Citation: Meiqing Yang,  Lu Wang,  Haozi Lu,  Yaocheng Yang,  Song Liu. Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100018. doi: 10.3866/PKU.WHXB202310046 shu

Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors

  • Corresponding author: Yaocheng Yang,  Song Liu, 
  • Received Date: 31 October 2023
    Revised Date: 29 November 2023
    Accepted Date: 30 November 2023

    Fund Project: The project was supported by the Doctoral Research Start-up Fund of Hunan University of Arts and Science (21BSQD43), the Natural Science Foundation of Hunan Province, China (2023JJ40463), and the National Natural Science Foundation of China (22175060).

  • Photoelectrochemical (PEC) biosensors have attracted intensive attention due to their advantages, including low background, high sensitivity, high specificity and rapid response. In recent years, the introduction of disposable screen-printed electrodes (SPE) has greatly facilitated the development of PEC biosensors, making screen-printed PEC biosensors a promising analytical tool for various applications. Photoactive nanomaterials play a crucial role in the construction of screen-printed PEC biosensors as they can be used not only as photoelectric conversion platforms but also as loading platforms for recognition elements. However, pure photoactive materials usually suffer from some drawbacks, such as inherent toxicity, wide bandgap, and high electron-hole pair recombination rate. Therefore, it is necessary to improve the photoelectric properties of these materials through various design strategies. Moreover, to obtain highly sensitive screen-printed PEC biosensors, it is usually necessary to combine the high-performance photoelectrodes with various signal amplification strategies. In view of this, we provide the first systematic summary of photoactive materials for screen-printed PEC biosensors in this paper, classifying them into four main categories: metal oxides, metal chalcogenides, carbon nanomaterials and bismuth-based nanomaterials. Meanwhile, we focus on the design strategies for photoactive materials, including morphology modulation, elemental doping, and heterostructure construction. In addition, we introduce signal amplification strategies, such as the enzyme label amplification (ELA) strategy, polymerase chain reaction (PCR) strategy, rolling circle amplification (RCA) strategy, and hybridization chain reaction (HCR) strategy, through representative screen-printed PEC immunosensors and screen-printed PEC aptasensors. Finally, we discuss the current challenges and prospects of screen-printed PEC biosensors. We hope to provide readers with a comprehensive understanding of the recent advances in screen-printed PEC biosensors and provide a feasible guidance for the future development of this field.
  • 加载中
    1. [1]

      (1) Yang, M.; Wang, L.; Lu, H.; Dong, Q.; Li, H.; Liu, S. Carbon Lett. 2023, 33, 1343. doi: 10.1007/s42823-022-00419-6

    2. [2]

      (2) Shu, J.; Tang, D. Anal. Chem. 2020, 92, 363. doi: 10.1021/acs.analchem.9b04199

    3. [3]

      (3) Wang, H.; Zhang, B.; Tang, Y.; Wang, C.; Zhao, F.; Zeng, B. TrAC Trends Anal. Chem. 2020, 131, 116020. doi: 10.1016/j.trac.2020.116020

    4. [4]

      (4) Qiu, Z.; Tang, D. J. Mater. Chem. B 2020, 8, 2541. doi: 10.1039/c9tb02844g

    5. [5]

      (5) Zhang, L.; Zhu, Y.-C.; Zhao, W.-W. Chemosensors 2022,10, 14. doi: 10.3390/chemosensors10010014

    6. [6]

      (6) Zhang, B.; An, Z.; Li, M.; Guo, L.-H. TrAC Trends Anal. Chem. 2023, 165, 117149. doi: 10.1016/j.trac.2023.117149

    7. [7]

      (7) Wang, Y.; Rong, Y.; Ma, T.; Li, L.; Li, X.; Zhu, P.; Zhou, S.; Yu, J.; Zhang, Y. Biosens. Bioelectron. 2023, 236, 115400. doi: 10.1016/j.bios.2023.115400

    8. [8]

      (8) Wang, G.; Xu, J.; Chen, H. Sci. China Ser. B-Chem. 2009,52, 1789. doi: 10.1007/s11426-009-0271-0

    9. [9]

    10. [10]

      (10) Zang, Y.; Lei, J.; Ju, H. Biosens. Bioelectron. 2017,96, 8. doi: 10.1016/j.bios.2017.04.030

    11. [11]

      (11) Shi, J.; Chen, Z.; Zhao, C.; Shen, M.; Li, H.; Zhang, S.; Zhang, Z. Coord. Chem. Rev. 2022, 469, 214675. doi: 10.1016/j.ccr.2022.214675

    12. [12]

      (12) Svitkova, V.; Palchetti, I. Bioelectrochemistry 2020,136, 107590. doi: 10.1016/j.bioelechem.2020.107590

    13. [13]

      (13) Zhou, Q.; Tang, D. TrAC Trends Anal. Chem. 2020, 124, 115814. doi: 10.1016/j.trac.2020.115814

    14. [14]

      (14) Tan, A. Y. S.; Lo, N. W.; Cheng, F.; Zhang, M.; Tan, M. T. T.; Manickam, S.; Muthoosamy, K. Biosens. Bioelectron. 2023, 219, 114811. doi: 10.1016/j.bios.2022.114811

    15. [15]

      (15) Ge, L.; Liu, Q.; Hao, N.; Kun, W. J. Mater. Chem. B 2019, 7, 7283. doi: 10.1039/c9tb01644a

    16. [16]

      (16) Shi, L.; Yin, Y.; Zhang, L.-C.; Wang, S.; Sillanpää, M.; Sun, H. Appl. Catal. B-Environ. 2019, 248, 405. doi: 10.1016/j.apcatb.2019.02.044

    17. [17]

      (17) Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. TrAC Trends Anal. Chem. 2016, 79, 114. doi: 10.1016/j.trac.2016.01.032

    18. [18]

      (18) Hughes, G.; Westmacott, K.; Honeychurch, K. C.; Crew, A.; Pemberton, R. M.; Hart, J. P. Biosensors2016, 6, 50. doi: 10.3390/bios6040050

    19. [19]

      (19) Cinti, S.; Arduini, F. Biosens. Bioelectron. 2017, 89, 107. doi: 10.1016/j.bios.2016.07.005

    20. [20]

      (20) Liu, X.; Yao, Y.; Ying, Y.; Ping, J. TrAC Trends Anal. Chem. 2019, 115, 187. doi: 10.1016/j.trac.2019.03.021

    21. [21]

      (21) Musa, A. M.; Kiely, J.; Luxton, R.; Honeychurch, K. C. TrAC Trends Anal. Chem. 2021, 139, 116254. doi: 10.1016/j.trac.2021.116254

    22. [22]

      (22) Pérez-Fernández, B.; Costa-García, A.; Muñiz, A. d. l. E. Biosensors 2020,10, 32. doi: 10.3390/bios10040032

    23. [23]

      (23) Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Biosensors 2020, 10, 118. doi: 10.3390/bios10090118

    24. [24]

      (24) Hasanzadeh, M.; Shadjou, N. Mater. Sci. Eng. C 2016, 61, 979. doi: 10.1016/j.msec.2015.12.031

    25. [25]

      (25) Hoang, T.X.; Phan, L. M. T.; Vo, T. A. T.; Cho, S. Biomedicines 2021, 9, 540. doi: 10.3390/biomedicines9050540

    26. [26]

      (26) Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A.J. Photochem. Photobiol. C 2015, 24, 43. doi: 10.1016/j.jphotochemrev.2015.06.002

    27. [27]

      (27) Yang, L.; Zhang, S.; Liu, X.; Tang, Y.; Zhou, Y.; Wong, D. K. Y. J. Mater. Chem. B 2020, 8, 7880. doi: 10.1039/d0tb01191f

    28. [28]

      (28) Li, F.; Zhou, Y.; Yin, H.; Ai, S. Biosens. Bioelectron. 2020,166, 112476. doi: 10.1016/j.bios.2020.112476

    29. [29]

      (29) Suresh, R. R.; Lakshmanakumar, M.; Arockia Jayalatha, J. B. B.; Rajan, K. S.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. J. Mater. Sci. 2021, 56, 8951. doi: 10.1007/s10853-020-05499-1

    30. [30]

      (30) Lakhera, P.; Chaudhary, V.; Jha, A.; Singh, R.; Kush, P.; Kumar, P. Mater. Today Chem. 2022, 26, 101129. doi: 10.1016/j.mtchem.2022.101129

    31. [31]

      (31) Li, M.; Li, Y.-T.; Li, D.-W.; Long, Y.-T. Anal. Chim. Acta 2012, 734, 31. doi: 10.1016/j.aca.2012.05.018

    32. [32]

      (32) Alonso-Lomillo, M. A.; Dominguez-Renedo, O.; Arcos-Martinez, M. J. Talanta 2010, 82, 1629. doi: 10.1016/j.talanta.2010.08.033

    33. [33]

      (33) Couto, R. A. S.; Lima, J.; Quinaz, M. B. Talanta 2016, 146, 801. doi: 10.1016/j.talanta.2015.06.011

    34. [34]

      (34) Liang, G.; He, Z.; Zhen, J.; Tian, H.; Ai, L.; Pan, L.; Gong, W. Environ. Technol. Innov. 2022,28, 102922. doi: 10.1016/j.eti.2022.102922

    35. [35]

      (35) Silva, R. M.; da Silva, A. D.; Camargo, J. R.; de Castro, B. S.; Meireles, L. M.; Silva, P. S.; Janegitz, B. C.; Silva, T. A. Biosensors 2023, 13, 453. doi: 10.3390/bios13040453

    36. [36]

      (36) Wang, P.; Sun, G.; Ge, L.; Ge, S.; Song, X.; Yan, M.; Yu, J. Chem. Commun. 2013, 49, 10400. doi: 10.1039/c3cc45856c

    37. [37]

      (37) Ge, S.; Li, W.; Yan, M.; Song, X.; Yu, J. J. Mater. Chem. B 2015, 3, 2426. doi: 10.1039/c4tb01570c

    38. [38]

      (38) Sun, G.; Zhang, Y.; Kong, Q.; Ma, C.; Yu, J.; Ge, S.; Yan, M.; Song, X. J. Mater. Chem. B 2014, 2, 7679. doi: 10.1039/c4tb01119h

    39. [39]

      (39) Ge, S.; Liang, L.; Lan, F.; Zhang, Y.; Wang, Y.; Yan, M.; Yu, J. Sens. Actuators B Chem. 2016, 234, 324. doi: 10.1016/j.snb.2016.04.166

    40. [40]

      (40) Kong, Q.; Cui, K.; Zhang, L.; Wang, Y.; Sun, J.; Ge, S.; Zhang, Y.; Yu, J. Anal. Chem. 2018, 90, 11297. doi: 10.1021/acs.analchem.8b01844

    41. [41]

      (41) Hu, M.; Yang, H.; Li, Z.; Zhang, L.; Zhu, P.; Yan, M.; Yu, J. Biosens. Bioelectron. 2020, 147, 111786. doi: 10.1016/j.bios.2019.111786

    42. [42]

      (42) Wang, Y.; Zhang, L.; Kong, Q.; Ge, S.; Yu, J. Biosens. Bioelectron. 2018, 120, 64. doi: 10.1016/j.bios.2018.08.028

    43. [43]

      (43) Zhang, L.; Kong, Q.; Li, L.; Wang, Y.; Ge, S.; Yu, J. Talanta 2021, 222, 121517. doi: 10.1016/j.talanta.2020.121517

    44. [44]

      (44) Ge, S.; Lan, F.; Liang, L.; Ren, N.; Li, L.; Liu, H.; Yan, M.; Yu, J. ACS Appl. Mater. Interfaces 2017, 9, 6670. doi: 10.1021/acsami.6b11966

    45. [45]

      (45) Hu, M.; Wang, J.; Han, J.; Rong, Y.; Yu, H.; Ge, S.; Yang, H.; Zhang, L.; Yu, J. Sens. Actuators B Chem. 2022,369, 132374. doi: 10.1016/j.snb.2022.132374

    46. [46]

      (46) Liu, F.; Zhang, Y.; Yu, J.; Wang, S.; Ge, S.; Song, X. Biosens. Bioelectron. 2014, 51, 413. doi: 10.1016/j.bios.2013.07.066

    47. [47]

      (47) Lan, F.; Liang, L.; Zhang, Y.; Li, L.; Ren, N.; Yan, M.; Ge, S.; Yu, J. ACS Appl. Mater. Interfaces 2017,9, 37839. doi: 10.1021/acsami.7b12338

    48. [48]

      (48) Yang, H.; Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Huang, J.; Yu, J.Anal. Chem. 2018, 90, 7212. doi: 10.1021/acs.analchem.8b00153

    49. [49]

      (49) Yang, H.; Hu, M.; Li, Z.; Zhao, P.; Xie, L.; Song, X.; Yu, J. Anal. Chem. 2019, 91, 14577. doi: 10.1021/acs.analchem.9b03638

    50. [50]

      (50) Sun, G.; Wang, P.; Zhu, P.; Ge, L.; Ge, S.; Yan, M.; Song, X.; Yu, J. J. Mater. Chem. B 2014, 2, 4811. doi: 10.1039/c4tb00623b

    51. [51]

      (51) Zhang, Y.; Ge, L.; Ge, S.; Yan, M.; Yan, J.; Zang, D.; Lu, J.; Yu, J.; Song, X. Electrochim. Acta 2013, 112, 620. doi: 10.1016/j.electacta.2013.09.009

    52. [52]

      (52) Bott-Neto, J. L.; Martins, T. S.; Buscaglia, L. A.; Machado, S. A. S.; Oliveira, O. N. ACS Appl. Mater. Interfaces 2022, 14, 22114. doi: 10.1021/acsami.2c03106

    53. [53]

      (53) Li, L.; Wang, T.; Zhang, Y.; Xu, C.; Zhang, L.; Cheng, X.; Liu, H.; Chen, X.; Yu, J. ACS Appl. Mater. Interfaces 2018, 10, 14594. doi: 10.1021/acsami.8b03632

    54. [54]

      (54) Li, L.; Zheng, X.; Huang, Y.; Zhang, L.; Cui, K.; Zhang, Y.; Yu, J.Anal. Chem. 2018, 90, 13882. doi: 10.1021/acs.analchem.8b02849

    55. [55]

      (55) Wang, Y.; Liu, H.; Wang, P.; Yu, J.; Ge, S.; Yan, M. Sens. Actuators B Chem. 2015,208, 546. doi: 10.1016/j.snb.2014.11.088

    56. [56]

      (56) Gao, C.; Xue, J.; Zhang, L.; Zhao, P.; Cui, K.; Ge, S.; Yu, J. Biosens. Bioelectron. 2019, 131, 17. doi: 10.1016/j.bios.2019.01.038

    57. [57]

      (57) Sun, Y.; Liu, J.; Peng, X.; Zhang, G.; Li, Y. Biosens. Bioelectron. 2023, 224, 115059. doi: 10.1016/j.bios.2023.115059

    58. [58]

      (58) Shan, L.; Chen, Y.; Tan, X.; Ge, S.; Zhang, L.; Li, L.; Yu, J.; Li, L. Anal. Chem. 2023, 95, 4760. doi: 10.1021/acs.analchem.2c05686

    59. [59]

      (59) Sun, J.; Li, L.; Kong, Q.; Zhang, Y.; Zhao, P.; Ge, S.; Cui, K.; Yu, J. Biosens. Bioelectron. 2019, 133, 32. doi: 10.1016/j.bios.2019.02.027

    60. [60]

      (60) Li, Z.; Yang, H.; Hu, M.; Zhang, L.; Ge, S.; Cui, K.; Yu, J. ACS Appl. Mater. Interfaces 2020,12, 17177. doi: 10.1021/acsami.9b22558

    61. [61]

      (61) Yang, H.; Wang, J.; Li, X.; Zhang, L.; Yu, H.; Zhang, L.; Ge, S.; Yu, J.; Zhang, Y. ACS Appl. Mater. Interfaces 2021, 13, 19793. doi: 10.1021/acsami.1c03891

    62. [62]

      (62) Yang, H.; Wang, J.; Yu, H.; Li, X.; Li, Z.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. Chem. Eng. J. 2022, 430, 132846. doi: 10.1016/j.cej.2021.132846

    63. [63]

      (63) Zheng, C.; Yin, M.; Ge, R.; Wei, J.; Su, B.; Chen, X.; Chen, X. Biosens. Bioelectron. 2021, 185, 113278. doi: 10.1016/j.bios.2021.113278

    64. [64]

      (64) Sun, J.; Li, L.; Ge, S.; Zhao, P.; Zhu, P.; Wang, M.; Yu, J. ACS Appl. Mater. Interfaces 2021,13, 3645. doi: 10.1021/acsami.0c19853

    65. [65]

      (65) Tan, X.; Yu, H.; Liang, B.; Han, M.; Ge, S.; Zhang, L.; Li, L.; Li, L.; Yu, J. Anal. Chem. 2022, 94, 1705. doi: 10.1021/acs.analchem.1c04259

    66. [66]

      (66) Wang, Y.; Xu, J.; Ma, C.; Li, S.; Yu, J.; Ge, S.; Yan, M. J. Mater. Chem. B 2014, 2, 3462. doi: 10.1039/c4tb00233d

    67. [67]

      (67) Yu, H.; Tan, X.; Sun, S.; Zhang, L.; Gao, C.; Ge, S. Biosens. Bioelectron. 2021, 185, 113250. doi: 10.1016/j.bios.2021.113250

    68. [68]

      (68) Xue, J.; Zhang, L.; Gao, C.; Zhu, P.; Yu, J. Biosens. Bioelectron. 2019, 133, 1. doi: 10.1016/j.bios.2019.03.022

    69. [69]

      (69) Lin, J.; Liu, G.; Qiu, Z.; Huang, L.; Weng, S. New J. Chem. 2022, 46, 12836. doi: 10.1039/d2nj01954j

    70. [70]

      (70) Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. Anal. Chem. 2022, 94, 7442. doi: 10.1021/acs.analchem.2c01373

    71. [71]

      (71) Li, Y.; Si, S.; Huang, F.; Wei, J.; Dong, S.; Yang, F.; Li, H.; Liu, S. Bioelectrochemistry 2022, 144, 108000. doi: 10.1016/j.bioelechem.2021.108000

    72. [72]

      (72) Liu, Y.; Si, S.; Dong, S.; Ji, B.; Li, H.; Liu, S. Microchem. J.2021, 170, 106644. doi: 10.1016/j.microc.2021.106644

    73. [73]

      (73) Wang, P.; Ge, L.; Ge, S.; Yu, J.; Yan, M.; Huang, J. Chem. Commun. 2013, 49, 3294. doi: 10.1039/c3cc00149k

    74. [74]

      (74) Ge, L.; Wang, P.; Ge, S.; Li, N.; Yu, J.; Yan, M.; Huang, J. Anal. Chem. 2013, 85, 3961. doi: 10.1021/ac4001496

    75. [75]

      (75) Wang, Y.; Ge, L.; Wang, P.; Yan, M.; Ge, S.; Li, N.; Yu, J.; Huang, J. Lab Chip 2013, 13, 3945. doi: 10.1039/c3lc50430a

    76. [76]

      (76) Díez-Buitrago, B.; Fernández-San Argimiro, F. J.; Lorenzo, J.; Bijelic, G.; Briz, N.; Pavlov, V. Analyst 2022, 147, 3470. doi: 10.1039/d0an01950j

    77. [77]

      (77) Liu, Y.; Yan, T.; Li, Y.; Cao, W.; Pang, X.; Wu, D.; Wei, Q. RSC Adv. 2015, 5, 19581. doi: 10.1039/c4ra15918g

    78. [78]

      (78) Dai, L.; Xu, R.; Cui, M.; Ren, X.; Wang, X.; Feng, J.; Wu, R.; Ma, H.; Wei, Q. Biosens. Bioelectron. 2022, 11, 100207. doi: 10.1016/j.biosx.2022.100207

    79. [79]

      (79) Chi, L.; Wang, X.; Chen, H.; Tang, D.; Xue, F. Talanta 2023, 254, 124176. doi: 10.1016/j.talanta.2022.124176

    80. [80]

      (80) Hao, X.; Guan, Y.; Liu, F.; Zhang, Y.; Zhai, Y.; Niu, L. J. Electroanal. Chem. 2022, 913, 116284. doi: 10.1016/j.jelechem.2022.116284

    81. [81]

      (81) Gholamin, D.; Karami, P.; Pahlavan, Y.; Johari-Ahar, M. Microchim. Acta 2023, 190, 154. doi: 10.1007/s00604-023-05718-x

    82. [82]

      (82) Ge, R.; Lin, X.; Dai, H.; Wei, J.; Jiao, T.; Chen, Q.; Oyama, M.; Chen, Q.; Chen, X. ACS Appl. Mater. Interfaces 2022, 14, 41649. doi: 10.1021/acsami.2c13292

    83. [83]

      (83) Li, X.; Pan, X.; Lu, J.; Zhou, Y.; Gong, J. Biosens. Bioelectron. 2020, 158, 112158. doi: 10.1016/j.bios.2020.112158

    84. [84]

      (84) Zeng, R.; Li, Y.; Li, Ya.; Wan, Q.; Huang, Z.; Qiu, Z.; Tang, D. Research 2022, 2022, 9831521. doi: 10.34133/2022/9831521

    85. [85]

      (85) Li, L.; Yang, H.; Li, L.; Tan, X.; Ge, S.; Zhang, L.; Yu, J.; Zhang, Y. ACS Sens. 2022, 7, 2429. doi: 10.1021/acssensors.2c01162

    86. [86]

      (86) Liu, S., Cao, H., Wang, Z., Tu, W., Dai, Z. Chem. Commun. 2015, 51, 14259. doi: 10.1039/c5cc04092b

    87. [87]

      (87) Li, Z.; Zhang, J.; Li, Y.; Zhao, S.; Zhang, P.; Zhang, Y.; Bi, J.; Liu, G.; Yue, Z. Biosens. Bioelectron. 2018, 99, 251. doi: 10.1016/j.bios.2017.07.065

    88. [88]

      (88) Mao, L.; Wang, X.; Guo, Y.; Yao, L.;Xue, X.; Wang, H.-X.; Xiong, C.; Wen, W.; Zhang, X.; Wang, S. Nanoscale 2019,11, 7885. doi: 10.1039/c9nr01675a

    89. [89]

      (89) Zhang, Y.; Ge, L.; Li, M.; Yan, M.; Ge, S.; Yu, J.; Song, X.; Cao, B. Chem. Commun. 2014, 50, 1417. doi: 10.1039/c3cc48421a

    90. [90]

      (90) Martimiano do Prado, T.; Catunda, L. G. da S.; Calegaro, M. L.; Correa, D. S.; Machado, S. A. S. Electrochim. Acta 2022, 431, 141094. doi: 10.1016/j.electacta.2022.141094

    91. [91]

      (91) Catunda, L. G. da S.; Martimiano do Prado, T.; de Oliveira, T. R.; Almeida Dos Santos, D, J.; Gomes, N. O.; Correa, D. S.; Faria, R. C.; Machado, S. A. S. Electrochim. Acta 2023, 451, 142271. doi: 10.1016/j.electacta.2023.142271

    92. [92]

      (92) Yin, M.; Liu, C.; Ge, R.; Fang, Y.; Wei, J.; Chen, X.; Chen, Q.; Chen, X. Biosens. Bioelectron. 2022, 203, 114022. doi: 10.1016/j.bios.2022.114022

    93. [93]

      (93) Gao, C.; Xue, J.; Zhang, L.; Cui, K.; Li, H.; Yu, J. Anal. Chem. 2018, 90, 14116. doi: 10.1021/acs.analchem.8b04662

    94. [94]

      (94) Ge, R.; Dai, H.; Zhang, S.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X. Anal. Chem. 2023, 95, 7379. doi: 10.1021/acs.analchem.3c01006

    95. [95]

      (95) Zhou, Y.; Yin, H.; Ai, S. Coord. Chem. Rev. 2021, 447, 214156. doi: 10.1016/j.ccr.2021.214156

    96. [96]

      (96) Zheng, C.; Ge, R.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X.Food Chem. 2024, 430, 136999. doi: 10.1016/j.foodchem.2023.136999

    97. [97]

      (97) Huang, C.; Zhang, L.; Zhu, Y.; Zhang, Z.; Liu, Y.; Liu, C.; Ge, S.; Yu, J. Anal. Chem. 2022, 94, 8075. doi: 10.1021/acs.analchem.2c01717

    98. [98]

      (98) Yu, Z.; Lin, Q.; Gong, H.; Li, M.; Tang, D. Biosens. Bioelectron. 2023, 223, 115028. doi: 10.1016/j.bios.2022.115028

    99. [99]

      (99) Lin, Q.; Yu, Z.; Lu, L.; Huang, X.; Wei, Q.; Tang, D. Biosens. Bioelectron. 2023, 230, 115260. doi: 10.1016/j.bios.2023.115260

    100. [100]

      (100) Ding, Z.; Lin, Q.; Xu, X.; Tang, X.; Zhang, X.; Li, W.; Wang, Y.; Li, C. Sens. Actuators B-Chem. 2023, 392, 134054. doi: 10.1016/j.snb.2023.134054

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    8. [8]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    11. [11]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    12. [12]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1)
  • Abstract views(76)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return