Citation: Yang Meiqing, Lu Wang, Haozi Lu, Yaocheng Yang, Song Liu. Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 231004. doi: 10.3866/PKU.WHXB202310046 shu

Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors

  • Corresponding author: Yaocheng Yang, yangyaocheng@csu.edu.cn Song Liu, liusong@hnu.edu.cn
  • Received Date: 31 October 2023
    Revised Date: 29 November 2023
    Accepted Date: 30 November 2023

    Fund Project: the Doctoral Research Start-up Fund of Hunan University of Arts and Science 21BSQD43the Natural Science Foundation of Hunan Province, China 2023JJ40463the National Natural Science Foundation of China 22175060

  • Photoelectrochemical (PEC) biosensors have attracted intensive attention due to their advantages, including low background, high sensitivity, high specificity and rapid response. In recent years, the introduction of disposable screen-printed electrodes (SPE) has greatly facilitated the development of PEC biosensors, making screen-printed PEC biosensors a promising analytical tool for various applications. Photoactive nanomaterials play a crucial role in the construction of screen-printed PEC biosensors as they can be used not only as photoelectric conversion platforms but also as loading platforms for recognition elements. However, pure photoactive materials usually suffer from some drawbacks, such as inherent toxicity, wide bandgap, and high electron-hole pair recombination rate. Therefore, it is necessary to improve the photoelectric properties of these materials through various design strategies. Moreover, to obtain highly sensitive screen-printed PEC biosensors, it is usually necessary to combine the high-performance photoelectrodes with various signal amplification strategies. In view of this, we provide the first systematic summary of photoactive materials for screen-printed PEC biosensors in this paper, classifying them into four main categories: metal oxides, metal chalcogenides, carbon nanomaterials and bismuth-based nanomaterials. Meanwhile, we focus on the design strategies for photoactive materials, including morphology modulation, elemental doping, and heterostructure construction. In addition, we introduce signal amplification strategies, such as the enzyme label amplification (ELA) strategy, polymerase chain reaction (PCR) strategy, rolling circle amplification (RCA) strategy, and hybridization chain reaction (HCR) strategy, through representative screen-printed PEC immunosensors and screen-printed PEC aptasensors. Finally, we discuss the current challenges and prospects of screen-printed PEC biosensors. We hope to provide readers with a comprehensive understanding of the recent advances in screen-printed PEC biosensors and provide a feasible guidance for the future development of this field.
  • 加载中
    1. [1]

      Yang M., Wang L., Lu H., Dong Q., Li H., Liu S. Carbon Lett, 2023, 33, 1343 doi: 10.1007/s42823-022-00419-6  doi: 10.1007/s42823-022-00419-6

    2. [2]

      Shu J., Tang D. Anal. Chem., 2020, 92, 363. doi: 10.1021/acs.analchem.9b04199  doi: 10.1021/acs.analchem.9b04199

    3. [3]

      Wang H., Zhang B., Tang Y., Wang C., Zhao F., Zeng B. TrAC Trends Anal. Chem, 2020, 131, 116020 doi: 10.1016/j.trac.2020.116020  doi: 10.1016/j.trac.2020.116020

    4. [4]

      Qiu Z., Tang D. J. Mater. Chem. B, 2020, 8, 2541 doi: 10.1039/c9tb02844g  doi: 10.1039/c9tb02844g

    5. [5]

      Zhang L., Zhu Y. -C., Zhao W. -W. Chemosensors, 2022, 10, 14 doi: 10.3390/chemosensors10010014  doi: 10.3390/chemosensors10010014

    6. [6]

      Zhang B., An Z., Li M., Guo L. -H. TrAC Trends Anal. Chem, 2023, 165, 117149 doi: 10.1016/j.trac.2023.117149  doi: 10.1016/j.trac.2023.117149

    7. [7]

      Wang Y., Rong Y., Ma T., Li L., Li X., Zhu P., Zhou S., Yu J., Zhang Y. Biosens. Bioelectron, 2023, 236, 115400 doi: 10.1016/j.bios.2023.115400  doi: 10.1016/j.bios.2023.115400

    8. [8]

      Wang G., Xu J., Chen H. Sci. China Ser. B-Chem, 2009, 52, 1789 doi: 10.1007/s11426-009-0271-0  doi: 10.1007/s11426-009-0271-0

    9. [9]

      Ruan Y. -F., Zhang N., Zhu Y. -C., Zhao W. -W., Xu J. -J., Chen H. -Y. Acta Phys. -Chim. Sin, 2017, 33, 476  doi: 10.3866/PKU.WHXB201611141

    10. [10]

      Zang Y., Lei J., Ju H. Biosens. Bioelectron, 2017, 96, 8 doi: 10.1016/j.bios.2017.04.030  doi: 10.1016/j.bios.2017.04.030

    11. [11]

      Shi J., Chen Z., Zhao C., Shen M., Li H., Zhang S., Zhang Z. Coord. Chem. Rev, 2022, 469, 214675 doi: 10.1016/j.ccr.2022.214675  doi: 10.1016/j.ccr.2022.214675

    12. [12]

      Svitkova V., Palchetti I. Bioelectrochemistry, 2020, 136, 107590 doi: 10.1016/j.bioelechem.2020.107590  doi: 10.1016/j.bioelechem.2020.107590

    13. [13]

      Zhou Q., Tang D. TrAC Trends Anal. Chem, 2020, 124, 115814 doi: 10.1016/j.trac.2020.115814  doi: 10.1016/j.trac.2020.115814

    14. [14]

      Tan A. Y. S., Lo N. W., Cheng F., Zhang M., Tan M. T. T., Manickam S., Muthoosamy K. Biosens. Bioelectron, 2023, 219, 114811 doi: 10.1016/j.bios.2022.114811  doi: 10.1016/j.bios.2022.114811

    15. [15]

      Ge L., Liu Q., Hao N., Kun W. J. Mater. Chem. B, 2019, 7, 7283. doi: 10.1039/c9tb01644a  doi: 10.1039/c9tb01644a

    16. [16]

      Shi L., Yin Y., Zhang L. -C., Wang S., Sillanpää M., Sun H. Appl. Catal. B-Environ, 2019, 248, 405 doi: 10.1016/j.apcatb.2019.02.044  doi: 10.1016/j.apcatb.2019.02.044

    17. [17]

      Arduini F., Micheli L., Moscone D., Palleschi G., Piermarini S., Ricci F., Volpe G. TrAC Trends Anal. Chem, 2016, 79, 114 doi: 10.1016/j.trac.2016.01.032  doi: 10.1016/j.trac.2016.01.032

    18. [18]

      Hughes G., Westmacott K., Honeychurch K. C., Crew A., Pemberton R. M., Hart J. P. Biosensors, 2016, 6, 50 doi: 10.3390/bios6040050  doi: 10.3390/bios6040050

    19. [19]

      Cinti S., Arduini F. Biosens. Bioelectron, 2017, 89, 107 doi: 10.1016/j.bios.2016.07.005  doi: 10.1016/j.bios.2016.07.005

    20. [20]

      Liu X., Yao Y., Ying Y., Ping J. TrAC Trends Anal. Chem., 2019, 115, 187 doi: 10.1016/j.trac.2019.03.021  doi: 10.1016/j.trac.2019.03.021

    21. [21]

      Musa A. M., Kiely J., Luxton R., Honeychurch K. C. TrAC Trends Anal. Chem., 2021, 139, 116254. doi: 10.1016/j.trac.2021.116254  doi: 10.1016/j.trac.2021.116254

    22. [22]

      Pérez-Fernández B., Costa-García A., Muñiz A. d. l. E. Biosensors, 2020, 10, 32 doi: 10.3390/bios10040032  doi: 10.3390/bios10040032

    23. [23]

      Martínez-Periñán E., Gutiérrez-Sánchez C., García-Mendiola T., Lorenzo E. Biosensors, 2020, 10, 118 doi: 10.3390/bios10090118  doi: 10.3390/bios10090118

    24. [24]

      Hasanzadeh M., Shadjou N. Mater. Sci. Eng. C, 2016, 61, 979 doi: 10.1016/j.msec.2015.12.031  doi: 10.1016/j.msec.2015.12.031

    25. [25]

      Hoang T.X., Phan L. M. T., Vo T. A. T., Cho S. Biomedicines, 2021, 9, 540 doi: 10.3390/biomedicines9050540  doi: 10.3390/biomedicines9050540

    26. [26]

      Devadoss A., Sudhagar P., Terashima C., Nakata K., Fujishima A. J. Photochem. Photobiol. C, 2015, 24, 43 doi: 10.1016/j.jphotochemrev.2015.06.002  doi: 10.1016/j.jphotochemrev.2015.06.002

    27. [27]

      Yang L., Zhang S., Liu X., Tang Y., Zhou Y., Wong D. K. Y. J. Mater. Chem. B, 2020, 8, 7880 doi: 10.1039/d0tb01191f  doi: 10.1039/d0tb01191f

    28. [28]

      Li F., Zhou Y., Yin H., Ai S. Biosens. Bioelectron, 2020, 166, 112476 doi: 10.1016/j.bios.2020.112476  doi: 10.1016/j.bios.2020.112476

    29. [29]

      Suresh R. R., Lakshmanakumar M., Arockia Jayalatha J. B. B., Rajan K. S., Sethuraman S., Krishnan U. M., Rayappan J. B. B. J. Mater. Sci., 2021, 56, 8951 doi: 10.1007/s10853-020-05499-1  doi: 10.1007/s10853-020-05499-1

    30. [30]

      Lakhera P., Chaudhary V., Jha A., Singh R., Kush P., Kumar P. Mater. Today Chem, 2022, 26, 101129 doi: 10.1016/j.mtchem.2022.101129  doi: 10.1016/j.mtchem.2022.101129

    31. [31]

      Li M., Li Y. -T., Li D. -W., Long Y. -T. Anal. Chim. Acta, 2012, 734, 31 doi: 10.1016/j.aca.2012.05.018  doi: 10.1016/j.aca.2012.05.018

    32. [32]

      Alonso-Lomillo M. A., Dominguez-Renedo O., Arcos-Martinez M. J. Talanta, 2010, 82, 1629 doi: 10.1016/j.talanta.2010.08.033  doi: 10.1016/j.talanta.2010.08.033

    33. [33]

      Couto R. A. S., Lima J., Quinaz M. B. Talanta, 2016, 146, 801 doi: 10.1016/j.talanta.2015.06.011  doi: 10.1016/j.talanta.2015.06.011

    34. [34]

      Liang G., He Z., Zhen J., Tian H., Ai L., Pan L., Gong W. Environ. Technol. Innov., 2022, 28, 102922 doi: 10.1016/j.eti.2022.102922  doi: 10.1016/j.eti.2022.102922

    35. [35]

      Silva R. M., da Silva A. D., Camargo J. R., de Castro B. S., Meireles L. M., Silva P. S., Janegitz B. C., Silva T. A. Biosensors, 2023, 13, 453 doi: 10.3390/bios13040453  doi: 10.3390/bios13040453

    36. [36]

      Wang P., Sun G., Ge L., Ge S., Song X., Yan M., Yu J. Chem. Commun, 2013, 49, 10400 doi: 10.1039/c3cc45856c  doi: 10.1039/c3cc45856c

    37. [37]

      Ge S., Li W., Yan M., Song X., Yu J. J. Mater. Chem. B, 2015, 3, 2426 doi: 10.1039/c4tb01570c  doi: 10.1039/c4tb01570c

    38. [38]

      Sun G., Zhang Y., Kong Q., Ma C., Yu J., Ge S., Yan M., Song X. J. Mater. Chem. B, 2014, 2, 7679 doi: 10.1039/c4tb01119h  doi: 10.1039/c4tb01119h

    39. [39]

      Ge S., Liang L., Lan F., Zhang Y., Wang Y., Yan M., Yu J. Sens. Actuators B Chem., 2016, 234, 324 doi: 10.1016/j.snb.2016.04.166  doi: 10.1016/j.snb.2016.04.166

    40. [40]

      Kong Q., Cui K., Zhang L., Wang Y., Sun J., Ge S., Zhang Y., Yu J. Anal. Chem., 2018, 90, 11297 doi: 10.1021/acs.analchem.8b01844  doi: 10.1021/acs.analchem.8b01844

    41. [41]

      Hu M., Yang H., Li Z., Zhang L., Zhu P., Yan M., Yu J. Biosens. Bioelectron, 2020, 147, 111786 doi: 10.1016/j.bios.2019.111786  doi: 10.1016/j.bios.2019.111786

    42. [42]

      Wang Y., Zhang L., Kong Q., Ge S., Yu J. Biosens. Bioelectron, 2018, 120, 64 doi: 10.1016/j.bios.2018.08.028  doi: 10.1016/j.bios.2018.08.028

    43. [43]

      Zhang L., Kong Q., Li L., Wang Y., Ge S., Yu J. Talanta, 2021, 222, 121517 doi: 10.1016/j.talanta.2020.121517  doi: 10.1016/j.talanta.2020.121517

    44. [44]

      Ge S., Lan F., Liang L., Ren N., Li L., Liu H., Yan M., Yu J. ACS Appl. Mater. Interfaces, 2017, 9, 6670 doi: 10.1021/acsami.6b11966  doi: 10.1021/acsami.6b11966

    45. [45]

      Hu M., Wang J., Han J., Rong Y., Yu H., Ge S., Yang H., Zhang L., Yu J. Sens. Actuators B Chem., 2022, 369, 132374 doi: 10.1016/j.snb.2022.132374  doi: 10.1016/j.snb.2022.132374

    46. [46]

      Liu F., Zhang Y., Yu J., Wang S., Ge S., Song X. Biosens. Bioelectron, 2014, 51, 413 doi: 10.1016/j.bios.2013.07.066  doi: 10.1016/j.bios.2013.07.066

    47. [47]

      Lan F., Liang L., Zhang Y., Li L., Ren N., Yan M., Ge S., Yu J. ACS Appl. Mater. Interfaces, 2017, 9, 37839 doi: 10.1021/acsami.7b12338  doi: 10.1021/acsami.7b12338

    48. [48]

      Yang H., Zhang Y., Zhang L., Cui K., Ge S., Huang J., Yu J. Anal. Chem., 2018, 90, 7212 doi: 10.1021/acs.analchem.8b00153  doi: 10.1021/acs.analchem.8b00153

    49. [49]

      Yang H., Hu M., Li Z., Zhao P., Xie L., Song X., Yu J. Anal. Chem., 2019, 91, 14577 doi: 10.1021/acs.analchem.9b03638  doi: 10.1021/acs.analchem.9b03638

    50. [50]

      Sun G., Wang P., Zhu P., Ge L., Ge S., Yan M., Song X., Yu J. J. Mater. Chem. B, 2014, 2, 4811 doi: 10.1039/c4tb00623b  doi: 10.1039/c4tb00623b

    51. [51]

      Zhang Y., Ge L., Ge S., Yan M., Yan J., Zang D., Lu J., Yu J., Song X. Electrochim. Acta, 2013, 112, 620 doi: 10.1016/j.electacta.2013.09.009  doi: 10.1016/j.electacta.2013.09.009

    52. [52]

      Bott-Neto J. L., Martins T. S., Buscaglia L. A., Machado S. A. S., Oliveira O. N. ACS Appl. Mater. Interfaces, 2022, 14, 22114 doi: 10.1021/acsami.2c03106  doi: 10.1021/acsami.2c03106

    53. [53]

      Li L., Wang T., Zhang Y., Xu C., Zhang L., Cheng X., Liu H., Chen X., Yu J. ACS Appl. Mater. Interfaces, 2018, 10, 14594 doi: 10.1021/acsami.8b03632  doi: 10.1021/acsami.8b03632

    54. [54]

      Li L., Zheng X., Huang Y., Zhang L., Cui K., Zhang Y., Yu J. Anal. Chem., 2018, 90, 13882 doi: 10.1021/acs.analchem.8b02849  doi: 10.1021/acs.analchem.8b02849

    55. [55]

      Wang Y., Liu H., Wang P., Yu J., Ge S., Yan M. Sens. Actuators B Chem., 2015, 208, 546 doi: 10.1016/j.snb.2014.11.088  doi: 10.1016/j.snb.2014.11.088

    56. [56]

      Gao C., Xue J., Zhang L., Zhao P., Cui K., Ge S., Yu J. Biosens. Bioelectron, 2019, 131, 17 doi: 10.1016/j.bios.2019.01.038  doi: 10.1016/j.bios.2019.01.038

    57. [57]

      Sun Y., Liu J., Peng X., Zhang G., Li Y. Biosens. Bioelectron, 2023, 224, 115059 doi: 10.1016/j.bios.2023.115059  doi: 10.1016/j.bios.2023.115059

    58. [58]

      Shan L., Chen Y., Tan X., Ge S., Zhang L., Li L., Yu J., Li L. Anal. Chem, 2023, 95, 4760 doi: 10.1021/acs.analchem.2c05686  doi: 10.1021/acs.analchem.2c05686

    59. [59]

      Sun J., Li L., Kong Q., Zhang Y., Zhao P., Ge S., Cui K., Yu J. Biosens. Bioelectron., 2019, 133, 32 doi: 10.1016/j.bios.2019.02.027  doi: 10.1016/j.bios.2019.02.027

    60. [60]

      Li Z., Yang H., Hu M., Zhang L., Ge S., Cui K., Yu J. ACS Appl. Mater. Interfaces, 2020, 12, 17177 doi: 10.1021/acsami.9b22558  doi: 10.1021/acsami.9b22558

    61. [61]

      Yang H., Wang J., Li X., Zhang L., Yu H., Zhang L., Ge S., Yu J., Zhang Y. ACS Appl. Mater. Interfaces, 2021, 13, 19793 doi: 10.1021/acsami.1c03891  doi: 10.1021/acsami.1c03891

    62. [62]

      Yang H., Wang J., Yu H., Li X., Li Z., Cui K., Zhang L., Ge S., Yu J. Chem. Eng. J., 2022, 430, 132846 doi: 10.1016/j.cej.2021.132846  doi: 10.1016/j.cej.2021.132846

    63. [63]

      Zheng C., Yin M., Ge R., Wei J., Su B., Chen X., Chen X. Biosens. Bioelectron., 2021, 185, 113278 doi: 10.1016/j.bios.2021.113278  doi: 10.1016/j.bios.2021.113278

    64. [64]

      Sun J., Li L., Ge S., Zhao P., Zhu P., Wang M., Yu J. ACS Appl. Mater. Interfaces, 2021, 13, 3645 doi: 10.1021/acsami.0c19853  doi: 10.1021/acsami.0c19853

    65. [65]

      Tan X., Yu H., Liang B., Han M., Ge S., Zhang L., Li L., Li L., Yu J. Anal. Chem., 2022, 94, 1705 doi: 10.1021/acs.analchem.1c04259  doi: 10.1021/acs.analchem.1c04259

    66. [66]

      Wang Y., Xu J., Ma C., Li S., Yu J., Ge S., Yan M. J. Mater. Chem. B, 2014, 2, 3462 doi: 10.1039/c4tb00233d  doi: 10.1039/c4tb00233d

    67. [67]

      Yu H., Tan X., Sun S., Zhang L., Gao C., Ge S. Biosens. Bioelectron., 2021, 185, 113250 doi: 10.1016/j.bios.2021.113250  doi: 10.1016/j.bios.2021.113250

    68. [68]

      Xue J., Zhang L., Gao C., Zhu P., Yu J. Biosens. Bioelectron., 2019, 133, 1 doi: 10.1016/j.bios.2019.03.022  doi: 10.1016/j.bios.2019.03.022

    69. [69]

      Lin J., Liu G., Qiu Z., Huang L., Weng S. New J. Chem., 2022, 46, 12836 doi: 10.1039/d2nj01954j  doi: 10.1039/d2nj01954j

    70. [70]

      Zeng R., Gong H., Li Y., Li Y., Lin W., Tang D., Knopp D. Anal. Chem., 2022, 94, 7442 doi: 10.1021/acs.analchem.2c01373  doi: 10.1021/acs.analchem.2c01373

    71. [71]

      Li Y., Si S., Huang F., Wei J., Dong S., Yang F., Li H., Liu S. Bioelectrochemistry, 2022, 144, 108000 doi: 10.1016/j.bioelechem.2021.108000  doi: 10.1016/j.bioelechem.2021.108000

    72. [72]

      Liu Y., Si S., Dong S., Ji B., Li H., Liu S. Microchem. J, 2021, 170, 106644 doi: 10.1016/j.microc.2021.106644  doi: 10.1016/j.microc.2021.106644

    73. [73]

      Wang P., Ge L., Ge S., Yu J., Yan M., Huang J. Chem. Commun, 2013, 49, 3294 doi: 10.1039/c3cc00149k  doi: 10.1039/c3cc00149k

    74. [74]

      Ge L., Wang P., Ge S., Li N., Yu J., Yan M., Huang J. Anal. Chem., 2013, 85, 3961 doi: 10.1021/ac4001496  doi: 10.1021/ac4001496

    75. [75]

      Wang Y., Ge L., Wang P., Yan M., Ge S., Li N., Yu J., Huang J. Lab Chip, 2013, 13, 3945 doi: 10.1039/c3lc50430a  doi: 10.1039/c3lc50430a

    76. [76]

      Díez-Buitrago B., Fernández-San Argimiro F. J., Lorenzo J., Bijelic G., Briz N., Pavlov V. Analyst, 2022, 147, 3470 doi: 10.1039/d0an01950j  doi: 10.1039/d0an01950j

    77. [77]

      Liu Y., Yan T., Li Y., Cao W., Pang X., Wu D., Wei Q. RSC Adv., 2015, 5, 19581 doi: 10.1039/c4ra15918g  doi: 10.1039/c4ra15918g

    78. [78]

      Dai L., Xu R., Cui M., Ren X., Wang X., Feng J., Wu R., Ma H., Wei Q. Biosens. Bioelectron., 2022, 11, 100207 doi: 10.1016/j.biosx.2022.100207  doi: 10.1016/j.biosx.2022.100207

    79. [79]

      Chi L., Wang X., Chen H., Tang D., Xue F. Talanta, 2023, 254, 124176 doi: 10.1016/j.talanta.2022.124176  doi: 10.1016/j.talanta.2022.124176

    80. [80]

      Hao X., Guan Y., Liu F., Zhang Y., Zhai Y., Niu L. J. Electroanal. Chem., 2022, 913, 116284 doi: 10.1016/j.jelechem.2022.116284  doi: 10.1016/j.jelechem.2022.116284

    81. [81]

      Gholamin D., Karami P., Pahlavan Y., Johari-Ahar M. Microchim. Acta, 2023, 190, 154 doi: 10.1007/s00604-023-05718-x  doi: 10.1007/s00604-023-05718-x

    82. [82]

      Ge R., Lin X., Dai H., Wei J., Jiao T., Chen Q., Oyama M., Chen Q., Chen X. ACS Appl. Mater. Interfaces, 2022, 14, 41649 doi: 10.1021/acsami.2c13292  doi: 10.1021/acsami.2c13292

    83. [83]

      Li X., Pan X., Lu J., Zhou Y., Gong J. Biosens. Bioelectron., 2020, 158, 112158 doi: 10.1016/j.bios.2020.112158  doi: 10.1016/j.bios.2020.112158

    84. [84]

      Zeng R., Li Y., Li Ya., Wan Q., Huang Z., Qiu Z., Tang D. Research, 2022, 2022, 9831521 doi: 10.34133/2022/9831521  doi: 10.34133/2022/9831521

    85. [85]

      Li L., Yang H., Li L., Tan X., Ge S., Zhang L., Yu J., Zhang Y. ACS Sens, 2022, 7, 2429 doi: 10.1021/acssensors.2c01162  doi: 10.1021/acssensors.2c01162

    86. [86]

      Liu, S., Cao, H., Wang, Z., Tu, W., Dai Z. Chem. Commun., 2015, 51, 14259 doi: 10.1039/c5cc04092b  doi: 10.1039/c5cc04092b

    87. [87]

      Li Z., Zhang J., Li Y., Zhao S., Zhang P., Zhang Y., Bi J., Liu G., Yue Z. Biosens. Bioelectron., 2018, 99, 251 doi: 10.1016/j.bios.2017.07.065  doi: 10.1016/j.bios.2017.07.065

    88. [88]

      Mao L., Wang X., Guo Y., Yao L., Xue X., Wang H. -X., Xiong C., Wen W., Zhang X., Wang S. Nanoscale 2019, 11, 7885. doi: 10.1039/c9nr01675a  doi: 10.1039/c9nr01675a

    89. [89]

      Zhang Y., Ge L., Li M., Yan M., Ge S., Yu J., Song X., Cao B. Chem. Commun, 2014, 50, 1417 doi: 10.1039/c3cc48421a  doi: 10.1039/c3cc48421a

    90. [90]

      Martimiano do Prado T., Catunda L. G. da S., Calegaro M. L., Correa D. S., Machado S. A. S. Electrochim. Acta, 2022, 431, 141094 doi: 10.1016/j.electacta.2022.141094  doi: 10.1016/j.electacta.2022.141094

    91. [91]

      Catunda L. G. da S., Martimiano do Prado T., de Oliveira T. R., Almeida Dos Santos D, J., Gomes N. O., Correa D. S., Faria R. C., Machado S. A. S. Electrochim. Acta, 2023, 451, 142271 doi: 10.1016/j.electacta.2023.142271  doi: 10.1016/j.electacta.2023.142271

    92. [92]

      Yin M., Liu C., Ge R., Fang Y., Wei J., Chen X., Chen Q., Chen X. Biosens. Bioelectron., 2022, 203, 114022 doi: 10.1016/j.bios.2022.114022  doi: 10.1016/j.bios.2022.114022

    93. [93]

      Gao C., Xue J., Zhang L., Cui K., Li H., Yu J. Anal. Chem., 2018, 90, 14116 doi: 10.1021/acs.analchem.8b04662  doi: 10.1021/acs.analchem.8b04662

    94. [94]

      Ge R., Dai H., Zhang S., Wei J., Jiao T., Chen Q., Chen Q., Chen X. Anal. Chem., 2023, 95, 7379 doi: 10.1021/acs.analchem.3c01006  doi: 10.1021/acs.analchem.3c01006

    95. [95]

      Zhou Y., Yin H., Ai S. Coord. Chem. Rev, 2021, 447, 214156 doi: 10.1016/j.ccr.2021.214156  doi: 10.1016/j.ccr.2021.214156

    96. [96]

      Zheng C., Ge R., Wei J., Jiao T., Chen Q., Chen Q., Chen X. Food Chem., 2024, 430, 136999 doi: 10.1016/j.foodchem.2023.136999  doi: 10.1016/j.foodchem.2023.136999

    97. [97]

      Huang C., Zhang L., Zhu Y., Zhang Z., Liu Y., Liu C., Ge S., Yu J. Anal. Chem., 2022, 94, 8075 doi: 10.1021/acs.analchem.2c01717  doi: 10.1021/acs.analchem.2c01717

    98. [98]

      Yu Z., Lin Q., Gong H., Li M., Tang D. Biosens. Bioelectron., 2023, 223, 115028. doi: 10.1016/j.bios.2022.115028  doi: 10.1016/j.bios.2022.115028

    99. [99]

      Lin Q., Yu Z., Lu L., Huang X., Wei Q., Tang D. Biosens. Bioelectron., 2023, 230, 115260 doi: 10.1016/j.bios.2023.115260  doi: 10.1016/j.bios.2023.115260

    100. [100]

      Ding Z., Lin Q., Xu X., Tang X., Zhang X., Li W., Wang Y., Li C. Sens. Actuators B-Chem., 2023, 392, 134054 doi: 10.1016/j.snb.2023.134054  doi: 10.1016/j.snb.2023.134054

  • 加载中
    1. [1]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    8. [8]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    9. [9]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    12. [12]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    13. [13]

      Weigang Zhu Xiaofei Ma Yun Tian Huaji Liu Fanli Lu Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113

    14. [14]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    19. [19]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(2)
  • Abstract views(128)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return