Citation:
Meiqing Yang, Lu Wang, Haozi Lu, Yaocheng Yang, Song Liu. Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors[J]. Acta Physico-Chimica Sinica,
;2025, 41(2): 100018.
doi:
10.3866/PKU.WHXB202310046
-
Photoelectrochemical (PEC) biosensors have attracted intensive attention due to their advantages, including low background, high sensitivity, high specificity and rapid response. In recent years, the introduction of disposable screen-printed electrodes (SPE) has greatly facilitated the development of PEC biosensors, making screen-printed PEC biosensors a promising analytical tool for various applications. Photoactive nanomaterials play a crucial role in the construction of screen-printed PEC biosensors as they can be used not only as photoelectric conversion platforms but also as loading platforms for recognition elements. However, pure photoactive materials usually suffer from some drawbacks, such as inherent toxicity, wide bandgap, and high electron-hole pair recombination rate. Therefore, it is necessary to improve the photoelectric properties of these materials through various design strategies. Moreover, to obtain highly sensitive screen-printed PEC biosensors, it is usually necessary to combine the high-performance photoelectrodes with various signal amplification strategies. In view of this, we provide the first systematic summary of photoactive materials for screen-printed PEC biosensors in this paper, classifying them into four main categories: metal oxides, metal chalcogenides, carbon nanomaterials and bismuth-based nanomaterials. Meanwhile, we focus on the design strategies for photoactive materials, including morphology modulation, elemental doping, and heterostructure construction. In addition, we introduce signal amplification strategies, such as the enzyme label amplification (ELA) strategy, polymerase chain reaction (PCR) strategy, rolling circle amplification (RCA) strategy, and hybridization chain reaction (HCR) strategy, through representative screen-printed PEC immunosensors and screen-printed PEC aptasensors. Finally, we discuss the current challenges and prospects of screen-printed PEC biosensors. We hope to provide readers with a comprehensive understanding of the recent advances in screen-printed PEC biosensors and provide a feasible guidance for the future development of this field.
-
-
-
[1]
(1) Yang, M.; Wang, L.; Lu, H.; Dong, Q.; Li, H.; Liu, S. Carbon Lett. 2023, 33, 1343. doi: 10.1007/s42823-022-00419-6
-
[2]
(2) Shu, J.; Tang, D. Anal. Chem. 2020, 92, 363. doi: 10.1021/acs.analchem.9b04199
-
[3]
(3) Wang, H.; Zhang, B.; Tang, Y.; Wang, C.; Zhao, F.; Zeng, B. TrAC Trends Anal. Chem. 2020, 131, 116020. doi: 10.1016/j.trac.2020.116020
-
[4]
(4) Qiu, Z.; Tang, D. J. Mater. Chem. B 2020, 8, 2541. doi: 10.1039/c9tb02844g
-
[5]
(5) Zhang, L.; Zhu, Y.-C.; Zhao, W.-W. Chemosensors 2022,10, 14. doi: 10.3390/chemosensors10010014
-
[6]
(6) Zhang, B.; An, Z.; Li, M.; Guo, L.-H. TrAC Trends Anal. Chem. 2023, 165, 117149. doi: 10.1016/j.trac.2023.117149
-
[7]
(7) Wang, Y.; Rong, Y.; Ma, T.; Li, L.; Li, X.; Zhu, P.; Zhou, S.; Yu, J.; Zhang, Y. Biosens. Bioelectron. 2023, 236, 115400. doi: 10.1016/j.bios.2023.115400
-
[8]
(8) Wang, G.; Xu, J.; Chen, H. Sci. China Ser. B-Chem. 2009,52, 1789. doi: 10.1007/s11426-009-0271-0
-
[9]
-
[10]
(10) Zang, Y.; Lei, J.; Ju, H. Biosens. Bioelectron. 2017,96, 8. doi: 10.1016/j.bios.2017.04.030
-
[11]
(11) Shi, J.; Chen, Z.; Zhao, C.; Shen, M.; Li, H.; Zhang, S.; Zhang, Z. Coord. Chem. Rev. 2022, 469, 214675. doi: 10.1016/j.ccr.2022.214675
-
[12]
(12) Svitkova, V.; Palchetti, I. Bioelectrochemistry 2020,136, 107590. doi: 10.1016/j.bioelechem.2020.107590
-
[13]
(13) Zhou, Q.; Tang, D. TrAC Trends Anal. Chem. 2020, 124, 115814. doi: 10.1016/j.trac.2020.115814
-
[14]
(14) Tan, A. Y. S.; Lo, N. W.; Cheng, F.; Zhang, M.; Tan, M. T. T.; Manickam, S.; Muthoosamy, K. Biosens. Bioelectron. 2023, 219, 114811. doi: 10.1016/j.bios.2022.114811
-
[15]
(15) Ge, L.; Liu, Q.; Hao, N.; Kun, W. J. Mater. Chem. B 2019, 7, 7283. doi: 10.1039/c9tb01644a
-
[16]
(16) Shi, L.; Yin, Y.; Zhang, L.-C.; Wang, S.; Sillanpää, M.; Sun, H. Appl. Catal. B-Environ. 2019, 248, 405. doi: 10.1016/j.apcatb.2019.02.044
-
[17]
(17) Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. TrAC Trends Anal. Chem. 2016, 79, 114. doi: 10.1016/j.trac.2016.01.032
-
[18]
(18) Hughes, G.; Westmacott, K.; Honeychurch, K. C.; Crew, A.; Pemberton, R. M.; Hart, J. P. Biosensors2016, 6, 50. doi: 10.3390/bios6040050
-
[19]
(19) Cinti, S.; Arduini, F. Biosens. Bioelectron. 2017, 89, 107. doi: 10.1016/j.bios.2016.07.005
-
[20]
(20) Liu, X.; Yao, Y.; Ying, Y.; Ping, J. TrAC Trends Anal. Chem. 2019, 115, 187. doi: 10.1016/j.trac.2019.03.021
-
[21]
(21) Musa, A. M.; Kiely, J.; Luxton, R.; Honeychurch, K. C. TrAC Trends Anal. Chem. 2021, 139, 116254. doi: 10.1016/j.trac.2021.116254
-
[22]
(22) Pérez-Fernández, B.; Costa-García, A.; Muñiz, A. d. l. E. Biosensors 2020,10, 32. doi: 10.3390/bios10040032
-
[23]
(23) Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Biosensors 2020, 10, 118. doi: 10.3390/bios10090118
-
[24]
(24) Hasanzadeh, M.; Shadjou, N. Mater. Sci. Eng. C 2016, 61, 979. doi: 10.1016/j.msec.2015.12.031
-
[25]
(25) Hoang, T.X.; Phan, L. M. T.; Vo, T. A. T.; Cho, S. Biomedicines 2021, 9, 540. doi: 10.3390/biomedicines9050540
-
[26]
(26) Devadoss, A.; Sudhagar, P.; Terashima, C.; Nakata, K.; Fujishima, A.J. Photochem. Photobiol. C 2015, 24, 43. doi: 10.1016/j.jphotochemrev.2015.06.002
-
[27]
(27) Yang, L.; Zhang, S.; Liu, X.; Tang, Y.; Zhou, Y.; Wong, D. K. Y. J. Mater. Chem. B 2020, 8, 7880. doi: 10.1039/d0tb01191f
-
[28]
(28) Li, F.; Zhou, Y.; Yin, H.; Ai, S. Biosens. Bioelectron. 2020,166, 112476. doi: 10.1016/j.bios.2020.112476
-
[29]
(29) Suresh, R. R.; Lakshmanakumar, M.; Arockia Jayalatha, J. B. B.; Rajan, K. S.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. J. Mater. Sci. 2021, 56, 8951. doi: 10.1007/s10853-020-05499-1
-
[30]
(30) Lakhera, P.; Chaudhary, V.; Jha, A.; Singh, R.; Kush, P.; Kumar, P. Mater. Today Chem. 2022, 26, 101129. doi: 10.1016/j.mtchem.2022.101129
-
[31]
(31) Li, M.; Li, Y.-T.; Li, D.-W.; Long, Y.-T. Anal. Chim. Acta 2012, 734, 31. doi: 10.1016/j.aca.2012.05.018
-
[32]
(32) Alonso-Lomillo, M. A.; Dominguez-Renedo, O.; Arcos-Martinez, M. J. Talanta 2010, 82, 1629. doi: 10.1016/j.talanta.2010.08.033
-
[33]
(33) Couto, R. A. S.; Lima, J.; Quinaz, M. B. Talanta 2016, 146, 801. doi: 10.1016/j.talanta.2015.06.011
-
[34]
(34) Liang, G.; He, Z.; Zhen, J.; Tian, H.; Ai, L.; Pan, L.; Gong, W. Environ. Technol. Innov. 2022,28, 102922. doi: 10.1016/j.eti.2022.102922
-
[35]
(35) Silva, R. M.; da Silva, A. D.; Camargo, J. R.; de Castro, B. S.; Meireles, L. M.; Silva, P. S.; Janegitz, B. C.; Silva, T. A. Biosensors 2023, 13, 453. doi: 10.3390/bios13040453
-
[36]
(36) Wang, P.; Sun, G.; Ge, L.; Ge, S.; Song, X.; Yan, M.; Yu, J. Chem. Commun. 2013, 49, 10400. doi: 10.1039/c3cc45856c
-
[37]
(37) Ge, S.; Li, W.; Yan, M.; Song, X.; Yu, J. J. Mater. Chem. B 2015, 3, 2426. doi: 10.1039/c4tb01570c
-
[38]
(38) Sun, G.; Zhang, Y.; Kong, Q.; Ma, C.; Yu, J.; Ge, S.; Yan, M.; Song, X. J. Mater. Chem. B 2014, 2, 7679. doi: 10.1039/c4tb01119h
-
[39]
(39) Ge, S.; Liang, L.; Lan, F.; Zhang, Y.; Wang, Y.; Yan, M.; Yu, J. Sens. Actuators B Chem. 2016, 234, 324. doi: 10.1016/j.snb.2016.04.166
-
[40]
(40) Kong, Q.; Cui, K.; Zhang, L.; Wang, Y.; Sun, J.; Ge, S.; Zhang, Y.; Yu, J. Anal. Chem. 2018, 90, 11297. doi: 10.1021/acs.analchem.8b01844
-
[41]
(41) Hu, M.; Yang, H.; Li, Z.; Zhang, L.; Zhu, P.; Yan, M.; Yu, J. Biosens. Bioelectron. 2020, 147, 111786. doi: 10.1016/j.bios.2019.111786
-
[42]
(42) Wang, Y.; Zhang, L.; Kong, Q.; Ge, S.; Yu, J. Biosens. Bioelectron. 2018, 120, 64. doi: 10.1016/j.bios.2018.08.028
-
[43]
(43) Zhang, L.; Kong, Q.; Li, L.; Wang, Y.; Ge, S.; Yu, J. Talanta 2021, 222, 121517. doi: 10.1016/j.talanta.2020.121517
-
[44]
(44) Ge, S.; Lan, F.; Liang, L.; Ren, N.; Li, L.; Liu, H.; Yan, M.; Yu, J. ACS Appl. Mater. Interfaces 2017, 9, 6670. doi: 10.1021/acsami.6b11966
-
[45]
(45) Hu, M.; Wang, J.; Han, J.; Rong, Y.; Yu, H.; Ge, S.; Yang, H.; Zhang, L.; Yu, J. Sens. Actuators B Chem. 2022,369, 132374. doi: 10.1016/j.snb.2022.132374
-
[46]
(46) Liu, F.; Zhang, Y.; Yu, J.; Wang, S.; Ge, S.; Song, X. Biosens. Bioelectron. 2014, 51, 413. doi: 10.1016/j.bios.2013.07.066
-
[47]
(47) Lan, F.; Liang, L.; Zhang, Y.; Li, L.; Ren, N.; Yan, M.; Ge, S.; Yu, J. ACS Appl. Mater. Interfaces 2017,9, 37839. doi: 10.1021/acsami.7b12338
-
[48]
(48) Yang, H.; Zhang, Y.; Zhang, L.; Cui, K.; Ge, S.; Huang, J.; Yu, J.Anal. Chem. 2018, 90, 7212. doi: 10.1021/acs.analchem.8b00153
-
[49]
(49) Yang, H.; Hu, M.; Li, Z.; Zhao, P.; Xie, L.; Song, X.; Yu, J. Anal. Chem. 2019, 91, 14577. doi: 10.1021/acs.analchem.9b03638
-
[50]
(50) Sun, G.; Wang, P.; Zhu, P.; Ge, L.; Ge, S.; Yan, M.; Song, X.; Yu, J. J. Mater. Chem. B 2014, 2, 4811. doi: 10.1039/c4tb00623b
-
[51]
(51) Zhang, Y.; Ge, L.; Ge, S.; Yan, M.; Yan, J.; Zang, D.; Lu, J.; Yu, J.; Song, X. Electrochim. Acta 2013, 112, 620. doi: 10.1016/j.electacta.2013.09.009
-
[52]
(52) Bott-Neto, J. L.; Martins, T. S.; Buscaglia, L. A.; Machado, S. A. S.; Oliveira, O. N. ACS Appl. Mater. Interfaces 2022, 14, 22114. doi: 10.1021/acsami.2c03106
-
[53]
(53) Li, L.; Wang, T.; Zhang, Y.; Xu, C.; Zhang, L.; Cheng, X.; Liu, H.; Chen, X.; Yu, J. ACS Appl. Mater. Interfaces 2018, 10, 14594. doi: 10.1021/acsami.8b03632
-
[54]
(54) Li, L.; Zheng, X.; Huang, Y.; Zhang, L.; Cui, K.; Zhang, Y.; Yu, J.Anal. Chem. 2018, 90, 13882. doi: 10.1021/acs.analchem.8b02849
-
[55]
(55) Wang, Y.; Liu, H.; Wang, P.; Yu, J.; Ge, S.; Yan, M. Sens. Actuators B Chem. 2015,208, 546. doi: 10.1016/j.snb.2014.11.088
-
[56]
(56) Gao, C.; Xue, J.; Zhang, L.; Zhao, P.; Cui, K.; Ge, S.; Yu, J. Biosens. Bioelectron. 2019, 131, 17. doi: 10.1016/j.bios.2019.01.038
-
[57]
(57) Sun, Y.; Liu, J.; Peng, X.; Zhang, G.; Li, Y. Biosens. Bioelectron. 2023, 224, 115059. doi: 10.1016/j.bios.2023.115059
-
[58]
(58) Shan, L.; Chen, Y.; Tan, X.; Ge, S.; Zhang, L.; Li, L.; Yu, J.; Li, L. Anal. Chem. 2023, 95, 4760. doi: 10.1021/acs.analchem.2c05686
-
[59]
(59) Sun, J.; Li, L.; Kong, Q.; Zhang, Y.; Zhao, P.; Ge, S.; Cui, K.; Yu, J. Biosens. Bioelectron. 2019, 133, 32. doi: 10.1016/j.bios.2019.02.027
-
[60]
(60) Li, Z.; Yang, H.; Hu, M.; Zhang, L.; Ge, S.; Cui, K.; Yu, J. ACS Appl. Mater. Interfaces 2020,12, 17177. doi: 10.1021/acsami.9b22558
-
[61]
(61) Yang, H.; Wang, J.; Li, X.; Zhang, L.; Yu, H.; Zhang, L.; Ge, S.; Yu, J.; Zhang, Y. ACS Appl. Mater. Interfaces 2021, 13, 19793. doi: 10.1021/acsami.1c03891
-
[62]
(62) Yang, H.; Wang, J.; Yu, H.; Li, X.; Li, Z.; Cui, K.; Zhang, L.; Ge, S.; Yu, J. Chem. Eng. J. 2022, 430, 132846. doi: 10.1016/j.cej.2021.132846
-
[63]
(63) Zheng, C.; Yin, M.; Ge, R.; Wei, J.; Su, B.; Chen, X.; Chen, X. Biosens. Bioelectron. 2021, 185, 113278. doi: 10.1016/j.bios.2021.113278
-
[64]
(64) Sun, J.; Li, L.; Ge, S.; Zhao, P.; Zhu, P.; Wang, M.; Yu, J. ACS Appl. Mater. Interfaces 2021,13, 3645. doi: 10.1021/acsami.0c19853
-
[65]
(65) Tan, X.; Yu, H.; Liang, B.; Han, M.; Ge, S.; Zhang, L.; Li, L.; Li, L.; Yu, J. Anal. Chem. 2022, 94, 1705. doi: 10.1021/acs.analchem.1c04259
-
[66]
(66) Wang, Y.; Xu, J.; Ma, C.; Li, S.; Yu, J.; Ge, S.; Yan, M. J. Mater. Chem. B 2014, 2, 3462. doi: 10.1039/c4tb00233d
-
[67]
(67) Yu, H.; Tan, X.; Sun, S.; Zhang, L.; Gao, C.; Ge, S. Biosens. Bioelectron. 2021, 185, 113250. doi: 10.1016/j.bios.2021.113250
-
[68]
(68) Xue, J.; Zhang, L.; Gao, C.; Zhu, P.; Yu, J. Biosens. Bioelectron. 2019, 133, 1. doi: 10.1016/j.bios.2019.03.022
-
[69]
(69) Lin, J.; Liu, G.; Qiu, Z.; Huang, L.; Weng, S. New J. Chem. 2022, 46, 12836. doi: 10.1039/d2nj01954j
-
[70]
(70) Zeng, R.; Gong, H.; Li, Y.; Li, Y.; Lin, W.; Tang, D.; Knopp, D. Anal. Chem. 2022, 94, 7442. doi: 10.1021/acs.analchem.2c01373
-
[71]
(71) Li, Y.; Si, S.; Huang, F.; Wei, J.; Dong, S.; Yang, F.; Li, H.; Liu, S. Bioelectrochemistry 2022, 144, 108000. doi: 10.1016/j.bioelechem.2021.108000
-
[72]
(72) Liu, Y.; Si, S.; Dong, S.; Ji, B.; Li, H.; Liu, S. Microchem. J.2021, 170, 106644. doi: 10.1016/j.microc.2021.106644
-
[73]
(73) Wang, P.; Ge, L.; Ge, S.; Yu, J.; Yan, M.; Huang, J. Chem. Commun. 2013, 49, 3294. doi: 10.1039/c3cc00149k
-
[74]
(74) Ge, L.; Wang, P.; Ge, S.; Li, N.; Yu, J.; Yan, M.; Huang, J. Anal. Chem. 2013, 85, 3961. doi: 10.1021/ac4001496
-
[75]
(75) Wang, Y.; Ge, L.; Wang, P.; Yan, M.; Ge, S.; Li, N.; Yu, J.; Huang, J. Lab Chip 2013, 13, 3945. doi: 10.1039/c3lc50430a
-
[76]
(76) Díez-Buitrago, B.; Fernández-San Argimiro, F. J.; Lorenzo, J.; Bijelic, G.; Briz, N.; Pavlov, V. Analyst 2022, 147, 3470. doi: 10.1039/d0an01950j
-
[77]
(77) Liu, Y.; Yan, T.; Li, Y.; Cao, W.; Pang, X.; Wu, D.; Wei, Q. RSC Adv. 2015, 5, 19581. doi: 10.1039/c4ra15918g
-
[78]
(78) Dai, L.; Xu, R.; Cui, M.; Ren, X.; Wang, X.; Feng, J.; Wu, R.; Ma, H.; Wei, Q. Biosens. Bioelectron. 2022, 11, 100207. doi: 10.1016/j.biosx.2022.100207
-
[79]
(79) Chi, L.; Wang, X.; Chen, H.; Tang, D.; Xue, F. Talanta 2023, 254, 124176. doi: 10.1016/j.talanta.2022.124176
-
[80]
(80) Hao, X.; Guan, Y.; Liu, F.; Zhang, Y.; Zhai, Y.; Niu, L. J. Electroanal. Chem. 2022, 913, 116284. doi: 10.1016/j.jelechem.2022.116284
-
[81]
(81) Gholamin, D.; Karami, P.; Pahlavan, Y.; Johari-Ahar, M. Microchim. Acta 2023, 190, 154. doi: 10.1007/s00604-023-05718-x
-
[82]
(82) Ge, R.; Lin, X.; Dai, H.; Wei, J.; Jiao, T.; Chen, Q.; Oyama, M.; Chen, Q.; Chen, X. ACS Appl. Mater. Interfaces 2022, 14, 41649. doi: 10.1021/acsami.2c13292
-
[83]
(83) Li, X.; Pan, X.; Lu, J.; Zhou, Y.; Gong, J. Biosens. Bioelectron. 2020, 158, 112158. doi: 10.1016/j.bios.2020.112158
-
[84]
(84) Zeng, R.; Li, Y.; Li, Ya.; Wan, Q.; Huang, Z.; Qiu, Z.; Tang, D. Research 2022, 2022, 9831521. doi: 10.34133/2022/9831521
-
[85]
(85) Li, L.; Yang, H.; Li, L.; Tan, X.; Ge, S.; Zhang, L.; Yu, J.; Zhang, Y. ACS Sens. 2022, 7, 2429. doi: 10.1021/acssensors.2c01162
-
[86]
(86) Liu, S., Cao, H., Wang, Z., Tu, W., Dai, Z. Chem. Commun. 2015, 51, 14259. doi: 10.1039/c5cc04092b
-
[87]
(87) Li, Z.; Zhang, J.; Li, Y.; Zhao, S.; Zhang, P.; Zhang, Y.; Bi, J.; Liu, G.; Yue, Z. Biosens. Bioelectron. 2018, 99, 251. doi: 10.1016/j.bios.2017.07.065
-
[88]
(88) Mao, L.; Wang, X.; Guo, Y.; Yao, L.;Xue, X.; Wang, H.-X.; Xiong, C.; Wen, W.; Zhang, X.; Wang, S. Nanoscale 2019,11, 7885. doi: 10.1039/c9nr01675a
-
[89]
(89) Zhang, Y.; Ge, L.; Li, M.; Yan, M.; Ge, S.; Yu, J.; Song, X.; Cao, B. Chem. Commun. 2014, 50, 1417. doi: 10.1039/c3cc48421a
-
[90]
(90) Martimiano do Prado, T.; Catunda, L. G. da S.; Calegaro, M. L.; Correa, D. S.; Machado, S. A. S. Electrochim. Acta 2022, 431, 141094. doi: 10.1016/j.electacta.2022.141094
-
[91]
(91) Catunda, L. G. da S.; Martimiano do Prado, T.; de Oliveira, T. R.; Almeida Dos Santos, D, J.; Gomes, N. O.; Correa, D. S.; Faria, R. C.; Machado, S. A. S. Electrochim. Acta 2023, 451, 142271. doi: 10.1016/j.electacta.2023.142271
-
[92]
(92) Yin, M.; Liu, C.; Ge, R.; Fang, Y.; Wei, J.; Chen, X.; Chen, Q.; Chen, X. Biosens. Bioelectron. 2022, 203, 114022. doi: 10.1016/j.bios.2022.114022
-
[93]
(93) Gao, C.; Xue, J.; Zhang, L.; Cui, K.; Li, H.; Yu, J. Anal. Chem. 2018, 90, 14116. doi: 10.1021/acs.analchem.8b04662
-
[94]
(94) Ge, R.; Dai, H.; Zhang, S.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X. Anal. Chem. 2023, 95, 7379. doi: 10.1021/acs.analchem.3c01006
-
[95]
(95) Zhou, Y.; Yin, H.; Ai, S. Coord. Chem. Rev. 2021, 447, 214156. doi: 10.1016/j.ccr.2021.214156
-
[96]
(96) Zheng, C.; Ge, R.; Wei, J.; Jiao, T.; Chen, Q.; Chen, Q.; Chen, X.Food Chem. 2024, 430, 136999. doi: 10.1016/j.foodchem.2023.136999
-
[97]
(97) Huang, C.; Zhang, L.; Zhu, Y.; Zhang, Z.; Liu, Y.; Liu, C.; Ge, S.; Yu, J. Anal. Chem. 2022, 94, 8075. doi: 10.1021/acs.analchem.2c01717
-
[98]
(98) Yu, Z.; Lin, Q.; Gong, H.; Li, M.; Tang, D. Biosens. Bioelectron. 2023, 223, 115028. doi: 10.1016/j.bios.2022.115028
-
[99]
(99) Lin, Q.; Yu, Z.; Lu, L.; Huang, X.; Wei, Q.; Tang, D. Biosens. Bioelectron. 2023, 230, 115260. doi: 10.1016/j.bios.2023.115260
-
[100]
(100) Ding, Z.; Lin, Q.; Xu, X.; Tang, X.; Zhang, X.; Li, W.; Wang, Y.; Li, C. Sens. Actuators B-Chem. 2023, 392, 134054. doi: 10.1016/j.snb.2023.134054
-
[1]
-
-
-
[1]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[2]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[3]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
-
[4]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[5]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[6]
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
-
[7]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[8]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[9]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[10]
Tingting Jiang , Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007
-
[11]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004
-
[12]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[13]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[14]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[15]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[16]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[17]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[18]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[19]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[20]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(76)
- HTML views(9)