Citation: Haolin Zhan,  Qiyuan Fang,  Jiawei Liu,  Xiaoqi Shi,  Xinyu Chen,  Yuqing Huang,  Zhong Chen. Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100017. doi: 10.3866/PKU.WHXB202310045 shu

Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Networ

  • Corresponding author: Haolin Zhan, hlzhan@hfut.edu.cn
  • Received Date: 30 October 2023
    Revised Date: 18 December 2023
    Accepted Date: 19 December 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22204038).

  • Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.
  • 加载中
    1. [1]

      (1) Theillet, F. X. Chem. Rev. 2022, 122 (10), 9497. doi: 10.1021/acs.chemrev.1c00937

    2. [2]

      (2) Chen, K.; Zornes, A.; Nguyen, V.; Wang, B.; Gan, Z. H.; Crossley, S. P.; White, J. L. J. Am. Chem. Soc. 2022, 144 (37), 16916. doi: 10.1021/jacs.2c05332

    3. [3]

      (3) Xin, J. X.; Wei, D. X.; Ren, Y.; Wang, J. L.; Yang, G.; Zhang, H.; Li, J.; Fu, C.; Yao, Y. F. Magn. Reson. Med. 2022, 89 (5), 1728. doi: 10.1002/mrm.29562

    4. [4]

      (4) Zhan, H. L.; Ji, L. F.; Cao, S. H.; Feng, Y.; Jiang, Y. X.; Huang, Y. Q.; Sun, S. G.; Chen, Z. Chin. J. Catal. 2023, 53, 171. doi: 10.1016/S1872-2067(23)64526-7

    5. [5]

      (5) Zhan, H. L.; Gao, C. Y.; Huang, C. D.; Lin, X. Q.; Huang, Y. Q.; Chen, Z. Anal. Chim. Acta 2023, 1277, 341682. doi: 10.1016/j.aca.2023.341682

    6. [6]

      (6) Zhan, H. L.; Hao, M. Y.; Feng, Y.; Cao, S. H.; Ni, Z. K.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2021, 12 (3), 1073. doi: 10.1021/acs.jpclett.0c03549

    7. [7]

    8. [8]

    9. [9]

    10. [10]

      (10) Gan, Z. H.; Hung, I.; Wang, X. L.; Paulino, J.; Wu, G.; Litvak, I. M.; Gor’kov, P. L.; Brey, W. W.; Lendi, P.; Schiano, J. L.; et al. J. Magn. Reson. 2017, 284, 125. doi: 10.1016/j.jmr.2017.08.007

    11. [11]

      (11) Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. J. Am. Chem. Soc. 2020, 142 (16), 7514. doi: 10.1021/jacs.0c00590

    12. [12]

      (12) Kovacs, H.; Moskau, D.; Spraul, M. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46 (2-3), 131. doi: 10.1016/j.pnmrs.2005.03.001

    13. [13]

      (13) Zhang, R. C.; Mroue, K. H.; Ramamoorthy, A. J. Magn. Reson. 2016, 266, 59. doi: 10.1016/j.jmr.2016.03.006

    14. [14]

      (14) Zhou, Y.; van Zijl, P. C. M.; Xu, X.; Xu, J. D.; Li, Y. G.; Chen, L.; Yadav, N. N. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (6), 3144. doi: 10.1073/pnas.1909921117

    15. [15]

      (15) Sonnefeld, A.; Razanahoera, A.; Pelupessy, P.; Bodenhausen, G.; Sheberstov, K. Sci. Adv. 2022, 8, eade2113. doi: 10.1126/sciadv.ade2113

    16. [16]

    17. [17]

      (17) Elliott, S. J.; Stern, Q.; Ceillier, M.; El Darai, T.; Cousin, S. F.; Cala, O.; Jannin, S. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 126-127, 59. doi: 10.1016/j.pnmrs.2021.04.002

    18. [18]

      (18) Kharbanda, Y.; Urbańczyk, M.; Zhivonitko, V. V.; Mailhiot, S.; Kettunen, M. I.; Telkki, V.-V. Angew. Chem. Int. Ed. 2022, 61 (28), e202203957. doi: 10.1002/anie.202203957

    19. [19]

      (19) Jaroszewicz, M. J.; Liu, M.; Kim, J.; Zhang, G.; Kim, Y.; Hilty, C.; Frydman, L. Nat. Commun. 2022, 13 (1), 833. doi: 10.1038/s41467-022-28304-w

    20. [20]

      (20) Szekely, O.; Olsen, G. L.; Novakovic, M.; Rosenzweig, R.; Frydman, L. J. Am. Chem. Soc. 2020, 142 (20), 9267. doi: 10.1021/jacs.0c00807

    21. [21]

      (21) Marshall, H.; Stewart, N. J.; Chan, H. F.; Rao, M.; Norquay, G.; Wild, J. M. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 122, 42. doi: 10.1016/j.pnmrs.2020.11.002

    22. [22]

      (22) Li, H. D.; Zhao, X. C.; Wang, Y. J.; Lou, X.; Chen, S. Z.; Deng, H.; Shi, L.; Xie, J. S.; Tang, D. Z.; Zhao, J. P.; et al. Sci. Adv. 2021, 7 (1), eabc8180. doi: 10.1126/sciadv.abc8180

    23. [23]

      (23) Green, R. A.; Adams, R. W.; Duckett, S. B.; Mewis, R. E.; Williamson, D. C.; Green, G. G. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1. doi: 10.1016/j.pnmrs.2012.03.001

    24. [24]

      (24) Eills, J.; Cavallari, E.; Carrera, C.; Budker, D.; Aime, S.; Reineri, F. J. Am. Chem. Soc. 2019, 141 (51), 20209. doi: 10.1021/jacs.9b10094

    25. [25]

      (25) Barskiy, D. A.; Knecht, S.; Yurkovskaya, A. V.; Ivanov, K. L. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114-115, 33. doi: 10.1016/j.pnmrs.2019.05.005

    26. [26]

      (26) Koprivica, D.; Martinho, R. P.; Novakovic, M.; Jaroszewicz, M. J.; Frydman, L. J. Magn. Reson. 2022, 338, 107187. doi: 10.1016/j.jmr.2022.107187

    27. [27]

      (27) Qiu, T. Y.; Liao, W. J.; Huang, Y. H.; Wu, J. Y.; Guo, D.; Liu, D. B.; Wang, X.; Cai, J.-F.; Hu, B. W.; Qu, X. B. IEEE Trans. Instrum. Meas. 2021, 70, 1. doi: 10.1109/tim.2021.3109743

    28. [28]

      (28) Jiang, B.; Luo, F.; Ding, Y. M.; Sun, P.; Zhang, X.; Jiang, L. G.; Li, C.; Mao, X. A.; Yang, D. W.; Tang, C.; et al. Anal. Chem. 2013, 85 (4), 2523. doi: 10.1021/ac303726p

    29. [29]

      (29) Kusaka, Y.; Hasegawa, T.; Kaji, H. J. Phys. Chem. A 2019, 123 (47), 10333. doi: 10.1021/acs.jpca.9b04437

    30. [30]

      (30) Froeling, M.; Prompers, J. J.; Klomp, D. W. J.; van der Velden, T. A. Magn. Reson. Med. 2021, 85 (6), 2992. doi: 10.1002/mrm.28654

    31. [31]

      (31) LeCun, Y.; Bengio, Y.; Hinton, G. Nature 2015, 521 (7553), 436. doi: 10.1038/nature14539

    32. [32]

      (32) Manu, V. S.; Olivieri, C.; Veglia, G. Nat. Commun. 2023, 14 (1), 4144. doi: 10.1038/s41467-023-39581-4

    33. [33]

      (33) Wang, W. L.; Ma, L. H.; Maletic-Savatic, M.; Liu, Z. D. NMRQNet: a deep learning approach for automatic identification and quantification of metabolites using Nuclear Magnetic Resonance (NMR) in human plasma samples. bioRxiv [Preprint], 2023. Available Online: https://www.ncbi.nlm.nih.gov/pubmed/36909516 (accessed on Mar 2, 2023).

    34. [34]

      (34) Qu, X. B.; Huang, Y. H.; Lu, H. F.; Qiu, T. Y.; Guo, D.; Agback, T.; Orekhov, V.; Chen, Z. Angew. Chem. Int. Ed. 2020, 59 (26), 10297. doi: 10.1002/anie.201908162

    35. [35]

      (35) Zheng, X. X.; Yang, Z. X.; Yang, C.; Shi, X. Q.; Luo, Y.; Luo, J.; Zeng, Q.; Lin, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2022, 13 (9), 2101. doi: 10.1021/acs.jpclett.2c00100

    36. [36]

      (36) Karunanithy, G.; Hansen, D. F. J. Biomol. NMR 2021, 75 (4-5), 179. doi: 10.1007/s10858-021-00366-w

    37. [37]

      (37) Karunanithy, G.; Mackenzie, H. W.; Hansen, D. F. J. Am. Chem. Soc. 2021, 143 (41), 16935. doi: 10.1021/jacs.1c04010

    38. [38]

      (38) Chen, B.; Wu, L. B.; Cui, X. H.; Lin, E. P.; Cao, S. H.; Zhan, H. L.; Huang, Y. Q.; Yang, Y.; Chen, Z. Anal. Chem. 2023, 95 (31), 11596. doi: 10.1021/acs.analchem.3c00537

    39. [39]

      (39) Lee, H. H.; Kim, H. Magn. Reson. Med. 2019, 82 (1), 33. doi: 10.1002/mrm.27727

    40. [40]

      (40) Chen, D. C.; Hu, W. Q.; Liu, H. T.; Zhou, Y. R.; Qiu, T. Y.; Huang, Y. H.; Wang, Z.; Lin, M. J.; Lin, L. J.; Wu, Z. G.; et al. IEEE T. Comput. Imag. 2023, 9, 448. doi: 10.1109/tci.2023.3267623

    41. [41]

      (41) Wu, K.; Luo, J.; Zeng, Q.; Dong, X.; Chen, J. Y.; Zhan, C. Q.; Chen, Z.; Lin, Y. Q. Anal. Chem. 2021, 93 (3), 1377. doi: 10.1021/acs.analchem.0c03087

    42. [42]

      (42) Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 18th International Conference, Munich, Germany, Oct. 5-9, 2015; Navab, N., Hornegger, J., Wells, W. M., Frangi, A. F., Eds.; Springer Nature: Berlin, Germany, 2015; pp. 234-241.

    43. [43]

      (43) Stoller, D.; Ewert, S.; Dixon, S. A multi-scale neural network for end-to-end audio source separation. arxiv [Preprint], 2018. Available Online: https://arxiv.org/abs/1806.03185 (accessed on Jun 8, 2018).

    44. [44]

      (44) Macartney, C.; Weyde, T. Improved speech enhancement with the Wave-U-Net. arXiv [Preprint], 2018. Available Online: https://arxiv.org/abs/1811.11307 (accessed on Nov 27, 2018).

    45. [45]

      (45) Gao, J.; Liang, E.; Ma, R. S.; Li, F. D.; Liu, Y. X.; Liu, J.; Jiang, L.; Li, C. G.; Dai, H. M.; Wu, J. H.; et al. Angew. Chem. Int. Ed. 2017, 56 (42), 12982. doi: 10.1002/anie.201707114

    46. [46]

      (46) Rethage, D.; Pons, J.; Serra, X. A Wavenet for speech denoising. In ICASSP 2018-2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, Apr. 15-20, 2018; IEEE: New York, US, 2018; pp. 5069-5073.

    47. [47]

      (47) Zangger, K. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 86-87, 1. doi: 10.1016/j.pnmrs.2015.02.002

    48. [48]

      (48) Zhan, H. L.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2019, 10 (23), 7356. doi: 10.1021/acs.jpclett.9b03092

    49. [49]

      (49) Zhan, H. L.; Hao, M. Y.; Lin, E. P.; Zheng, Z. Y.; Huang, C. D.; Cai, S. H.; Cao, S. H.; Huang, Y. Q.; Chen, Z. Anal. Chem. 2023, 95 (2), 1002. doi: 10.1021/acs.analchem.2c03678

  • 加载中
    1. [1]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    2. [2]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    4. [4]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    5. [5]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    6. [6]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    7. [7]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    10. [10]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Peiqi Gao Jiao Zheng LiMiao Chen Yi Zhang . Exploration of the Deep Integration Strategy between Innovation and Entrepreneurship Education and Applied Chemistry Major Courses. University Chemistry, 2024, 39(6): 214-219. doi: 10.3866/PKU.DXHX202310086

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    20. [20]

      Liqiang Lu Qin Shuai Xike Tian Chenggang Zhou Guo'e Cheng Bo han Yulun Nie Hongtao Zheng Lei Ouyang . Exploration and Practice of Deep Integration of Production and Education in Applied Chemistry Major under the Background of Emerging Engineering Education. University Chemistry, 2024, 39(3): 138-142. doi: 10.3866/PKU.DXHX202309015

Metrics
  • PDF Downloads(1)
  • Abstract views(98)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return