Citation: Doudou Qin, Junyang Ding, Chu Liang, Qian Liu, Ligang Feng, Yang Luo, Guangzhi Hu, Jun Luo, Xijun Liu. Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231003. doi: 10.3866/PKU.WHXB202310034 shu

Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries

  • Corresponding author: Chu Liang, cliang@zjut.edu.cn Yang Luo, yang.luo@mat.ethz.ch Xijun Liu, xjliu@tjut.edu.cn
  • Received Date: 24 October 2023
    Revised Date: 7 December 2023
    Accepted Date: 8 December 2023
    Available Online: 2 January 2024

    Fund Project: the National Natural Science Foundation of China 22075211the National Natural Science Foundation of China 52072342the National Natural Science Foundation of China 51971157the Shenzhen Science and Technology Program JCYJ20210324115412035the Shenzhen Science and Technology Program JCYJ20210324123202008the Shenzhen Science and Technology Program JCYJ20210324122803009the Shenzhen Science and Technology Program ZDSYS20210813095534001the Guangdong Basic and Applied Basic Research Foundation 2021A1515110880the Tianjin Science Fund for Distinguished Young Scholars 19JCJQJC61800

  • Non-renewable energy sources such as fossil fuels are increasingly depleted. In order to cope with the potential energy crisis, it is urgent to develop clean and efficient renewable energy sources. Advanced energy storage technology based on electrical energy holds critical significance to the sustainable and steady development of human society. Aqueous rechargeable batteries are a kind of promising electrochemical energy storage devices. Zinc-ion batteries (ZIBs) are gaining increasing popularity due to their safety, sustainability, cost-effectiveness and high energy density, positioning them as potential successors to current Lithium-ion batteries (LIBs) with a high degree of commercialization. The extraordinary mechanical flexibility and excellent electrochemical performance exhibited by ZIBs holds great significance in advancing the development of flexible and wearable batteries. Manganese-based oxides with large channel size possess the characteristics of high theoretical capacity, various oxidation states (including +2, +3, +4) and low cost, which are commonly employed as cathode materials for AZIBs. Nevertheless, the electrochemical performance of current manganese-based ZIBs is not satisfactory, facing the challenges of metal dissolution, material structure instability, notably a strong electrostatic interaction exhibited by divalent Zn2+ ions in the host structure resulting in slow transmission kinetics. These challenges contribute to low cycle stability of the battery, impeding practical application and the progression of ZIBs. To solve these problems, diverse structural engineering strategies including defect engineering have been exploited, which can effectively improve the transport kinetics of zinc ions. From the perspective of enhancing the performance of the material itself, interlayer intercalation and other measures can be taken to better the microstructure or morphology of manganese-based materials. By improving the electrical conductivity of the material and enhancing ionic bonding, the structural stability and electrochemical performance of the material can be effectively improved. And from the angle of battery design, in order to improve the stability of the electrode-electrolyte interface, the electrolyte is optimized, or a fresh preparation method different from the conventional slurry coating process is adopted, which is also a promising method to design a new electrode without binder and the electrode components can still be evenly distributed. This review provides an overview of Zinc-ion storage mechanisms: the reversible Zn2+ insertion/extraction; the reversible interposition and deintercalation of Zn2+ and H+; the chemical conversion reactions, and the mechanism of dissolution-deposition reaction. Furthermore, the challenges faced by manganese-based cathode materials are clarified, and the optimization strategies to improve their electrochemical performance by increasing active sites, reducing solid-state diffusion energy barriers, inhibiting the dissolution of active substances, and improving material stability are highlighted. Finally, the practical application and potential of ZIBs assembled by manganese-based cathode materials in biomedical equipment and other electronic devices are also discussed.
  • 加载中
    1. [1]

      Bolsen, T. Nat. Energy 2022, 7, 1003. doi: 10.1038/s41560-022-01100-y  doi: 10.1038/s41560-022-01100-y

    2. [2]

      Shen, H.; Wei, T.; Liu, Q.; Zhang, S.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2023, 634, 730. doi: 10.1016/j.jcis.2022.12.067  doi: 10.1016/j.jcis.2022.12.067

    3. [3]

      Zhang, Q.; Lian, K.; Qi, G.; Zhang, S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. Sci. China Mater. 2023, 66, 1681. doi: 10.1007/s40843-022-2379-8  doi: 10.1007/s40843-022-2379-8

    4. [4]

      Ponce, P.; López-Sánchez, M.; Guerrero-Riofrío, P.; Flores-Chamba, J. Environ. Sci. Pollut. Res. 2020, 27, 29554. doi: 10.1007/s11356-020-09238-6  doi: 10.1007/s11356-020-09238-6

    5. [5]

      Li, G.; Jin, Y.; Akram, M. W.; Chen, X. Renew. Sust. Energ. Rev. 2017, 79, 440. doi: 10.1016/j.rser.2017.05.055  doi: 10.1016/j.rser.2017.05.055

    6. [6]

      Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Small Struct. 2022, 3, 2200086. doi: 10.1002/sstr.202200086  doi: 10.1002/sstr.202200086

    7. [7]

      Kelly-Richards, S.; Silber-Coats, N.; Crootof, A.; Tecklin, D.; Bauer, C. Energy Policy 2017, 101, 251. doi: 10.1016/j.enpol.2016.11.035  doi: 10.1016/j.enpol.2016.11.035

    8. [8]

      Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. Energy Strategy Rev. 2019, 24, 38. doi: 10.1016/j.esr.2019.01.006  doi: 10.1016/j.esr.2019.01.006

    9. [9]

      Ding, J.; Yang, H.; Zhang, S.; Liu, Q.; Cao, H.; Luo, J.; Liu, X. Small 2022, 18, 2204524. doi: 10.1002/smll.202204524  doi: 10.1002/smll.202204524

    10. [10]

      Fuso Nerini, F.; Tomei, J.; To, L. S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Nat. Energy 2018, 3, 10. doi: 10.1038/s41560-017-0036-5  doi: 10.1038/s41560-017-0036-5

    11. [11]

      Liu, W.; Feng, J.; Wei, T.; Liu, Q.; Zhang, S.; Luo, Y.; Luo, J.; Liu, X. Nano Res. 2023, 16, 2325. doi: 10.1007/s12274-022-4929-7  doi: 10.1007/s12274-022-4929-7

    12. [12]

      Wei, T.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Chem. Commun. 2023, 59, 442. doi: 10.1039/D2CC05722K  doi: 10.1039/D2CC05722K

    13. [13]

      Dornan, M. Renew. Sust. Energ. Rev. 2014, 31, 726. doi: 10.1016/j.rser.2013.12.037  doi: 10.1016/j.rser.2013.12.037

    14. [14]

      Dehghani-Sanij, A. R.; Tharumalingam, E.; Dusseault, M. B.; Fraser, R. Renew. Sust. Energ. Rev. 2019, 104, 192. doi: 10.1016/j.rser.2019.01.023  doi: 10.1016/j.rser.2019.01.023

    15. [15]

      Meng, G.; Cao, H.; Wei, T.; Liu, Q.; Fu, J.; Zhang, S.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 11839. doi: 10.1039/D2CC04591E  doi: 10.1039/D2CC04591E

    16. [16]

      Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Chem. Rec. 2018, 18, 459. doi: 10.1002/tcr.201700057  doi: 10.1002/tcr.201700057

    17. [17]

      Zhang, Y.; Zhou, C. -G.; Yang, J.; Xue, S. -C.; Gao, H. -L.; Yan, X. -H.; Huo, Q. -Y.; Wang, S. -W.; Cao, Y.; Yan, J.; et al. J. Power Sources 2022, 520, 230800. doi: 10.1016/j.jpowsour.2021.230800  doi: 10.1016/j.jpowsour.2021.230800

    18. [18]

      Nowak, S.; Winter, M. J. Anal. At. Spectrom. 2017, 32, 1833. doi: 10.1039/C7JA00073A  doi: 10.1039/C7JA00073A

    19. [19]

      Chen, H.; Zhang, S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G.; Liu, X. Inorg. Chem. Commun. 2022, 146, 110170. doi: 10.1016/j.inoche.2022.110170  doi: 10.1016/j.inoche.2022.110170

    20. [20]

      Karrech, A.; Regenauer-Lieb, K.; Abbassi, F. J. Energy Storage 2022, 45, 103623. doi: 10.1016/j.est.2021.103623  doi: 10.1016/j.est.2021.103623

    21. [21]

      Liu, T.; Yan, R.; Huang, H.; Pan, L.; Cao, X.; deMello, A.; Niederberger, M. Adv. Funct. Mater. 2020, 30, 2004410. doi: 10.1002/adfm.202004410  doi: 10.1002/adfm.202004410

    22. [22]

      Su, L.; Gong, L.; Wang, X.; Pan, H. Int. J. Energy Res. 2016, 40, 763. doi: 10.1002/er.3480  doi: 10.1002/er.3480

    23. [23]

      Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J  doi: 10.1039/C4EE03192J

    24. [24]

      Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Electrochem. Commun. 2015, 60, 172. doi: 10.1016/j.elecom.2015.09.002  doi: 10.1016/j.elecom.2015.09.002

    25. [25]

      Song, S.; Duong, H. M.; Korsunsky, A. M.; Hu, N.; Lu, L. Sci. Rep. 2016, 6, 32330. doi: 10.1038/srep32330  doi: 10.1038/srep32330

    26. [26]

      Luo, C.; Langrock, A.; Fan, X.; Liang, Y.; Wang, C. J. Mater. Chem. A 2017, 5, 18214. doi: 10.1039/C7TA04515H  doi: 10.1039/C7TA04515H

    27. [27]

      Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426  doi: 10.1021/acsenergylett.8b01426

    28. [28]

      Li, C.; Deng, W.; Li, Y.; Zhou, Z.; Hu, J.; Zhang, M.; Yuan, X.; Li, R. Chem. Commun. 2022, 58, 7702. doi: 10.1039/d2cc01798a  doi: 10.1039/d2cc01798a

    29. [29]

      Zhu, K.; Li, Z.; Sun, Z.; Liu, P.; Jin, T.; Chen, X.; Li, H.; Lu, W.; Jiao, L. Small 2022, 18, e2107662. doi: 10.1002/smll.202107662  doi: 10.1002/smll.202107662

    30. [30]

      Ejigu, A.; Le Fevre, L. W.; Elgendy, A.; Spencer, B. F.; Bawn, C.; Dryfe, R. A. W. ACS Appl. Mater. Interfaces 2022, 14, 25232. doi: 10.1021/acsami.1c23278  doi: 10.1021/acsami.1c23278

    31. [31]

      Shi, X.; Liu, H.; Xu, D.; Yu, Y.; Lu, X. J. Phys. Chem. C 2023, 127, 6233. doi: 10.1021/acs.jpcc.3c00810  doi: 10.1021/acs.jpcc.3c00810

    32. [32]

      Zhang, Y.; Zheng, X.; Wang, N.; Lai, W. H.; Liu, Y.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Chem. Sci. 2022, 13, 14246. doi: 10.1039/d2sc04945g  doi: 10.1039/d2sc04945g

    33. [33]

      Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y.; et al. J. Mater. Chem. A 2017, 5, 23299. doi: 10.1039/c7ta07170a  doi: 10.1039/c7ta07170a

    34. [34]

      Liu, Y.; Liu, Y.; Wu, X. Chem. Rec. 2022, 22, e202200088. doi: 10.1002/tcr.202200088  doi: 10.1002/tcr.202200088

    35. [35]

      Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J. -X.; Fang, C.; et al. Chem. Commun. 2018, 54, 14097. doi: 10.1039/C8CC07730D  doi: 10.1039/C8CC07730D

    36. [36]

      Ge, H.; Feng, X.; Liu, D.; Zhang, Y. Nano Res. Energy 2023, 2, e9120039. doi: 10.26599/NRE.2023.9120039  doi: 10.26599/NRE.2023.9120039

    37. [37]

      Zeng, X.; Xie, K.; Liu, S.; Zhang, S.; Hao, J.; Liu, J.; Pang, W. K.; Liu, J.; Rao, P.; Wang, Q.; et al. Energy Environ. Sci. 2021, 14, 5947. doi: 10.1039/d1ee01851e  doi: 10.1039/d1ee01851e

    38. [38]

      Dai, Y.; Zhang, C.; Zhang, W.; Cui, L.; Ye, C.; Hong, X.; Li, J.; Chen, R.; Zong, W.; Gao, X.; et al. Angew. Chem. Int. Ed. 2023, 62, e202301192. doi: 10.1002/anie.202301192  doi: 10.1002/anie.202301192

    39. [39]

      Wu, H.; Yan, W.; Xing, Y.; Li, L.; Liu, J.; Li, L.; Huang, P.; Lai, C.; Wang, C.; Chen, W.; et al. Adv. Funct. Mater. 2023, 2213882. doi: 10.1002/adfm.202213882  doi: 10.1002/adfm.202213882

    40. [40]

      Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Chem. Commun. 2018, 54, 4457. doi: 10.1039/c8cc02250j  doi: 10.1039/c8cc02250j

    41. [41]

      Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Nat. Energy 2016, 1, 16039. doi: 10.1038/nenergy.2016.39  doi: 10.1038/nenergy.2016.39

    42. [42]

      He, Y.; Pu, Y.; Zhu, B.; Zhu, H.; Wang, C.; Tang, W.; Tang, H. J. Alloy. Compd. 2023, 934, 167933. doi: 10.1016/j.jallcom.2022.167933  doi: 10.1016/j.jallcom.2022.167933

    43. [43]

      Cao, J.; Zhang, D.; Yue, Y.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7909. doi: 10.1021/acsami.1c21581  doi: 10.1021/acsami.1c21581

    44. [44]

      Yang, Q.; Mo, F.; Liu, Z.; Ma, L.; Li, X.; Fang, D.; Chen, S.; Zhang, S.; Zhi, C. Adv. Mater. 2019, 31, 1901521. doi: 10.1002/adma.201901521  doi: 10.1002/adma.201901521

    45. [45]

      Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Adv. Energy Mater. 2015, 5, 1400930. doi: 10.1002/aenm.201400930  doi: 10.1002/aenm.201400930

    46. [46]

      Zhang, Y.; Chen, A.; Sun, J. J. Energy Chem. 2021, 54, 655. doi: 10.1016/j.jechem.2020.06.013  doi: 10.1016/j.jechem.2020.06.013

    47. [47]

      Hao, J.; Mou, J.; Zhang, J.; Dong, L.; Liu, W.; Xu, C.; Kang, F. Electrochim. Acta 2018, 259, 170. doi: 10.1016/j.electacta.2017.10.166  doi: 10.1016/j.electacta.2017.10.166

    48. [48]

      Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. J. Power Sources 2015, 288, 320. doi: 10.1016/j.jpowsour.2015.04.140  doi: 10.1016/j.jpowsour.2015.04.140

    49. [49]

      Liu, C.; Li, Q.; Sun, H.; Wang, Z.; Gong, W.; Cong, S.; Yao, Y.; Zhao, Z. J. Mater. Chem. A 2020, 8, 24031. doi: 10.1039/D0TA09212F  doi: 10.1039/D0TA09212F

    50. [50]

      He, B.; Huang, J.; Ji, P.; Hoang, T. K. A.; Han, M.; Li, L.; Zhang, L.; Gao, Z.; Ma, J.; Zhi, J.; et al. J. Power Sources 2023, 554, 232353. doi: 10.1016/j.jpowsour.2022.232353  doi: 10.1016/j.jpowsour.2022.232353

    51. [51]

      Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M. S.; Mathew, V.; Sun, Y. -K.; Hwang, J. -Y.; et al. Adv. Sci. 2021, 8, 2002636. doi: 10.1002/advs.202002636  doi: 10.1002/advs.202002636

    52. [52]

      Hou, Z.; Zhang, X.; Dong, M.; Xiong, Y.; Zhang, Z.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Sci. China Mater. 2021, 64, 783. doi: 10.1007/s40843-020-1503-7  doi: 10.1007/s40843-020-1503-7

    53. [53]

      Chen, L.; An, Q.; Mai, L. Adv. Mater. Interfaces 2019, 6, 1900387. doi: 10.1002/admi.201900387  doi: 10.1002/admi.201900387

    54. [54]

      Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Small 2019, 15, 1804760. doi: 10.1002/smll.201804760  doi: 10.1002/smll.201804760

    55. [55]

      Chen, K.; Sun, C.; Xue, D. Phys. Chem. Chem. Phys. 2015, 17, 732. doi: 10.1039/C4CP03888F  doi: 10.1039/C4CP03888F

    56. [56]

      Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    57. [57]

      Shi, W.; Lee, W. S. V.; Xue, J. ChemSusChem. 2021, 14, 1634. doi: 10.1002/cssc.202002493  doi: 10.1002/cssc.202002493

    58. [58]

      Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. 2012, 51, 933. doi: 10.1002/anie.201106307  doi: 10.1002/anie.201106307

    59. [59]

      Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J. Energy Storage Mater. 2020, 24, 394. doi: 10.1016/j.ensm.2019.07.030  doi: 10.1016/j.ensm.2019.07.030

    60. [60]

      Chen, Y.; Ma, D.; Shen, S.; Deng, P.; zhao, Z.; Yang, M.; Wang, Y.; Mi, H.; Zhang, P. Energy Storage Mater. 2023, 56, 600. doi: 10.1016/j.ensm.2023.01.049  doi: 10.1016/j.ensm.2023.01.049

    61. [61]

      Du, Y.; Xu, Y.; Zhang, Y.; Yang, B.; Lu, H.; Ge, C.; Bin, D. Chem. Eng. J. 2023, 457, 141162 doi: 10.1016/j.cej.2022.141162  doi: 10.1016/j.cej.2022.141162

    62. [62]

      Wu, X.; Jian, Z.; Li, Z.; Ji, X. Electrochem. Commun. 2017, 77, 54. doi: 10.1016/j.elecom.2017.02.012  doi: 10.1016/j.elecom.2017.02.012

    63. [63]

      Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z. -S. Adv. Energy Mater. 2020, 10, 2000081. doi: 10.1002/aenm.202000081  doi: 10.1002/aenm.202000081

    64. [64]

      He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Adv. Energy Mater. 2017, 7, 1601920. doi: 10.1002/aenm.201601920  doi: 10.1002/aenm.201601920

    65. [65]

      Wang, L.; Wu, Z.; Jiang, M.; Lu, J.; Huang, Q.; Zhang, Y.; Fu, L.; Wu, M.; Wu, Y. J. Mater. Chem. A 2020, 8, 9313. doi: 10.1039/D0TA01297A  doi: 10.1039/D0TA01297A

    66. [66]

      Liu, S.; Chen, X.; Zhang, Q.; Zhou, J.; Cai, Z.; Pan, A. ACS Appl. Mater. Interfaces 2019, 11, 36676. doi: 10.1021/acsami.9b12128  doi: 10.1021/acsami.9b12128

    67. [67]

      Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. J. Am. Chem. Soc. 2017, 139, 9775. doi: 10.1021/jacs.7b04471  doi: 10.1021/jacs.7b04471

    68. [68]

      Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Chem. Soc. Rev. 2015, 44, 699. doi: 10.1039/C4CS00218K  doi: 10.1039/C4CS00218K

    69. [69]

      Li, X.; Ji, C.; Shen, J.; Feng, J.; Mi, H.; Xu, Y.; Guo, F.; Yan, X. Adv. Sci. 2023, 10, 2205794. doi: 10.1002/advs.202205794  doi: 10.1002/advs.202205794

    70. [70]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    71. [71]

      Jin, Y.; Zou, L.; Liu, L.; Engelhard, M. H.; Patel, R. L.; Nie, Z.; Han, K. S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Adv. Mater. 2019, 31, e1900567. doi: 10.1002/adma.201900567  doi: 10.1002/adma.201900567

    72. [72]

      Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Chem. Commun. 2015, 51, 9265. doi: 10.1039/C5CC02585K  doi: 10.1039/C5CC02585K

    73. [73]

      Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p  doi: 10.1021/cm504717p

    74. [74]

      Zhao, S.; Han, B.; Zhang, D.; Huang, Q.; Xiao, L.; Chen, L.; Ivey, D. G.; Deng, Y.; Wei, W. J. Mater. Chem. A 2018, 6, 5733. doi: 10.1039/C8TA01031E  doi: 10.1039/C8TA01031E

    75. [75]

      Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. -Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174  doi: 10.1002/anie.201904174

    76. [76]

      Zhang, H.; Wei, T.; Qiu, Y.; Zhang, S.; Liu, Q.; Hu, G.; Luo, J.; Liu, X. Small 2023, 19, 2207249. doi: 10.1002/smll.202207249  doi: 10.1002/smll.202207249

    77. [77]

      Li, G.; Chen, W.; Zhang, H.; Gong, Y.; Shi, F.; Wang, J.; Zhang, R.; Chen, G.; Jin, Y.; Wu, T.; et al. Adv. Energy Mater. 2020, 10, 1902085. doi: 10.1002/aenm.201902085  doi: 10.1002/aenm.201902085

    78. [78]

      Liang, G.; Mo, F.; Li, H.; Tang, Z.; Liu, Z.; Wang, D.; Yang, Q.; Ma, L.; Zhi, C. Adv. Energy Mater. 2019, 9, 1901838. doi: 10.1002/aenm.201901838  doi: 10.1002/aenm.201901838

    79. [79]

      Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. Energy Environ. Sci. 2020, 13, 135. doi: 10.1039/c9ee03702k  doi: 10.1039/c9ee03702k

    80. [80]

      Lee, B.; Seo, H. R.; Lee, H. R.; Yoon, C. S.; Kim, J. H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. ChemSusChem 2016, 9, 2948. doi: 10.1002/cssc.201600702  doi: 10.1002/cssc.201600702

    81. [81]

      Ye, X.; Han, D.; Jiang, G.; Cui, C.; Guo, Y.; Wang, Y.; Zhang, Z.; Weng, Z.; Yang, Q. -H. Energy Environ. Sci. 2023, 16, 1016. doi: 10.1039/d3ee00018d  doi: 10.1039/d3ee00018d

    82. [82]

      Chen, H.; Dai, C.; Xiao, F.; Yang, Q.; Cai, S.; Xu, M.; Fan, H. J.; Bao, S. -J. Adv. Mater. 2022, 34, 2109092. doi: 10.1002/adma.202109092  doi: 10.1002/adma.202109092

    83. [83]

      Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. C. Adv. Mater. 2020, 32, 2001113. doi: 10.1002/adma.202001113  doi: 10.1002/adma.202001113

    84. [84]

      Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F. J. Energy Chem. 2021, 56, 365. doi: 10.1016/j.jechem.2020.07.027  doi: 10.1016/j.jechem.2020.07.027

    85. [85]

      Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A  doi: 10.1039/C8EE01415A

    86. [86]

      Wang, X.; Wang, Z.; Zhu, C.; Zheng, L.; Wu, Z.; Song, Y.; Wan, F.; Guo, X. ACS Energy Lett. 2023, 8, 4547. doi: 10.1021/acsenergylett.3c01821  doi: 10.1021/acsenergylett.3c01821

    87. [87]

      Yang, H.; Zhang, T.; Chen, D.; Tan, Y.; Zhou, W.; Li, L.; Li, W.; Li, G.; Han, W.; Fan, H. J.; et al. Adv. Mater. 2023, 35, 2300053. doi: 10.1002/adma.202300053  doi: 10.1002/adma.202300053

    88. [88]

      Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Sci. Rep. 2014, 4, 6066. doi: 10.1038/srep06066  doi: 10.1038/srep06066

    89. [89]

      Zhang, W.; Qin, X.; Wei, T.; Liu, Q.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2023, 638, 650. doi: 10.1016/j.jcis.2023.02.026  doi: 10.1016/j.jcis.2023.02.026

    90. [90]

      Alfaruqi, M. H.; Islam, S.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y. -K.; Kim, K.; Kim, J. Electrochim. Acta 2018, 276, 1. doi: 10.1016/j.electacta.2018.04.139  doi: 10.1016/j.electacta.2018.04.139

    91. [91]

      Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/C9CS00131J  doi: 10.1039/C9CS00131J

    92. [92]

      Ding, J.; Hou, X.; Qiu, Y.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Inorg. Chem. Commun. 2023, 151, 110621. doi: 10.1016/j.inoche.2023.110621  doi: 10.1016/j.inoche.2023.110621

    93. [93]

      Pan, C.; Zhang, R.; Nuzzo, R. G.; Gewirth, A. A. Adv. Energy Mater. 2018, 8, 1800589. doi: 10.1002/aenm.201800589  doi: 10.1002/aenm.201800589

    94. [94]

      Meggiolaro, D.; Mosconi, E.; De Angelis, F. ACS Energy Lett. 2019, 4, 779. doi: 10.1021/acsenergylett.9b00247  doi: 10.1021/acsenergylett.9b00247

    95. [95]

      Paier, J.; Penschke, C.; Sauer, J. Chem. Rev. 2013, 113, 3949. doi: 10.1021/cr3004949  doi: 10.1021/cr3004949

    96. [96]

      Xie, C.; Yan, D.; Chen, W.; Zou, Y.; Chen, R.; Zang, S.; Wang, Y.; Yao, X.; Wang, S. Mater. Today 2019, 31, 47. doi: 10.1016/j.mattod.2019.05.021  doi: 10.1016/j.mattod.2019.05.021

    97. [97]

      Hu, C.; Dai, L. Adv. Mater. 2019, 31, 1804672. doi: 10.1002/adma.201804672  doi: 10.1002/adma.201804672

    98. [98]

      Zhang, H.; Qi, G.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Inorg. Chem. Front. 2023, 10, 2423. doi: 10.1039/D3QI00013C  doi: 10.1039/D3QI00013C

    99. [99]

      Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Adv. Funct. Mater. 2014, 24, 5211. doi: 10.1002/adfm.201400474  doi: 10.1002/adfm.201400474

    100. [100]

      Zhang, Y.; Deng, S.; Luo, M.; Pan, G.; Zeng, Y.; Lu, X.; Ai, C.; Liu, Q.; Xiong, Q.; Wang, X.; et al. Small 2019, 15, e1905452. doi: 10.1002/smll.201905452  doi: 10.1002/smll.201905452

    101. [101]

      Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.; Waterhouse, G. I. N.; Huang, W.; Zhang, T. Adv. Energy Mater. 2017, 7, 1700005. doi: 10.1002/aenm.201700005  doi: 10.1002/aenm.201700005

    102. [102]

      Kim, H. -S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Nat. Mater. 2017, 16, 454. doi: 10.1038/nmat4810  doi: 10.1038/nmat4810

    103. [103]

      Xiong, T.; Yu, Z. G.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. Adv. Energy Mater. 2019, 9, 1803815. doi: 10.1002/aenm.201803815  doi: 10.1002/aenm.201803815

    104. [104]

      Sun, K.; Pang, J.; Zheng, Y.; Xing, F.; Jiang, R.; Min, J.; Ye, J.; Wang, L.; Luo, Y.; Gu, T.; et al. J. Alloy. Compd. 2022, 923, 166470. doi: 10.1016/j.jallcom.2022.166470  doi: 10.1016/j.jallcom.2022.166470

    105. [105]

      Ang, Z. W. J.; Xiong, T.; Lee, W. S. V.; Xue, J. ChemNanoMat 2020, 6, 1357. doi: 10.1002/cnma.202000300  doi: 10.1002/cnma.202000300

    106. [106]

      Zheng, J.; Qin, C.; Chen, C.; Zhang, C.; Shi, P.; Chen, X.; Gan, Y.; Li, J.; Yao, J.; Liu, X.; et al. J. Mater. Chem. A 2023, 11, 24311. doi: 10.1039/D3TA05364D  doi: 10.1039/D3TA05364D

    107. [107]

      Liu, Y.; Wu, X. J. Energy Chem. 2023, 87, 334. doi: 10.1016/j.jechem.2023.08.022  doi: 10.1016/j.jechem.2023.08.022

    108. [108]

      Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894. doi: 10.1021/jacs.6b05958  doi: 10.1021/jacs.6b05958

    109. [109]

      Guo, X.; Sun, H.; Li, C.; Zhang, S.; Li, Z.; Hou, X.; Chen, X.; Liu, J.; Shi, Z.; Feng, S. J. Energy Chem. 2022, 68, 538. doi: 10.1016/j.jechem.2021.12.033  doi: 10.1016/j.jechem.2021.12.033

    110. [110]

      Long, J.; Gu, J.; Yang, Z.; Mao, J.; Hao, J.; Chen, Z.; Guo, Z. J. Mater. Chem. A 2019, 7, 17854. doi: 10.1039/C9TA05101E  doi: 10.1039/C9TA05101E

    111. [111]

      Liu, G.; Huang, H.; Bi, R.; Xiao, X.; Ma, T.; Zhang, L. J. Mater. Chem. A 2019, 7, 20806. doi: 10.1039/C9TA08049J  doi: 10.1039/C9TA08049J

    112. [112]

      Kataoka, F.; Ishida, T.; Nagita, K.; Kumbhar, V.; Yamabuki, K.; Nakayama, M. ACS Appl. Energy Mater. 2020, 3, 4720. doi: 10.1021/acsaem.0c00357  doi: 10.1021/acsaem.0c00357

    113. [113]

      Zhang, D.; Cao, J.; Zhang, X.; Insin, N.; Wang, S.; Han, J.; Zhao, Y.; Qin, J.; Huang, Y. Adv. Funct. Mater. 2021, 31, 2009412. doi: 10.1002/adfm.202009412  doi: 10.1002/adfm.202009412

    114. [114]

      Ma, K.; Li, Q.; Hong, C.; Yang, G.; Wang, C. ACS Appl. Mater. Interfaces 2021, 13, 55208. doi: 10.1021/acsami.1c17677  doi: 10.1021/acsami.1c17677

    115. [115]

      Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079. doi: 10.1039/C9TA08418E  doi: 10.1039/C9TA08418E

    116. [116]

      Wang, J.; Sun, X.; Zhao, H.; Xu, L.; Xia, J.; Luo, M.; Yang, Y.; Du, Y. J. Phys. Chem. C 2019, 123, 22735. doi: 10.1021/acs.jpcc.9b05535  doi: 10.1021/acs.jpcc.9b05535

    117. [117]

      Zhong, Y.; Xu, X.; Veder, J. P.; Shao, Z. iScience 2020, 23, 100943. doi: 10.1016/j.isci.2020.100943  doi: 10.1016/j.isci.2020.100943

    118. [118]

      Tao, Y.; Li, Z.; Tang, L.; Pu, X.; Cao, T.; Cheng, D.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Electrochim. Acta 2020, 331, 135296. doi: 10.1016/j.electacta.2019.135296  doi: 10.1016/j.electacta.2019.135296

    119. [119]

      Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; et al. Appl. Surf. Sci. 2017, 404, 435. doi: 10.1016/j.apsusc.2017.02.009  doi: 10.1016/j.apsusc.2017.02.009

    120. [120]

      Wu, Y.; Zhang, K.; Chen, S.; Liu, Y.; Tao, Y.; Zhang, X.; Ding, Y.; Dai, S. ACS Appl. Energy Mater. 2019, 3, 319. doi: 10.1021/acsaem.9b01554  doi: 10.1021/acsaem.9b01554

    121. [121]

      Li, S.; Zhao, M.; Zhang, D.; Wu, X. Cryst. Growth Des. 2023, 23, 8156. doi: 10.1021/acs.cgd.3c00864  doi: 10.1021/acs.cgd.3c00864

    122. [122]

      Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W.; Sun, X. Energy Storage Mater. 2022, 47, 424. doi: 10.1016/j.ensm.2022.02.030  doi: 10.1016/j.ensm.2022.02.030

    123. [123]

      Du, M.; Liu, C.; Zhang, F.; Dong, W.; Zhang, X.; Sang, Y.; Wang, J. -J.; Guo, Y. -G.; Liu, H.; Wang, S. Adv. Sci. 2020, 7, 2000083. doi: 10.1002/advs.202000083  doi: 10.1002/advs.202000083

    124. [124]

      Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. ACS Energy Lett. 2018, 3, 2602. doi: 10.1021/acsenergylett.8b01423  doi: 10.1021/acsenergylett.8b01423

    125. [125]

      Zhu, K.; Wu, T.; Huang, K. Adv. Energy Mater. 2019, 9, 1901968. doi: 10.1002/aenm.201901968  doi: 10.1002/aenm.201901968

    126. [126]

      Zhang, J.; Li, W.; Wang, J.; Pu, X.; Zhang, G.; Wang, S.; Wang, N.; Li, X. Angew. Chem. Int. Ed. 2023, 62, e202215654. doi: 10.1002/anie.202215654  doi: 10.1002/anie.202215654

    127. [127]

      Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Energy Environ. Sci. 2019, 12, 1999. doi: 10.1039/c9ee00718k  doi: 10.1039/c9ee00718k

    128. [128]

      Zhai, X. Z.; Qu, J.; Hao, S. M.; Jing, Y. Q.; Chang, W.; Wang, J.; Li, W.; Abdelkrim, Y.; Yuan, H.; Yu, Z. Z. Nanomicro Lett. 2020, 12, 56. doi: 10.1007/s40820-020-0397-3  doi: 10.1007/s40820-020-0397-3

    129. [129]

      Sun, T.; Nian, Q.; Zheng, S.; Shi, J.; Tao, Z. Small 2020, 16, e2000597. doi: 10.1002/smll.202000597  doi: 10.1002/smll.202000597

    130. [130]

      Shin, J.; Choi, D. S.; Lee, H. J.; Jung, Y.; Choi, J. W. Adv. Energy Mater. 2019, 9, 1900083. doi: 10.1002/aenm.201900083  doi: 10.1002/aenm.201900083

    131. [131]

      Jiang, H.; Zhang, Y.; Pan, Z.; Xu, L.; Zheng, J.; Gao, Z.; Hu, T.; Meng, C.; Wang, J. Mater. Chem. Front. 2020, 4, 1434. doi: 10.1039/D0QM00051E  doi: 10.1039/D0QM00051E

    132. [132]

      Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Adv. Mater. 2018, 30. doi: 10.1002/adma.201703725  doi: 10.1002/adma.201703725

    133. [133]

      Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Angew. Chem. Int. Ed. 2018, 57, 3943. doi: 10.1002/anie.201713291  doi: 10.1002/anie.201713291

    134. [134]

      Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/C8EE01651H  doi: 10.1039/C8EE01651H

    135. [135]

      Bin, D.; Huo, W.; Yuan, Y.; Huang, J.; Liu, Y.; Zhang, Y.; Dong, F.; Wang, Y.; Xia, Y. Chem 2020, 6, 968. doi: 10.1016/j.chempr.2020.02.001  doi: 10.1016/j.chempr.2020.02.001

    136. [136]

      Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z.; et al. Nano Energy 2019, 62, 79. doi: 10.1016/j.nanoen.2019.04.038  doi: 10.1016/j.nanoen.2019.04.038

    137. [137]

      Mao, J.; Wu, F. -F.; Shi, W. -H.; Liu, W. -X.; Xu, X. -L.; Cai, G. -F.; Li, Y. -W.; Cao, X. -H. Chin. J. Polym. Sci. 2020, 38, 514. doi: 10.1007/s10118-020-2353-6  doi: 10.1007/s10118-020-2353-6

    138. [138]

      Xu, J. -W.; Gao, Q. -L.; Xia, Y. -M.; Lin, X. -S.; Liu, W. -L.; Ren, M. -M.; Kong, F. -G.; Wang, S. -J.; Lin, C. J. Colloid Interface Sci. 2021, 598, 419. doi: 10.1016/j.jcis.2021.04.057  doi: 10.1016/j.jcis.2021.04.057

    139. [139]

      Xu, D.; Wang, H.; Li, F.; Guan, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Adv. Mater. Interfaces 2019, 6, 1801506. doi: 10.1002/admi.201801506  doi: 10.1002/admi.201801506

    140. [140]

      Huang, A.; Zhou, W.; Wang, A.; Chen, M.; Chen, J.; Tian, Q.; Xu, J. Appl. Surf. Sci. 2021, 545, 149041. doi: 10.1016/j.apsusc.2021.149041  doi: 10.1016/j.apsusc.2021.149041

    141. [141]

      Islam, S.; Alfaruqi, M. H.; Song, J.; Kim, S.; Pham, D. T.; Jo, J.; Kim, S.; Mathew, V.; Baboo, J. P.; Xiu, Z.; et al. J. Energy Chem. 2017, 26, 815. doi: 10.1016/j.jechem.2017.04.002  doi: 10.1016/j.jechem.2017.04.002

    142. [142]

      Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Small 2018, 14, e1703850. doi: 10.1002/smll.201703850  doi: 10.1002/smll.201703850

    143. [143]

      Li, W.; Gao, X.; Chen, Z.; Guo, R.; Zou, G.; Hou, H.; Deng, W.; Ji, X.; Zhao, J. Chem. Eng. J. 2020, 402, 125509. doi: 10.1016/j.cej.2020.125509  doi: 10.1016/j.cej.2020.125509

    144. [144]

      Kim, C.; Ahn, B. Y.; Wei, T. -S.; Jo, Y.; Jeong, S.; Choi, Y.; Kim, I. -D.; Lewis, J. A. ACS Nano 2018, 12, 11838. doi: 10.1021/acsnano.8b02744  doi: 10.1021/acsnano.8b02744

    145. [145]

      Sun, J.; Zhao, Y.; Liu, Y.; Jiang, H.; Chen, D.; Xu, L.; Hu, T.; Meng, C.; Zhang, Y. J. Colloid Interface Sci. 2023, 633, 923. doi: 10.1016/j.jcis.2022.11.153  doi: 10.1016/j.jcis.2022.11.153

    146. [146]

      Zhang, Z.; Xi, B.; Wang, X.; Ma, X.; Chen, W.; Feng, J.; Xiong, S. Adv. Funct. Mater. 2021, 31, 2103070. doi: 10.1002/adfm.202103070  doi: 10.1002/adfm.202103070

    147. [147]

      Wang, L.; Yang, H.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Angew. Chem. Int. Ed. 2017, 56, 1105. doi: 10.1002/anie.201609527  doi: 10.1002/anie.201609527

    148. [148]

      Zhang, Y.; Xu, G.; Liu, X.; Wei, X.; Cao, J.; Yang, L. ChemElectroChem 2020, 7, 2762. doi: 10.1002/celc.202000253  doi: 10.1002/celc.202000253

    149. [149]

      Huang, J.; Tang, X.; Liu, K.; Fang, G.; He, Z.; Li, Z. Mater. Today Energy 2020, 17, 100475. doi: 10.1016/j.mtener.2020.100475  doi: 10.1016/j.mtener.2020.100475

    150. [150]

      Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Adv. Mater. 2017, 29, 1700274. doi: 10.1002/adma.201700274  doi: 10.1002/adma.201700274

    151. [151]

      Suo, L.; Oh, D.; Lin, Y.; Zhuo, Z.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z.; Kim, H. -C.; et al. J. Am. Chem. Soc. 2017, 139, 18670. doi: 10.1021/jacs.7b10688  doi: 10.1021/jacs.7b10688

    152. [152]

      Guo, J.; Ming, J.; Lei, Y.; Zhang, W.; Xia, C.; Cui, Y.; Alshareef, H. N. ACS Energy Lett. 2019, 4, 2776. doi: 10.1021/acsenergylett.9b02029  doi: 10.1021/acsenergylett.9b02029

    153. [153]

      Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. ACS Nano 2019, 13, 13456. doi: 10.1021/acsnano.9b07042  doi: 10.1021/acsnano.9b07042

    154. [154]

      Li, S.; Yu, D.; Liu, L.; Yao, S.; Wang, X.; Jin, X.; Zhang, D.; Du, F. Chem. Eng. J. 2022, 430, 132673. doi: 10.1016/j.cej.2021.132673  doi: 10.1016/j.cej.2021.132673

    155. [155]

      Hu, X.; Chen, X.; Chen, Y.; Li, Z.; Huang, Y.; Deng, L.; Cao, D. J. Alloy. Compd. 2023, 945, 169271. doi: 10.1016/j.jallcom.2023.169271  doi: 10.1016/j.jallcom.2023.169271

    156. [156]

      Liu, H.; Liu, F.; Qu, Z.; Chen, J.; Liu, H.; Tan, Y.; Guo, J.; Yan, Y.; Zhao, S.; Zhao, X.; et al. Nano Res. Energy 2023, 2, e9120049. doi: 10.26599/NRE.2023.9120049  doi: 10.26599/NRE.2023.9120049

    157. [157]

      Hu, X.; Han, X.; Hu, Y.; Cheng, F.; Chen, J. Nanoscale 2014, 6, 3522. doi: 10.1039/C3NR06361E  doi: 10.1039/C3NR06361E

    158. [158]

      Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Interfaces 2020, 12, 9347. doi: 10.1021/acsami.9b22470  doi: 10.1021/acsami.9b22470

    159. [159]

      Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A. A.; Kheawhom, S. Sci. Rep. 2019, 9, 8441. doi: 10.1038/s41598-019-44915-8  doi: 10.1038/s41598-019-44915-8

    160. [160]

      Gull, S.; Huang, S. -C.; Ni, C. -S.; Liu, S. -F.; Lin, W. -H.; Chen, H. -Y. J. Mater. Chem. A 2022, 10, 14540. doi: 10.1039/D2TA02734H  doi: 10.1039/D2TA02734H

    161. [161]

      Dong, X.; Sun, J.; Mu, Y.; Yu, Y.; Hu, T.; Miao, C.; Huang, C.; Meng, C.; Zhang, Y. J. Colloid Interface Sci. 2022, 610, 805. doi: 10.1016/j.jcis.2021.11.137  doi: 10.1016/j.jcis.2021.11.137

    162. [162]

      Ho, V. C.; Oh, S. H.; Mun, J. Int. J. Energy Res. 2022, 46, 9720. doi: 10.1002/er.7841  doi: 10.1002/er.7841

    163. [163]

      Wang, Y.; Ma, Z.; Chen, Y.; Zou, M.; Yousaf, M.; Yang, Y.; Yang, L.; Cao, A.; Han, R. P. Adv. Mater. 2016, 28, 10175. doi: 10.1002/adma.201603812  doi: 10.1002/adma.201603812

    164. [164]

      Zhu, C.; Fang, G.; Zhou, J.; Guo, J.; Wang, Z.; Wang, C.; Li, J.; Tang, Y.; Liang, S. J. Mater. Chem. A 2018, 6, 9677. doi: 10.1039/C8TA01198B  doi: 10.1039/C8TA01198B

    165. [165]

      Ko, W. Y.; Lubis, A. L.; Wang, H. Y.; Wu, T. C.; Lin, S. T.; Lin, K. J. ChemElectroChem 2022, 9, e202200750. doi: 10.1002/celc.202200750  doi: 10.1002/celc.202200750

    166. [166]

      Dhiman, A.; Ivey, D. G. Batteries Supercaps 2019, 3, 293. doi: 10.1002/batt.201900150  doi: 10.1002/batt.201900150

    167. [167]

      Dou, P.; Cao, Z.; Wang, C.; Zheng, J.; Xu, X. Chem. Eng. J. 2017, 320, 405. doi: 10.1016/j.cej.2017.03.076  doi: 10.1016/j.cej.2017.03.076

    168. [168]

      Jing, F. Y.; Pei, J.; Zhou, Y. M.; Shang, Y. R.; Yao, S. Y.; Liu, S. S.; Chen, G. J. Colloid Interface Sci. 2022, 609, 557. doi: 10.1016/j.jcis.2021.11.064  doi: 10.1016/j.jcis.2021.11.064

    169. [169]

      Wu, X.; Xiang, Y.; Peng, Q.; Wu, X.; Li, Y.; Tang, F.; Song, R.; Liu, Z.; He, Z.; Wu, X. J. Mater. Chem. A 2017, 5, 17990. doi: 10.1039/c7ta00100b  doi: 10.1039/c7ta00100b

    170. [170]

      Sun, G.; Jin, X.; Yang, H.; Gao, J.; Qu, L. J. Mater. Chem. A 2018, 6, 10926. doi: 10.1039/C8TA02747A  doi: 10.1039/C8TA02747A

    171. [171]

      Li, Y.; Wang, S.; Salvador, J. R.; Wu, J.; Liu, B.; Yang, W.; Yang, J.; Zhang, W.; Liu, J.; Yang, J. Chem. Mater. 2019, 31, 2036. doi: 10.1021/acs.chemmater.8b05093  doi: 10.1021/acs.chemmater.8b05093

    172. [172]

      Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Mater. Today Energy 2020, 18, 100548. doi: 10.1016/j.mtener.2020.100548  doi: 10.1016/j.mtener.2020.100548

    173. [173]

      Kim, S. H.; Kim, J. M.; Ahn, D. B.; Lee, S. Y. Small 2020, 16, e2002837. doi: 10.1002/smll.202002837  doi: 10.1002/smll.202002837

    174. [174]

      Wu, F.; Gao, X.; Xu, X.; Jiang, Y.; Gao, X.; Yin, R.; Shi, W.; Liu, W.; Lu, G.; Cao, X. ChemSusChem 2020, 13, 1537. doi: 10.1002/cssc.201903006  doi: 10.1002/cssc.201903006

    175. [175]

      Wu, Y.; Wang, M.; Tao, Y.; Zhang, K.; Cai, M.; Ding, Y.; Liu, X.; Hayat, T.; Alsaedi, A.; Dai, S. Adv. Funct. Mater. 2019, 30, 1907120. doi: 10.1002/adfm.201907120  doi: 10.1002/adfm.201907120

    176. [176]

      Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z.; Chen, J. Nat. Commun. 2020, 11, 2199. doi: 10.1038/s41467-020-16039-5  doi: 10.1038/s41467-020-16039-5

    177. [177]

      Liu, L.; Niu, Z.; Chen, J. Nano Res. 2017, 10, 1524. doi: 10.1007/s12274-017-1448-z  doi: 10.1007/s12274-017-1448-z

    178. [178]

      Kraytsberg, A.; Ein-Eli, Y. Adv. Energy Mater. 2016, 6, 1600655. doi: 10.1002/aenm.201600655  doi: 10.1002/aenm.201600655

    179. [179]

      Xu, P.; Yi, H.; Shi, G.; Xiong, Z.; Hu, Y.; Wang, R.; Zhang, H.; Wang, B. Dalton Trans. 2022, 51, 4695. doi: 10.1039/D2DT00047D  doi: 10.1039/D2DT00047D

    180. [180]

      Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. -K.; Kim, J. J. Mater. Chem. A 2018, 6, 15530. doi: 10.1039/C8TA02018C  doi: 10.1039/C8TA02018C

    181. [181]

      Liu, Y.; Hu, P.; Liu, H.; Wu, X.; Zhi, C. Mater. Today Energy 2020, 17, 100431. doi: 10.1016/j.mtener.2020.100431  doi: 10.1016/j.mtener.2020.100431

    182. [182]

      Zhu, Y.; Zhong, Y.; Chen, G.; Deng, X.; Cai, R.; Li, L.; Shao, Z. Chem. Commun. 2016, 52, 9402. doi: 10.1039/c6cc05252e  doi: 10.1039/c6cc05252e

    183. [183]

      Zhuang, Y.; Xie, Y.; Fei, B.; Cai, D.; Wang, Y.; Chen, Q.; Zhan, H. J. Mater. Chem. A 2021, 9, 21313. doi: 10.1039/d1ta05982c  doi: 10.1039/d1ta05982c

    184. [184]

      Wang, J.; Wang, J. -G.; Liu, H.; Wei, C.; Kang, F. J. Mater. Chem. A 2019, 7, 13727. doi: 10.1039/C9TA03541A  doi: 10.1039/C9TA03541A

    185. [185]

      Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Electrochim. Acta 2019, 304, 370. doi: 10.1016/j.electacta.2019.03.008  doi: 10.1016/j.electacta.2019.03.008

    186. [186]

      Guo, X.; Li, J.; Jin, X.; Han, Y.; Lin, Y.; Lei, Z.; Wang, S.; Qin, L.; Jiao, S.; Cao, R. Nanomaterials 2018, 8, 301. doi: 10.3390/nano8050301  doi: 10.3390/nano8050301

    187. [187]

      Liang, L.; Xu, Y.; Li, Y.; Dong, H.; Zhou, M.; Zhao, H.; Kaiser, U.; Lei, Y. J. Mater. Chem. A 2017, 5, 1749. doi: 10.1039/c6ta10345f  doi: 10.1039/c6ta10345f

    188. [188]

      Yang, B.; Cao, X.; Wang, S.; Wang, N.; Sun, C. Electrochim. Acta 2021, 385, 138447. doi: 10.1016/j.electacta.2021.138447  doi: 10.1016/j.electacta.2021.138447

    189. [189]

      Wu, Y.; Tao, Y.; Zhang, X.; Zhang, K.; Chen, S.; Liu, Y.; Ding, Y.; Cai, M.; Liu, X.; Dai, S. Sci. China Mater. 2020, 63, 1196. doi: 10.1007/s40843-020-1293-8  doi: 10.1007/s40843-020-1293-8

    190. [190]

      Li, S.; Wei, X.; Wu, C.; Zhang, B.; Wu, S.; Lin, Z. ACS Appl. Energy Mater. 2021, 4, 4208. doi: 10.1021/acsaem.1c00573  doi: 10.1021/acsaem.1c00573

    191. [191]

      Niu, B.; Li, Z.; Luo, D.; Ma, X.; Yang, Q.; Liu, Y. -E.; Yu, X.; He, X.; Qiao, Y.; Wang, X. Energy Environ. Sci. 2023, 16, 1662. doi: 10.1039/d2ee04023a  doi: 10.1039/d2ee04023a

    192. [192]

      Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    193. [193]

      Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. -K.; Kim, J. Energy Storage Mater. 2020, 28, 407. doi: 10.1016/j.ensm.2019.12.021  doi: 10.1016/j.ensm.2019.12.021

    194. [194]

      Park, S.; An, G. H. Int. J. Energy Res. 2022, 46, 8464. doi: 10.1002/er.7687  doi: 10.1002/er.7687

    195. [195]

      Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x  doi: 10.1038/s41467-017-00467-x

    196. [196]

      Chuai, M.; Yang, J.; Tan, R.; Liu, Z.; Yuan, Y.; Xu, Y.; Sun, J.; Wang, M.; Zheng, X.; Chen, N.; et al. Adv. Mater. 2022, 34, 2203249. doi: 10.1002/adma.202203249  doi: 10.1002/adma.202203249

    197. [197]

      Chuai, M.; Yang, J.; Wang, M.; Yuan, Y.; Liu, Z.; Xu, Y.; Yin, Y.; Sun, J.; Zheng, X.; Chen, N.; et al. eScience 2021, 1, 178. doi: 10.1016/j.esci.2021.11.002  doi: 10.1016/j.esci.2021.11.002

    198. [198]

      Yi, J.; Liang, P.; Liu, X.; Wu, K.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Energy Environ. Sci. 2018, 11, 3075. doi: 10.1039/c8ee01991f  doi: 10.1039/c8ee01991f

    199. [199]

      Lin, X. S.; Wang, Z. R.; Ge, L. H.; Xu, J. W.; Ma, W. Q.; Ren, M. M.; Liu, W. L.; Yao, J. S.; Zhang, C. B. ChemElectroChem 2022, 9, e202101724. doi: 10.1002/celc.202101724  doi: 10.1002/celc.202101724

    200. [200]

      Zhang, H.; Luo, Z.; Deng, W.; Hu, J.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2023, 461, 142105. doi: 10.1016/j.cej.2023.142105  doi: 10.1016/j.cej.2023.142105

    201. [201]

      Ren, H.; Li, S.; Wang, B.; Zhang, Y.; Wang, T.; Lv, Q.; Zhang, X.; Wang, L.; Han, X.; Jin, F.; et al. Adv. Mater. 2023, 35, 2208237. doi: 10.1002/adma.202208237  doi: 10.1002/adma.202208237

    202. [202]

      Liu, S.; Wang, L.; Yang, H.; Gao, S.; Liu, Y.; Zhang, S.; Chen, Y.; Liu, X.; Luo, J. Small 2022, 18, 2104965. doi: 10.1002/smll.202104965  doi: 10.1002/smll.202104965

    203. [203]

      Wang, R.; Wu, Q.; Wu, M.; Zheng, J.; Cui, J.; Kang, Q.; Qi, Z.; Ma, J.; Wang, Z.; Liang, H. Nano Res. 2022, 15, 7227. doi: 10.1007/s12274-022-4477-1  doi: 10.1007/s12274-022-4477-1

    204. [204]

      Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. Nano Res. 2019, 12, 33. doi: 10.1007/s12274-018-2172-z  doi: 10.1007/s12274-018-2172-z

    205. [205]

      Hu, B.; Xu, J.; Fan, Z.; Xu, C.; Han, S.; Zhang, J.; Ma, L.; Ding, B.; Zhuang, Z.; Kang, Q.; et al. Adv. Energy Mater. 2023, 13, 2203540. doi: 10.1002/aenm.202203540  doi: 10.1002/aenm.202203540

    206. [206]

      Gao, X.; Dai, Y.; Zhang, C.; Zhang, Y.; Zong, W.; Zhang, W.; Chen, R.; Zhu, J.; Hu, X.; Wang, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202300608. doi: 10.1002/anie.202300608  doi: 10.1002/anie.202300608

    207. [207]

      Zhang, N.; Huang, F.; Zhao, S.; Lv, X.; Zhou, Y.; Xiang, S.; Xu, S.; Li, Y.; Chen, G.; Tao, C.; et al. Matter 2020, 2, 1260. doi: 10.1016/j.matt.2020.01.022  doi: 10.1016/j.matt.2020.01.022

    208. [208]

      Li, H.; Han, C.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Wang, Z.; Liu, Z.; Tang, Z.; et al. Energy Environ. Sci. 2018, 11, 941. doi: 10.1039/C7EE03232C  doi: 10.1039/C7EE03232C

    209. [209]

      Xiao, X.; Xiao, X.; Zhou, Y.; Zhao, X.; Chen, G.; Liu, Z.; Wang, Z.; Lu, C.; Hu, M.; Nashalian, A.; et al. Sci. Adv 2021. 7, eabl3742. doi: 10.1126/sciadv.abl3742  doi: 10.1126/sciadv.abl3742

    210. [210]

      Liu, Y.; Liu, Y.; Wu, X. EcoMat. 2023, 5 (11), e12409. doi: 10.1002/eom2.12409  doi: 10.1002/eom2.12409

    211. [211]

      Liu, Y.; Liu, Y.; Wu, X.; Cho, Y. -R. ACS Sustainable Chem. Eng. 2023, 11 (36), 13298. doi: 10.1021/acssuschemeng.3c02379  doi: 10.1021/acssuschemeng.3c02379

    212. [212]

      Zhou, W.; Fan, H. J.; Zhao, D.; Chao, D. Natl. Sci. Rev. 2023, 10, nwad265. doi: 10.1093/nsr/nwad265  doi: 10.1093/nsr/nwad265

    213. [213]

      Yu, L.; Huang, J.; Wang, S.; Qi, L.; Wang, S.; Chen, C. Adv. Mater. 2023, 35, 2210789. doi: 10.1002/adma.202210789  doi: 10.1002/adma.202210789

    214. [214]

      Wang, R.; Parent, L. R.; Gopalan, S.; Zhong, Y. Adv. Powder Mater. 2023, 2, 100062. doi: 10.1016/j.apmate.2022.100062  doi: 10.1016/j.apmate.2022.100062

    215. [215]

      Yan, L.; Zhang, S.; Kang, Q.; Meng, X.; Li, Z.; Liu, T.; Ma, T.; Lin, Z. Energy Storage Mater. 2023, 54, 339. doi: 10.1016/j.ensm.2022.10.027  doi: 10.1016/j.ensm.2022.10.027

    216. [216]

      Liu, W.; Que, W.; Yin, R.; Dai, J.; Zheng, D.; Feng, J.; Xu, X.; Wu, F.; Shi, W.; Liu, X.; et al. Appl. Catal. B 2023, 328, 122488. doi: 10.1016/j.apcatb.2023.122488  doi: 10.1016/j.apcatb.2023.122488

    217. [217]

      Liu, W.; Niu, X.; Feng, J.; Yin, R.; Ma, S.; Que, W.; Dai, J.; Tang, J.; Wu, F.; Shi, W.; et al. ACS Appl. Mater. Interfaces 2023, 15, 15344. doi: 10.1021/acsami.2c21616  doi: 10.1021/acsami.2c21616

    218. [218]

      Liu, W.; Feng, J.; Yin, R.; Ni, Y.; Zheng, D.; Que, W.; Niu, X.; Dai, X.; Shi, W.; Wu, F.; et al. Chem. Eng. J. 2022, 430, 132990. doi: 10.1016/j.cej.2021.132990  doi: 10.1016/j.cej.2021.132990

    219. [219]

      Gao, X.; Yang, J.; Xu, Z.; Nuli, Y.; Wang, J. Energy Storage Mater. 2023, 54, 382. doi: 10.1016/j.ensm.2022.10.046  doi: 10.1016/j.ensm.2022.10.046

    220. [220]

      Shen, X.; Wang, X.; Yu, N.; Yang, W.; Zhou, Y.; Shi, Y.; Wang, Y.; Dong, L.; Di, J.; Li, Q. Acta Phys. -Chim. Sin. 2022, 38, 2006059.  doi: 10.3866/PKU.WHXB202006059

    221. [221]

      Lv, H.; Wang, X.; Yang, Y.; Liu, T.; Zhang, L. Acta Phys. -Chim. Sin. 2023, 39, 2210014.  doi: 10.3866/PKU.WHXB202210014

    222. [222]

      Xu, M.; Liu, M.; Yang, Z.; Wu, C.; Qian, J. Acta Phys. -Chim. Sin. 2023, 39, 2210043.  doi: 10.3866/PKU.WHXB202210043

    223. [223]

      Wang, T.; Zhang, Q.; Lian, K.; Qi, G.; Liu, Q.; Feng, L.; Hu, G.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2024, 655, 176. doi: 10.1016/j.jcis.2023.10.157  doi: 10.1016/j.jcis.2023.10.157

    224. [224]

      Liu, W.; Niu, X.; Tang, J.; Liu, Q.; Luo J.; Liu, X.; Zhou, Y. Chem. Synth. 2023, 3, 44. doi: 10.20517/cs.2023.28  doi: 10.20517/cs.2023.28

    225. [225]

      Li, W.; Liu, K.; Feng, S.; Xiao, Y.; Zhang, L.; Mao, J.; Liu, Q.; Liu, X.; Luo, J.; Han, L. J. Colloid Interface Sci. 2024, 655, 726. doi: 10.1016/j.jcis.2023.11.069  doi: 10.1016/j.jcis.2023.11.069

    226. [226]

      Zhang, H.; Aierke, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. Carbon Energy 2023, 5, e217. doi: 10.1002/cey2.217  doi: 10.1002/cey2.217

  • 加载中
    1. [1]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    2. [2]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    11. [11]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    17. [17]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

Metrics
  • PDF Downloads(6)
  • Abstract views(787)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return