Citation:
Xueyu Lin, Ruiqi Wang, Wujie Dong, Fuqiang Huang. 高性能双金属氧化物负极的理性设计及储锂特性[J]. Acta Physico-Chimica Sinica,
;2025, 41(3): 231100.
doi:
10.3866/PKU.WHXB202311005
-
高能量密度、高功率密度的“双高”锂离子电池(LIBs)的实现依赖于创新突破高容量、高倍率及长循环寿命电极材料。插入型负极,以d0过渡金属氧化物为代表,含有强金属-氧键,表现出高循环稳定性和高倍率性能。然而,由于金属离子变价较少,其比容量相对较低。转化-合金型负极,以p区金属氧化物为代表,具备高理论比容量,但嵌锂过程中的相团聚和体积膨胀易导致容量快速衰减和倍率性能不佳。通过引入插入型或转化型功能基元构建双金属氧化物负极,可以优化电极中的电子/离子传导,从而改善循环性能和倍率性能,有望实现负极材料高容量、高倍率及长循环的统一。本文通过对各类金属氧化物中的化学键及电子结构特征进行分析,并提出一种新的图示表达方式,将负极锂离子插脱嵌的电化学反应储能过程表达为态密度(DOS)图示。文章阐述了双金属氧化物负极的多步储锂机制,并结合近期相关研究进展,为发展高容量、高倍率及高稳定的双金属化合物负极提供理论参考和实践依据。
-
-
-
[1]
(1) Xie, L.; Tang, C.; Bi, Z.; Song, M.; Fan, Y.; Yan, C.; Li, X.; Su, F.; Zhang, Q.; Chen, C. Adv. Energy Mater. 2021, 11, 2101650. doi:10.1002/aenm.202101650
-
[2]
-
[3]
(3) Han, C.; He, Y.-B.; Wang, S.; Wang, C.; Du, H.; Qin, X.; Lin, Z.; Li, B.; Kang, F. ACS Appl. Mater. Interf. 2016, 8, 18788. doi:10.1021/acsami.6b04239
-
[4]
(4) Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi:10.1038/s41560-018-0107-2
-
[5]
(5) Dong, C.; Dong, W.; Lin, X.; Zhao, Y.; Li, R.; Huang, F. EnergyChem 2020, 2, 100045. doi:10.1016/j.enchem.2020.100045
-
[6]
(6) Reddy, M. V.; Subba Rao, G.; Chowdari, B. Chem. Rev. 2013, 113, 5364. doi:10.1021/cr3001884
-
[7]
(7) Aravindan, V.; Lee, Y. S.; Madhavi, S. Adv. Energy Mater. 2015, 5, 1402225. doi:10.1002/aenm.201402225
-
[8]
(8) Ahmed, B.; Shahid, M.; Nagaraju, D. H.; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N. ACS Appl. Mater. Interf. 2015, 7, 13154. doi:10.1021/acsami.5b03395
-
[9]
(9) Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z. X. Nano Lett. 2015, 15, 565. doi:10.1021/nl504038s
-
[10]
(10) Chen, Z.; Zhang, C.; Zhang, Z.; Li, J. Phys. Chem. Chem. Phys. 2014, 16, 13255. doi:10.1039/c4cp00855c
-
[11]
(11) Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526. doi:10.1039/B819629J
-
[12]
(12) Chiu, H. C.; Lu, X.; Zhou, J.; Gu, L.; Reid, J.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Adv. Energy Mater. 2017, 7, 1601825. doi:10.1002/aenm.201601825
-
[13]
(13) Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P.-L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi:10.1149/2.040405jes.
-
[14]
(14) Ding, J.; Abbas, S. A.; Hanmandlu, C.; Lin, L.; Lai, C.-S.; Wang, P.-C.; Li, L.-J.; Chu, C.-W.; Chang, C.-C. J. Power Sources 2017, 348, 270. doi:10.1016/j.jpowsour.2017.03.007
-
[15]
(15) Hemalatha, K.; Prakash, A.; Guruprakash, K.; Jayakumar, M. J. Mater. Chem. A 2014, 2, 1757. doi:10.1039/C3TA13352D
-
[16]
(16) Hou, C.; Wang, J.; Du, W.; Wang, J.; Du, Y.; Liu, C.; Zhang, J.; Hou, H.; Dang, F.; Zhao, L. J. Mater. Chem. A 2019, 7, 13460. doi:10.1039/C9TA03551F
-
[17]
(17) Li, T.; Nam, G.; Liu, K.; Wang, J.-H.; Zhao, B.; Ding, Y.; Soule, L.; Avdeev, M.; Luo, Z.; Zhang, W. Energy Environ. Sci. 2022, 15, 254. doi:10.1039/D1EE02664J
-
[18]
(18) Liu, H.; Wang, G.; Liu, J.; Qiao, S.; Ahn, H. J. Mater. Chem. 2011, 21, 3046. doi:10.1039/C0JM03132A
-
[19]
(19) Lou, S.; Cheng, X.; Wang, L.; Gao, J.; Li, Q.; Ma, Y.; Gao, Y.; Zuo, P.; Du, C.; Yin, G. J. Power Sources 2017, 361, 80. doi:10.1016/j.jpowsour.2017.06.023
-
[20]
(20) Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K. Electrochem. Energy Rev. 2018, 1, 35. doi:10.1007/s41918-018-0001-4
-
[21]
(21) Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Adv. Mater. 2019, 31, 1805754. doi:10.1002/adma.201805754
-
[22]
(22) Sun, Y.; Wang, J.; Zhao, B.; Cai, R.; Ran, R.; Shao, Z. J. Mater. Chem. A 2013, 1, 4736. doi:10.1039/C3TA01285A
-
[23]
(23) Wang, J.; Liu, Z.; Yang, W.; Han, L.; Wei, M. Chem. Commun. 2018, 54, 7346. doi:10.1039/C8CC03875A
-
[24]
(24) Wang, L.; Zhang, Y.; Guo, H.; Li, J.; Stach, E. A.; Tong, X.; Takeuchi, E. S.; Takeuchi, K. J.; Liu, P.; Marschilok, A. C. Chem. Mater. 2018, 30, 671. doi:10.1021/acs.chemmater.7b03847
-
[25]
(25) Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi:10.1039/c7cs00863e
-
[26]
(26) Wu, L.; Zheng, J.; Wang, L.; Xiong, X.; Shao, Y.; Wang, G.; Wang, J. H.; Zhong, S.; Wu, M. Angew. Chem. 2019, 131, 821. doi:10.1002/ange.201811784
-
[27]
(27) Yan, B.; Li, X.; Bai, Z.; Li, M.; Dong, L.; Xiong, D.; Li, D. J. Alloys Compd. 2015, 634, 50. doi:10.1016/j.jallcom.2015.01.292
-
[28]
(28) Yang, L.; Liu, L.; Zhu, Y.; Wang, X.; Wu, Y. J. Mater. Chem. 2012, 22, 13148. doi:10.1039/C2JM31364B
-
[29]
(29) Yao, Z.; Xia, X.; Xie, D.; Wang, Y.; Zhou, C. A.; Liu, S.; Deng, S.; Wang, X.; Tu, J. Adv. Funct. Mater. 2018, 28, 1802756. doi:10.1002/adfm.201802756
-
[30]
(30) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources 2010, 195, 4997. doi:10.1016/j.jpowsour.2010.02.020
-
[31]
(31) Zhou, J.; Lin, N.; Wang, L.; Zhang, K.; Zhu, Y.; Qian, Y. J. Mater. Chem. A 2015, 3, 7463. doi:10.1039/C5TA00516G
-
[32]
(32) Zhu, K.; Wang, X.; Liu, J.; Li, S.; Wang, H.; Yang, L.; Liu, S.; Xie, T. ACS Sustain. Chem. Eng. 2017, 5, 8025. doi:10.1021/acssuschemeng.7b01595
-
[33]
(33) Lu, Y.; Yu, L.; Lou, X. W. D. Chem 2018, 4, 972. doi:10.1016/j.chempr.2018.01.003
-
[34]
(34) Choi, J. W.; Aurbach, D. Nat. Rev. Mater. 2016, 1, 16013. doi:10.1038/natrevmats.2016.13
-
[35]
(35) Heligman, B. T.; Manthiram, A. ACS Energy Lett. 2021, 6, 2666. doi:10.1021/acsenergylett.1c01145
-
[36]
(36) Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J. Chem. Soc. Rev. 2010, 39, 3115. doi:10.1039/b919877f
-
[37]
(37) Song, K.; Liu, C.; Mi, L.; Chou, S.; Chen, W.; Shen, C. Small 2021, 17, 1903194. doi:10.1002/smll.201903194
-
[38]
(38) Yu, S.-H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H. D. Acc. Chem. Res. 2018, 51, 273. doi:10.1021/acs.accounts.7b00487
-
[39]
(39) Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004, 151, A1878. doi:10.1149/1.1801451
-
[40]
(40) Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007.
-
[41]
(41) Kim, M.-S.; Lee, B.-H.; Park, J.-H.; Lee, H. S.; Hooch Antink, W.; Jung, E.; Kim, J.; Yoo, T. Y.; Lee, C. W.; Ahn, C.-Y. J. Am. Chem. Soc. 2020, 142, 13406. doi:10.1021/jacs.0c02203
-
[42]
(42) Lou, S.; Zhao, Y.; Wang, J.; Yin, G.; Du, C.; Sun, X. Small 2019, 15, 1904740. doi:10.1002/smll.201904740
-
[43]
(43) Pan, L.; Zhu, X. D.; Xie, X. M.; Liu, Y. T. Adv. Funct. Mater. 2015, 25, 3341. doi:10.1002/adfm.201404348
-
[44]
(44) Dong, W.; Huang, F. eScience 2023, 100158. doi:10.1016/j.esci.2023.100158
-
[45]
(45) Dong, W.; Xie, M.; Zhao, S.; Qin, Q.; Huang, F. Mater. Sci. Eng., R 2023, 152, 100713. doi:10.1016/j.mser.2022.100713
-
[46]
(46) Fang, S.; Bresser, D.; Passerini, S. Adv. Energy Mater. 2020, 10, 1902485. doi:10.1002/aenm.201902485
-
[47]
(47) Dong, W.; Xu, J.; Wang, C.; Lu, Y.; Liu, X.; Wang, X.; Yuan, X.; Wang, Z.; Lin, T.; Sui, M. Adv. Mater. 2017, 29, 1700136. doi:10.1002/adma.201700136
-
[48]
(48) Xu, J.; Dong, W.; Song, C.; Tang, Y.; Zhao, W.; Hong, Z.; Huang, F. J. Mater. Chem. A 2016, 4, 15698. doi:10.1039/C6TA05645H
-
[49]
(49) Xu, J.; Wang, D.; Kong, S.; Li, R.; Hong, Z.; Huang, F. J. Mater. Chem. A 2020, 8, 5744. doi:10.1039/C9TA13602A
-
[50]
(50) Wen, G.; Ren, B.; Park, M. G.; Yang, J.; Dou, H.; Zhang, Z.; Deng, Y. P.; Bai, Z.; Yang, L.; Gostick, J. Angew. Chem. Int. Ed. 2020, 59, 12860. doi:10.1002/anie.202004149
-
[51]
(51) Li, X.; Li, J.; Ali, R. N.; Wang, Z.; Hu, G.; Xiang, B. Chem. Eng. J. 2019, 368, 764. doi:10.1016/j.cej.2019.03.020
-
[52]
(52) Liang, S.; Cheng, Y. J.; Zhu, J.; Xia, Y.; Müller-Buschbaum, P. Small Methods 2020, 4, 2000218. doi:10.1002/smtd.202000218
-
[53]
(53) Pan, J.; Zhang, Y.; Li, L.; Cheng, Z.; Li, Y.; Yang, X.; Yang, J.; Qian, Y. Small Methods 2019, 3, 1900231. doi:10.1002/smtd.201900231
-
[54]
(54) Lin, X.; Dong, C.; Zhao, S.; Peng, B.; Zhou, C.; Wang, R.; Huang, F. Adv. Sci. 2022, 9, 2202026. doi:10.1002/advs.202202026
-
[55]
(55) Li, R.; Xu, J.; Lv, Z.; Dong, W.; Huang, F. Sci. China Mater. 2022, 65, 695. doi:10.1007/s40843-021-1783-0
-
[56]
(56) Liu, P.; Hao, Q.; Xia, X.; Lei, W.; Xia, H.; Chen, Z.; Wang, X. Electrochim. Acta 2016, 214, 1. doi:10.1016/j.electacta.2016.08.022
-
[57]
(57) Bresser, D.; Passerini, S.; Scrosati, B. Energy Environ. Sci. 2016, 9, 3348. doi:10.1039/C6EE02346K
-
[58]
(58) Zhao, Y.; Li, X.; Yan, B.; Xiong, D.; Li, D.; Lawes, S.; Sun, X. Adv. Energy Mater. 2016, 6, 1502175. doi:10.1002/aenm.201502175
-
[59]
(59) Kim, Y.; Um, J. H.; Lee, H.; Choi, W.; Choi, W. I.; Lee, H. S.; Kim, O. H.; Kim, J. M.; Cho, Y. H.; Yoon, W. S. Small 2020, 16, 1905868. doi:10.1002/smll.201905868
-
[60]
(60) Kim, S.; Evmenenko, G.; Xu, Y.; Buchholz, D. B.; Bedzyk, M.; He, K.; Wu, J.; Dravid, V. P. Adv. Funct. Mater. 2018, 28, 1805723. doi:10.1002/adfm.201805723.
-
[61]
(61) Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. J. Mater. Chem. A 2017, 5, 18737. doi:10.1039/C7TA05798A
-
[62]
(62) Zhao, Z.; Tian, G.; Sarapulova, A.; Melinte, G.; Gómez-Urbano, J. L.; Li, C.; Liu, S.; Welter, E.; Etter, M.; Dsoke, S. ACS Appl. Mater. Interf. 2019, 11, 29888. doi:10.1021/acsami.9b08539
-
[63]
-
[64]
(64) Yu, J.; Wang, Y.; Mou, L.; Fang, D.; Chen, S.; Zhang, S. ACS Nano 2018, 12, 2035. doi:10.1021/acsnano.8b00168
-
[65]
(65) Zhang, J.; Liang, J.; Zhu, Y.; Wei, D.; Fan, L.; Qian, Y. J. Mater. Chem. A 2014, 2, 2728. doi:10.1039/C3TA13228E
-
[66]
(66) Wang, X.; Dong, C.; Lou, M.; Dong, W.; Yuan, X.; Tang, Y.; Huang, F. J. Power Sources 2017, 360, 124. doi:10.1016/j.jpowsour.2017.05.104
-
[67]
(67) Dong, W.; Zhao, Y.; Wang, X.; Yuan, X.; Bu, K.; Dong, C.; Wang, R.; Huang, F. Adv. Mater. 2018, 30, 1801409. doi:10.1002/adma.201801409
-
[68]
(68) Dong, W.; Li, R.; Xu, J.; Tang, Y.; Huang, F. Cell Rep. Phys. Sci. 2022, 3, 101109. doi:10.1016/j.xcrp.2022.101109
-
[69]
(69) Becker, S. M.; Scheuermann, M.; Sepelak, V.; Eichhöfer, A.; Chen, D.; Mönig, R.; Ulrich, A. S.; Hahn, H.; Indris, S. Phys. Chem. Chem. Phys. 2011, 13, 19624. doi:10.1039/C1CP22298H
-
[70]
(70) Ma, J.; Zhang, Z.; Mentbayeva, A.; Yuan, G.; Wang, B.; Wang, H.; Wang, G. Electrochim. Acta 2019, 312, 31. doi:10.1016/j.electacta.2019.04.167
-
[71]
(71) Li, W.; Yin, Y.-X.; Xin, S.; Song, W.-G.; Guo, Y.-G. Energy Environ. Sci. 2012, 5, 8007. doi:10.1039/C2EE21580B
-
[72]
(72) Li, L.; Peng, S.; Wang, J.; Cheah, Y. L.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. ACS Appl. Mater. Interf. 2012, 4, 6005 doi:10.1021/am301664e
-
[73]
(73) Li, R.; Zhang, R.; Lou, Z.; Huang, T.; Jiang, K.; Chen, D.; Shen, G. Nanoscale 2019, 11, 12116. doi:10.1039/C9NR03641E
-
[74]
(74) Veerappan, G.; Zhang, K.; Ma, M.; Kang, B.; Park, J. H. Electrochim. Acta 2016, 214, 31. doi:10.1016/j.electacta.2016.07.076
-
[75]
(75) Li, W.; Chen, D.; Shen, G. J. Mater. Chem. A 2015, 3, 20673. doi:10.1039/C5TA04175A
-
[76]
(76) Xu, S.; Peng, B.; Pang, X.; Huang, F. ACS Mater. Lett. 2022, 4, 2195. doi:10.1021/acsmaterialslett.2c00810
-
[77]
(77) Wang, L. P.; Leconte, Y.; Feng, Z.; Wei, C.; Zhao, Y.; Ma, Q.; Xu, W.; Bourrioux, S.; Azais, P.; Srinivasan, M. Adv. Mater. 2016, 29, 1603286. doi:10.1002/adma.201603286
-
[78]
(78) Liu, X.; Teng, D.; Li, T.; Yu, Y.; Shao, X.; Yang, X. J. Power Sources 2014, 272, 614. doi:10.1016/j.jpowsour.2014.08.084
-
[79]
(79) Dong, C.; Dong, W.; Zhang, Q.; Huang, X.; Gu, L.; Chen, I.-W.; Huang, F. J. Mater. Chem. A 2020, 8, 626. doi:10.1039/C9TA11330D
-
[80]
(80) Xu, H.; Zhou, Y.-N.; Lu, F.; Fu, Z.-W. J. Electrochem. Soc. 2011, 158, A285. doi:10.1149/1.3532037
-
[81]
(81) Kwon, C.; Kim, H.; Toupance, T.; Jousseaume, B.; Campet, G.; Fluorine-Doped Tin Oxide Electrods for Lithium Batteries. In Fluorinated Materials for Energy Conversion; Elsevier: The Netherlands, 2005; p. 103.
-
[82]
(82) Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L. J. Power Sources 2017, 362, 20. doi:10.1016/j.jpowsour.2017.07.024
-
[83]
(83) Lin, Y.; Zhong, K.; Zheng, J.; Liang, M.; Xu, G.; Feng, Q.; Li, J.; Huang, Z. ACS Appl. Energy Mater. 2021, 4, 9848. doi:10.1021/acsaem.1c01883
-
[1]
-
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[3]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[4]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[5]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[8]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[9]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[10]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[11]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[12]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[13]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[14]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[15]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[16]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[17]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[18]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[19]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[20]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(55)
- HTML views(0)