Citation: Peipei Sun, Jinyuan Zhang, Yanhua Song, Zhao Mo, Zhigang Chen, Hui Xu. Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 231100. doi: 10.3866/PKU.WHXB202311001 shu

Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution

  • Corresponding author: Yanhua Song, songyh@just.edu.cn Zhao Mo, zhaomo@ujs.edu.cn Hui Xu, xh@ujs.edu.cn
  • Received Date: 1 November 2023
    Revised Date: 13 December 2023
    Accepted Date: 14 December 2023
    Available Online: 25 December 2023

    Fund Project: the National Natural Science Foundation of China 22378174the National Natural Science Foundation of China 21878134the National Natural Science Foundation of China 22208129the National Natural Science Foundation of China 22108110

  • The construct of the internal electric field (IEF) is recognized as an effective driver for promoting charge migration and separation to enhance photocatalytic performance. In this study, one-dimensional nanorods of Mn0.2Cd0.8S (MCS) co-doped with interstitial chlorine (Clint) and substitutional chlorine (Clsub) were designed and synthesized using a one-step solvothermal method. The incorporation of Clint and Clsub led to an unbalanced charge distribution and the formation of IEF in the MCS nanorods, contributing to the improvement of photogenerated carrier kinetic behavior. Through density functional theory (DFT) calculations, the effect of Clint and Clsub doping on the activity of the MCS was visually explained by examining differences in electronic structure, charge distribution and H2 adsorption/desorption balance. Interestingly, the modulation of the energy band structure of MCS primarily resulted from the contribution of Clint, while Clsub playing a negligible role. Moreover, the Clsub further facilitated the optimization of Clint concerning the H2 adsorption-desorption Gibbs free energy (ΔGH*) of MCS. Ultimately, the ΔGH* of 0.9 Cl-MCS favored H2 production (1.14 vs. 0.17 eV), leading to a 9 times increase in photocatalytic H2 production activity compared to MCS. This investigation presents a valuable approach for constructing IEF in bimetallic sulfide photocatalysts.
  • 加载中
    1. [1]

      Hansora, D. Matter 2023, 6, 2501. doi: 10.1016/j.matt.2023.05.006  doi: 10.1016/j.matt.2023.05.006

    2. [2]

      Rahman, M. Z.; Raziq, F.; Zhang, H.; Gascon, J. Angew. Chem. Int. Ed. 2023, e202305385. doi: 10.1002/anie.202305385  doi: 10.1002/anie.202305385

    3. [3]

      Li, Y.; Yu, S.; Xiang, J.; Zhang, F.; Jiang, A.; Duan, Y.; Tang, C.; Cao, Y.; Guo, H.; Zhou, Y. ACS Catal. 2023, 13, 8281. doi: 10.1021/acscatal.3c01210  doi: 10.1021/acscatal.3c01210

    4. [4]

      Yan, Z.; Yin, K.; Xu, M.; Fang, N.; Yu, W.; Chu, Y.; Shu, S. Chem. Eng. J. 2023, 472, 145066. doi: 10.1016/j.cej.2023.145066  doi: 10.1016/j.cej.2023.145066

    5. [5]

      Zhang, J.; Pan, Y.; Feng, D.; Cui, L.; Zhao, S.; Hu, J.; Wang, S.; Qin, Y. Adv. Mater. 2023, 35, e2300902. doi: 10.1002/adma.202300902  doi: 10.1002/adma.202300902

    6. [6]

      Zhu, Y.; Deng, W.; Tan, Y.; Shi, J.; Wu, J.; Lu, W.; Jia, J.; Wang, S.; Zou, Y. Adv. Funct. Mater. 2023, 33, 2304985. doi: 10.1002/adfm.202304985  doi: 10.1002/adfm.202304985

    7. [7]

      Khan, K.; Tao, X.; Shi, M.; Zeng, B.; Feng, Z.; Li, C.; Li, R. Adv. Funct. Mater. 2020, 30, 2003731. doi: 10.1002/adfm.202003731  doi: 10.1002/adfm.202003731

    8. [8]

      Sun, B.; Bu, J.; Chen, X.; Fan, D.; Li, S.; Li, Z.; Zhou, W.; Du, Y. Chem. Eng. J. 2022, 435, 135074. doi: 10.1016/j.cej.2022.135074  doi: 10.1016/j.cej.2022.135074

    9. [9]

      Liu, W.; Wang, Y.; Huang, H.; Wang, J.; He, G.; Feng, J.; Yu, T.; Li, Z.; Zou, Z. J. Am. Chem. Soc. 2023, 145, 7181. doi: 10.1021/jacs.2c12182  doi: 10.1021/jacs.2c12182

    10. [10]

      Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Appl. Catal. B Environ. 2019, 248, 193. doi: 10.1016/j.apcatb.2019.02.027  doi: 10.1016/j.apcatb.2019.02.027

    11. [11]

      Hua, W.; Xia, J.; Hu, Z.; Li, H.; Lv, W.; Yang, Q. J. Electrochem. 2023, 29, 2217006. doi: 10.13208/j.electrochem.2217006  doi: 10.13208/j.electrochem.2217006

    12. [12]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi: 10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    13. [13]

      Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38, 2109023. doi: 10.3866/PKU.WHXB202109023  doi: 10.3866/PKU.WHXB202109023

    14. [14]

      Jiang, Z.; Chen, Q.; Zheng, Q.; Shen, R.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2021, 37, 2010059. doi: 10.3866/PKU.WHXB202010059  doi: 10.3866/PKU.WHXB202010059

    15. [15]

      Huang, W.; Li, Z.; Wu, C.; Zhang, H.; Sun, J.; Li, Q. J. Mater. Sci. Technol. 2022, 120, 89. doi: 10.1016/j.jmst.2021.12.028  doi: 10.1016/j.jmst.2021.12.028

    16. [16]

      Ikeue, K.; Shinmura, Y.; Machida, M. Appl. Catal. B-Environ. 2012, 123–124, 84. doi: 10.1016/j.apcatb.2012.04.019  doi: 10.1016/j.apcatb.2012.04.019

    17. [17]

      Wu, L.; Li, M.; Zhou, B.; Xu, S.; Yuan, L.; Wei, J.; Wang, J.; Zou, S.; Xie, W.; Qiu, Y.; et al. Small 2023, e2303821. doi: 10.1002/smll.202303821  doi: 10.1002/smll.202303821

    18. [18]

      Xiong, M.; Qin, Y.; Chai, B.; Yan, J.; Fan, G.; Xu, F.; Wang, C.; Song, G. Chem. Eng. J. 2022, 428, 131069. doi: 10.1016/j.cej.2021.131069  doi: 10.1016/j.cej.2021.131069

    19. [19]

      Li, Z.; Huang, W.; Liu, J.; Lv, K.; Li, Q. ACS Catal. 2021, 11, 8510. doi: 10.1021/acscatal.1c02018  doi: 10.1021/acscatal.1c02018

    20. [20]

      Wu, C.; Huang, W.; Liu, H.; Lv, K.; Li, Q. Appl. Catal. B Environ. 2023, 330, 122653. doi: 10.1016/j.apcatb.2023.122653  doi: 10.1016/j.apcatb.2023.122653

    21. [21]

      Zhao, D.; Wang, Y.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Nat. Energy 2021, 6, 388. doi: 10.1038/s41560-021-00795-9  doi: 10.1038/s41560-021-00795-9

    22. [22]

      Zhang, Z.; Jia, F.; Kong, F.; Wang, M. Small 2023, 19, e2300810. doi: 10.1002/smll.202300810  doi: 10.1002/smll.202300810

    23. [23]

      Wang, J.; Zhang, Y.; Jiang, S.; Sun, C.; Song, S. Angew. Chem. Int. Ed. 2023, 62, e202307808. doi: 10.1002/anie.202307808  doi: 10.1002/anie.202307808

    24. [24]

      Li, F.; Yue, X.; Liao, Y.; Qiao, L.; Lv, K.; Xiang, Q. Nat. Commun. 2023, 14, 3901. doi: 10.1038/s41467-023-39578-z  doi: 10.1038/s41467-023-39578-z

    25. [25]

      Liu, S.; Qi, W.; Liu, J.; Meng, X.; Adimi, S.; Attfield, J. P.; Yang, M. ACS Catal. 2023, 13, 2214. doi: 10.1021/acscatal.2c05075  doi: 10.1021/acscatal.2c05075

    26. [26]

      Li, L.; Song, L.; Zhang, X.; Zhu, S.; Wang, Y. ACS Appl. Energy Mater. 2022, 5, 2505. doi: 10.1021/acsaem.1c04033  doi: 10.1021/acsaem.1c04033

    27. [27]

      Wang, W.; Jiang, Y.; Yang, Y.; Xiong, F.; Zhu, S.; Wang, J.; Du, L.; Chen, J.; Cui, L.; Xie, J.; et al. ACS Nano 2022, 16, 17097. doi: 10.1021/acsnano.2c07399  doi: 10.1021/acsnano.2c07399

    28. [28]

      Li, H.; Qin, X.; Zhang, X.; Jiang, K.; Cai, W. ACS Catal. 2022, 12, 12750. doi: 10.1021/acscatal.2c04358  doi: 10.1021/acscatal.2c04358

    29. [29]

      Jiao, W.; Li, N.; Wang, L.; Wen, L.; Li, F.; Liu, G.; Cheng, H. M. Chem. Commun. 2013, 49, 3461. doi: 10.1039/c3cc40568k  doi: 10.1039/c3cc40568k

    30. [30]

      Khan, S.; Ruwer, T. L.; Khan, N.; Köche, A.; Lodge, R. W.; Coelho-Júnior, H.; Sommer, R. L.; Santos, M. J. L.; Malfatti, C. F.; Bergmann, C. P.; et al. J. Mater. Chem. A 2021, 9, 12214. doi: 10.1039/D0TA11494D  doi: 10.1039/D0TA11494D

    31. [31]

      Mee Rahn, K.; Karol, M.; Mauro, P.; Rosaria, B.; Sotirios, C.; Mirko, P.; Sergio, M.; Liberato, M. ACS Nano 2012, 6, 11088. doi: 10.1021/nn3048846  doi: 10.1021/nn3048846

    32. [32]

      Liu, K.; Wang, J.; Yang, J.; Zhao, D.; Chen, P.; Man, J.; Yu, X.; Wen, Z.; Sun, J. Chem. Eng. J. 2021, 407, 127190. doi: 10.1016/j.cej.2020.127190  doi: 10.1016/j.cej.2020.127190

    33. [33]

      Huang, H.; Dai, B.; Wang, W.; Lu, C.; Kou, J.; Ni, Y.; Wang, L.; Xu, Z. Nano Lett. 2017, 17, 3803. doi: 10.1021/acs.nanolett.7b01147  doi: 10.1021/acs.nanolett.7b01147

    34. [34]

      Zhang, Q.; Chen, X.; Yang, Z.; Yu, T.; Liu, L.; Ye, J. ACS Appl. Mater. Interfaces 2022, 14, 3970. doi: 10.1021/acsami.1c19638  doi: 10.1021/acsami.1c19638

    35. [35]

      Zhang, Y.; Cheng, C.; Xing, F.; Li, Z.; Huang, C. ACS Appl. Mater. Interfaces 2023, 15, 31364. doi: 10.1021/acsami.3c02662  doi: 10.1021/acsami.3c02662

    36. [36]

      Zhong, W.; Huang, Y.; Wang, X.; Fan, J.; Yu, H. Chem. Commun. 2020, 56, 9316. doi: 10.1039/d0cc01191f  doi: 10.1039/d0cc01191f

    37. [37]

      Li, W.; Wang, F.; Liu, X.; Dang, Y.; Li, J.; Ma, T.; Wang, C. Appl. Catal. B-Environ. 2022, 313, 121470. doi: 10.1016/j.apcatb.2022.121470  doi: 10.1016/j.apcatb.2022.121470

    38. [38]

      Vaquero, F.; Navarro, R. M.; Fierro, J. L. G. Appl. Catal. B-Environ. 2017, 203, 753. doi: 10.1016/j.apcatb.2016.10.073  doi: 10.1016/j.apcatb.2016.10.073

    39. [39]

      Prabhu, R. R.; Khadar, M. A. Bull. Mater. Sci. 2008, 31, 511. doi: 10.1007/s12034-008-0080-7  doi: 10.1007/s12034-008-0080-7

    40. [40]

      Cao, M.; Wang, K.; Tudela, I.; Fan, X. Appl. Surf. Sci. 2021, 536, 147784. doi: 10.1016/j.apsusc.2020.147784  doi: 10.1016/j.apsusc.2020.147784

    41. [41]

      Zhao, Y.; Zhang, P.; Yang, Z.; Li, L.; Gao, J.; Chen, S.; Xie, T.; Diao, C.; Xi, S.; Xiao, B.; et al. Nat. Commun. 2021, 12, 3701. doi: 10.1038/s41467-021-24048-1  doi: 10.1038/s41467-021-24048-1

    42. [42]

      Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C.; Chen, B. Adv. Funct. Mater. 2021, 31, 2105731. doi: 10.1002/adfm.202105731  doi: 10.1002/adfm.202105731

    43. [43]

      Sun, P.; Chen, Z.; Zhang, J.; Wu, G.; Song, Y.; Miao, Z.; Zhong, K.; Huang, L.; Mo, Z.; Xu, H. Appl. Catal. B-Environ. 2023, 123337. doi: 10.1016/j.apcatb.2023.123337  doi: 10.1016/j.apcatb.2023.123337

    44. [44]

      Xia, L.; Sun, Z.; Wu, Y.; Yu, X.; Cheng, J.; Zhang, K.; Sarina, S.; Zhu, H.; Weerathunga, H.; Zhang, L.; et al. Chem. Eng. J. 2022, 439, 135668. doi: 10.1016/j.cej.2022.135668  doi: 10.1016/j.cej.2022.135668

  • 加载中
    1. [1]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    3. [3]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(2)
  • Abstract views(319)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return