doi: 10.1016/j.jpowsour.2017.03.007  doi: 10.1016/j.jpowsour.2017.03.007

    15. [15]

      Hemalatha, K.; Prakash, A.; Guruprakash, K.; Jayakumar, M. J. Mater. Chem. A 2014, 2, 1757. doi: 10.1039/C3TA13352D  doi: 10.1039/C3TA13352D

    16. [16]

      Hou, C.; Wang, J.; Du, W.; Wang, J.; Du, Y.; Liu, C.; Zhang, J.; Hou, H.; Dang, F.; Zhao, L. J. Mater. Chem. A 2019, 7, 13460. doi: 10.1039/C9TA03551F  doi: 10.1039/C9TA03551F

    17. [17]

      Li, T.; Nam, G.; Liu, K.; Wang, J. -H.; Zhao, B.; Ding, Y.; Soule, L.; Avdeev, M.; Luo, Z.; Zhang, W. Energy Environ. Sci. 2022, 15, 254. doi: 10.1039/D1EE02664J  doi: 10.1039/D1EE02664J

    18. [18]

      Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H. J. Mater. Chem. 2011, 21, 3046. doi: 10.1039/C0JM03132A  doi: 10.1039/C0JM03132A

    19. [19]

      Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80. doi: 10.1016/j.jpowsour.2017.06.023  doi: 10.1016/j.jpowsour.2017.06.023

    20. [20]

      Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. Electrochem. Energy Rev. 2018, 1, 35. doi: 10.1007/s41918-018-0001-4  doi: 10.1007/s41918-018-0001-4

    21. [21]

      Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Adv. Mater. 2019, 31, 1805754. doi: 10.1002/adma.201805754  doi: 10.1002/adma.201805754

    22. [22]

      Sun, Y.; Wang, J.; Zhao, B.; Cai, R.; Ran, R.; Shao, Z. J. Mater. Chem. A 2013, 1, 4736. doi: 10.1039/C3TA01285A  doi: 10.1039/C3TA01285A

    23. [23]

      Wang, J.; Liu, Z.; Yang, W.; Han, L.; Wei, M. Chem. Commun. 2018, 54, 7346. doi: 10.1039/C8CC03875A  doi: 10.1039/C8CC03875A

    24. [24]

      Wang, L.; Zhang, Y.; Guo, H.; Li, J.; Stach, E. A.; Tong, X.; Takeuchi, E. S.; Takeuchi, K. J.; Liu, P.; Marschilok, A. C. Chem. Mater. 2018, 30, 671. doi: 10.1021/acs.chemmater.7b03847  doi: 10.1021/acs.chemmater.7b03847

    25. [25]

      Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi: 10.1039/c7cs00863e  doi: 10.1039/c7cs00863e

    26. [26]

      Wu, L.; Zheng, J.; Wang, L.; Xiong, X.; Shao, Y.; Wang, G.; Wang, J. H.; Zhong, S.; Wu, M. Angew. Chem. 2019, 131, 821. doi: 10.1002/ange.201811784  doi: 10.1002/ange.201811784

    27. [27]

      Yan, B.; Li, X.; Bai, Z.; Li, M.; Dong, L.; Xiong, D.; Li, D. J. Alloys Compd. 2015, 634, 50. doi: 10.1016/j.jallcom.2015.01.292  doi: 10.1016/j.jallcom.2015.01.292

    28. [28]

      Yang, L.; Liu, L.; Zhu, Y.; Wang, X.; Wu, Y. J. Mater. Chem. 2012, 22, 13148. doi: 10.1039/C2JM31364B  doi: 10.1039/C2JM31364B

    29. [29]

      Yao, Z.; Xia, X.; Xie, D.; Wang, Y.; Zhou, C. A.; Liu, S.; Deng, S.; Wang, X.; Tu, J. Adv. Funct. Mater. 2018, 28, 1802756. doi: 10.1002/adfm.201802756  doi: 10.1002/adfm.201802756

    30. [30]

      Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources 2010, 195, 4997. doi: 10.1016/j.jpowsour.2010.02.020  doi: 10.1016/j.jpowsour.2010.02.020

    31. [31]

      Zhou, J.; Lin, N.; Wang, L.; Zhang, K.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3, 7463. doi: 10.1039/C5TA00516G  doi: 10.1039/C5TA00516G

    32. [32]

      Zhu, K.; Wang, X.; Liu, J.; Li, S.; Wang, H.; Yang, L.; Liu, S.; Xie, T. ACS Sustain. Chem. Eng. 2017, 5, 8025. doi: 10.1021/acssuschemeng.7b01595  doi: 10.1021/acssuschemeng.7b01595

    33. [33]

      Lu, Y.; Yu, L.; Lou, X. W. D. Chem 2018, 4, 972. doi: 10.1016/j.chempr.2018.01.003  doi: 10.1016/j.chempr.2018.01.003

    34. [34]

      Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi: 10.1038/natrevmats.2016.13  doi: 10.1038/natrevmats.2016.13

    35. [35]

      Heligman, B. T.; Manthiram, A. ACS Energy Lett. 2021, 6, 2666. doi: 10.1021/acsenergylett.1c01145  doi: 10.1021/acsenergylett.1c01145

    36. [36]

      Park, C. -M.; Kim, J. -H.; Kim, H.; Sohn, H. -J. Chem. Soc. Rev. 2010, 39, 3115. doi: 10.1039/b919877f  doi: 10.1039/b919877f

    37. [37]

      Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Small 2021, 17, 1903194. doi: 10.1002/smll.201903194  doi: 10.1002/smll.201903194

    38. [38]

      Yu, S. -H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H. D. Acc. Chem. Res. 2018, 51, 273. doi: 10.1021/acs.accounts.7b00487  doi: 10.1021/acs.accounts.7b00487

    39. [39]

      Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878. doi: 10.1149/1.1801451  doi: 10.1149/1.1801451

    40. [40]

      Luo, Y. -R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007.

    41. [41]

      Kim, M. -S.; Lee, B. -H.; Park, J. -H.; Lee, H. S.; Hooch Antink, W.; Jung, E.; Kim, J.; Yoo, T. Y.; Lee, C. W.; Ahn, C. -Y. J. Am. Chem. Soc. 2020, 142, 13406. doi: 10.1021/jacs.0c02203  doi: 10.1021/jacs.0c02203

    42. [42]

      Lou, S.; Zhao, Y.; Wang, J.; Yin, G.; Du, C.; Sun, X. Small 2019, 15, 1904740. doi: 10.1002/smll.201904740  doi: 10.1002/smll.201904740

    43. [43]

      Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Adv. Funct. Mater. 2015, 25, 3341. doi: 10.1002/adfm.201404348  doi: 10.1002/adfm.201404348

    44. [44]

      Dong, W.; Huang, F. eScience 2023, 100158. doi: 10.1016/j.esci.2023.100158  doi: 10.1016/j.esci.2023.100158

    45. [45]

      Dong, W.; Xie, M.; Zhao, S.; Qin, Q.; Huang, F. Mater. Sci. Eng., R 2023, 152, 100713. doi: 10.1016/j.mser.2022.100713  doi: 10.1016/j.mser.2022.100713

    46. [46]

      Fang, S.; Bresser, D.; Passerini, S. Adv. Energy Mater. 2020, 10, 1902485. doi: 10.1002/aenm.201902485  doi: 10.1002/aenm.201902485

    47. [47]

      Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.; Sui, M. Adv. Mater. 2017, 29, 1700136. doi: 10.1002/adma.201700136  doi: 10.1002/adma.201700136

    48. [48]

      Xu, J.; Dong, W.; Song, C.; Tang, Y.; Zhao, W.; Hong, Z.; Huang, F. J. Mater. Chem. A 2016, 4, 15698. doi: 10.1039/C6TA05645H  doi: 10.1039/C6TA05645H

    49. [49]

      Xu, J.; Wang, D.; Kong, S.; Li, R.; Hong, Z.; Huang, F. J. Mater. Chem. A 2020, 8, 5744. doi: 10.1039/C9TA13602A  doi: 10.1039/C9TA13602A

    50. [50]

      Wen, G.; Ren, B.; Park, M. G.; Yang, J.; Dou, H.; Zhang, Z.; Deng, Y. P.; Bai, Z.; Yang, L.; Gostick, J. Angew. Chem. Int. Ed. 2020, 59, 12860. doi: 10.1002/anie.202004149  doi: 10.1002/anie.202004149

    51. [51]

      Li, X.; Li, J.; Ali, R. N.; Wang, Z.; Hu, G.; Xiang, B. Chem. Eng. J. 2019, 368, 764. doi: 10.1016/j.cej.2019.03.020  doi: 10.1016/j.cej.2019.03.020

    52. [52]

      Liang, S.; Cheng, Y. J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. Small Methods 2020, 4, 2000218. doi: 10.1002/smtd.202000218  doi: 10.1002/smtd.202000218

    53. [53]

      Pan, J.; Zhang, Y.; Li, L.; Cheng, Z.; Li, Y.; Yang, X.; Yang, J.; Qian, Y. Small Methods 2019, 3, 1900231. doi: 10.1002/smtd.201900231  doi: 10.1002/smtd.201900231

    54. [54]

      Lin, X.; Dong, C.; Zhao, S.; Peng, B.; Zhou, C.; Wang, R.; Huang, F. Adv. Sci. 2022, 9, 2202026. doi: 10.1002/advs.202202026  doi: 10.1002/advs.202202026

    55. [55]

      Li, R.; Xu, J.; Lv, Z.; Dong, W.; Huang, F. Sci. China Mater. 2022, 65, 695. doi: 10.1007/s40843-021-1783-0  doi: 10.1007/s40843-021-1783-0

    56. [56]

      Liu, P.; Hao, Q.; Xia, X.; Lei, W.; Xia, H.; Chen, Z.; Wang, X. Electrochim. Acta 2016, 214, 1. doi: 10.1016/j.electacta.2016.08.022  doi: 10.1016/j.electacta.2016.08.022

    57. [57]

      Bresser, D.; Passerini, S.; Scrosati, B. Energy Environ. Sci. 2016, 9, 3348. doi: 10.1039/C6EE02346K  doi: 10.1039/C6EE02346K

    58. [58]

      Zhao, Y.; Li, X.; Yan, B.; Xiong, D.; Li, D.; Lawes, S.; Sun, X. Adv. Energy Mater. 2016, 6, 1502175. doi: 10.1002/aenm.201502175  doi: 10.1002/aenm.201502175

    59. [59]

      Kim, Y.; Um, J. H.; Lee, H.; Choi, W.; Choi, W. I.; Lee, H. S.; Kim, O. H.; Kim, J. M.; Cho, Y. H.; Yoon, W. S. Small 2020, 16, 1905868. doi: 10.1002/smll.201905868  doi: 10.1002/smll.201905868

    60. [60]

      Kim, S.; Evmenenko, G.; Xu, Y.; Buchholz, D. B.; Bedzyk, M.; He, K.; Wu, J.; Dravid, V. P. Adv. Funct. Mater. 2018, 28, 1805723. doi: 10.1002/adfm.201805723.  doi: 10.1002/adfm.201805723

    61. [61]

      Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. J. Mater. Chem. A 2017, 5, 18737. doi: 10.1039/C7TA05798A  doi: 10.1039/C7TA05798A

    62. [62]

      Zhao, Z.; Tian, G.; Sarapulova, A.; Melinte, G.; Gómez-Urbano, J. L.; Li, C.; Liu, S.; Welter, E.; Etter, M.; Dsoke, S. ACS Appl. Mater. Interf. 2019, 11, 29888. doi: 10.1021/acsami.9b08539  doi: 10.1021/acsami.9b08539

    63. [63]

      Zhen, X.; Guo, X. -J. Acta Phys. -Chim. Sin. 2017, 33, 845. doi: 10.3866/PKU.WHXB201612222  doi: 10.3866/PKU.WHXB201612222

    64. [64]

      Yu, J.; Wang, Y.; Mou, L.; Fang, D.; Chen, S.; Zhang, S. ACS Nano 2018, 12, 2035. doi: 10.1021/acsnano.8b00168  doi: 10.1021/acsnano.8b00168

    65. [65]

      Zhang, J.; Liang, J.; Zhu, Y.; Wei, D.; Fan, L.; Qian, Y. J. Mater. Chem. A 2014, 2, 2728. doi: 10.1039/C3TA13228E  doi: 10.1039/C3TA13228E

    66. [66]

      Wang, X.; Dong, C.; Lou, M.; Dong, W.; Yuan, X.; Tang, Y.; Huang, F. J. Power Sources 2017, 360, 124. doi: 10.1016/j.jpowsour.2017.05.104  doi: 10.1016/j.jpowsour.2017.05.104

    67. [67]

      Dong, W.; Zhao, Y.; Wang, X.; Yuan, X.; Bu, K.; Dong, C.; Wang, R.; Huang, F. Adv. Mater. 2018, 30, 1801409. doi: 10.1002/adma.201801409  doi: 10.1002/adma.201801409

    68. [68]

      Dong, W.; Li, R.; Xu, J.; Tang, Y.; Huang, F. Cell Rep. Phys. Sci. 2022, 3, 101109. doi: 10.1016/j.xcrp.2022.101109  doi: 10.1016/j.xcrp.2022.101109

    69. [69]

      Becker, S. M.; Scheuermann, M.; Sepelak, V.; Eichhöfer, A.; Chen, D.; Mönig, R.; Ulrich, A. S.; Hahn, H.; Indris, S. Phys. Chem. Chem. Phys. 2011, 13, 19624. doi: 10.1039/C1CP22298H  doi: 10.1039/C1CP22298H

    70. [70]

      Ma, J.; Zhang, Z.; Mentbayeva, A.; Yuan, G.; Wang, B.; Wang, H.; Wang, G. Electrochim. Acta 2019, 312, 31. doi: 10.1016/j.electacta.2019.04.167  doi: 10.1016/j.electacta.2019.04.167

    71. [71]

      Li, W.; Yin, Y. -X.; Xin, S.; Song, W. -G.; Guo, Y. -G. Energy Environ. Sci. 2012, 5, 8007. doi: 10.1039/C2EE21580B  doi: 10.1039/C2EE21580B

    72. [72]

      Li, L.; Peng, S.; Wang, J.; Cheah, Y. L.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. ACS Appl. Mater. Interf. 2012, 4, 6005 doi: 10.1021/am301664e  doi: 10.1021/am301664e

    73. [73]

      Li, R.; Zhang, R.; Lou, Z.; Huang, T.; Jiang, K.; Chen, D.; Shen, G. Nanoscale 2019, 11, 12116. doi: 10.1039/C9NR03641E  doi: 10.1039/C9NR03641E

    74. [74]

      Veerappan, G.; Zhang, K.; Ma, M.; Kang, B.; Park, J. H. Electrochim. Acta 2016, 214, 31. doi: 10.1016/j.electacta.2016.07.076  doi: 10.1016/j.electacta.2016.07.076

    75. [75]

      Li, W.; Chen, D.; Shen, G. J. Mater. Chem. A 2015, 3, 20673. doi: 10.1039/C5TA04175A  doi: 10.1039/C5TA04175A

    76. [76]

      Xu, S.; Peng, B.; Pang, X.; Huang, F. ACS Mater. Lett. 2022, 4, 2195. doi: 10.1021/acsmaterialslett.2c00810  doi: 10.1021/acsmaterialslett.2c00810

    77. [77]

      Wang, L. P.; Leconte, Y.; Feng, Z.; Wei, C.; Zhao, Y.; Ma, Q.; Xu, W.; Bourrioux, S.; Azais, P.; Srinivasan, M. Adv. Mater. 2016, 29, 1603286. doi: 10.1002/adma.201603286  doi: 10.1002/adma.201603286

    78. [78]

      Liu, X.; Teng, D.; Li, T.; Yu, Y.; Shao, X.; Yang, X. J. Power Sources 2014, 272, 614. doi: 10.1016/j.jpowsour.2014.08.084  doi: 10.1016/j.jpowsour.2014.08.084

    79. [79]

      Dong, C.; Dong, W.; Zhang, Q.; Huang, X.; Gu, L.; Chen, I. -W.; Huang, F. J. Mater. Chem. A 2020, 8, 626. doi: 10.1039/C9TA11330D  doi: 10.1039/C9TA11330D

    80. [80]

      Xu, H.; Zhou, Y. -N.; Lu, F.; Fu, Z. -W. J. Electrochem. Soc. 2011, 158, A285. doi: 10.1149/1.3532037  doi: 10.1149/1.3532037

    81. [81]

      Kwon, C.; Kim, H.; Toupance, T.; Jousseaume, B.; Campet, G.; Fluorine-Doped Tin Oxide Electrods for Lithium Batteries. In Fluorinated Materials for Energy Conversion; Elsevier: The Netherlands, 2005; p. 103.

    82. [82]

      Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L. J. Power Sources 2017, 362, 20. doi: 10.1016/j.jpowsour.2017.07.024  doi: 10.1016/j.jpowsour.2017.07.024

    83. [83]

      Lin, Y.; Zhong, K.; Zheng, J.; Liang, M.; Xu, G.; Feng, Q.; Li, J.; Huang, Z. ACS Appl. Energy Mater. 2021, 4, 9848. doi:10.1021/acsaem.1c01883  doi: 10.1021/acsaem.1c01883

  • 加载中
    1. [1]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    2. [2]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    3. [3]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    11. [11]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

Metrics
  • PDF Downloads(0)
  • Abstract views(95)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return