Citation: Doudou Qin,  Junyang Ding,  Chu Liang,  Qian Liu,  Ligang Feng,  Yang Luo,  Guangzhi Hu,  Jun Luo,  Xijun Liu. Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231003. doi: 10.3866/PKU.WHXB202310034 shu

Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries

  • Corresponding author: Chu Liang,  Yang Luo,  Xijun Liu, 
  • Received Date: 24 October 2023
    Revised Date: 7 December 2023
    Accepted Date: 8 December 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22075211, 52072342, 51971157), the Shenzhen Science and Technology Program (JCYJ20210324115412035, JCYJ20210324123202008, JCYJ20210324122803009, ZDSYS20210813095534001), the Guangdong Basic and Applied Basic Research Foundation (2021A1515110880), and the Tianjin Science Fund for Distinguished Young Scholars (19JCJQJC61800).

  • Non-renewable energy sources such as fossil fuels are increasingly depleted. In order to cope with the potential energy crisis, it is urgent to develop clean and efficient renewable energy sources. Advanced energy storage technology based on electrical energy holds critical significance to the sustainable and steady development of human society. Aqueous rechargeable batteries are a kind of promising electrochemical energy storage devices. Zinc-ion batteries (ZIBs) are gaining increasing popularity due to their safety, sustainability, cost-effectiveness and high energy density, positioning them as potential successors to current Lithium-ion batteries (LIBs) with a high degree of commercialization. The extraordinary mechanical flexibility and excellent electrochemical performance exhibited by ZIBs holds great significance in advancing the development of flexible and wearable batteries. Manganese-based oxides with large channel size possess the characteristics of high theoretical capacity, various oxidation states (including +2, +3, +4) and low cost, which are commonly employed as cathode materials for AZIBs. Nevertheless, the electrochemical performance of current manganese-based ZIBs is not satisfactory, facing the challenges of metal dissolution, material structure instability, notably a strong electrostatic interaction exhibited by divalent Zn2+ ions in the host structure resulting in slow transmission kinetics. These challenges contribute to low cycle stability of the battery, impeding practical application and the progression of ZIBs. To solve these problems, diverse structural engineering strategies including defect engineering have been exploited, which can effectively improve the transport kinetics of zinc ions. From the perspective of enhancing the performance of the material itself, interlayer intercalation and other measures can be taken to better the microstructure or morphology of manganese-based materials. By improving the electrical conductivity of the material and enhancing ionic bonding, the structural stability and electrochemical performance of the material can be effectively improved. And from the angle of battery design, in order to improve the stability of the electrode-electrolyte interface, the electrolyte is optimized, or a fresh preparation method different from the conventional slurry coating process is adopted, which is also a promising method to design a new electrode without binder and the electrode components can still be evenly distributed. This review provides an overview of Zinc-ion storage mechanisms:the reversible Zn2+ insertion/extraction; the reversible interposition and deintercalation of Zn2+ and H+; the chemical conversion reactions, and the mechanism of dissolution-deposition reaction. Furthermore, the challenges faced by manganese-based cathode materials are clarified, and the optimization strategies to improve their electrochemical performance by increasing active sites, reducing solid-state diffusion energy barriers, inhibiting the dissolution of active substances, and improving material stability are highlighted. Finally, the practical application and potential of ZIBs assembled by manganese-based cathode materials in biomedical equipment and other electronic devices are also discussed.
  • 加载中
    1. [1]

      (1) Bolsen, T. Nat. Energy 2022, 7, 1003. doi: 10.1038/s41560-022-01100-y

    2. [2]

      (2) Shen, H.; Wei, T.; Liu, Q.; Zhang, S.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2023, 634, 730. doi: 10.1016/j.jcis.2022.12.067

    3. [3]

      (3) Zhang, Q.; Lian, K.; Qi, G.; Zhang, S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. Sci. China Mater. 2023, 66, 1681. doi: 10.1007/s40843-022-2379-8

    4. [4]

      (4) Ponce, P.; López-Sánchez, M.; Guerrero-Riofrío, P.; Flores-Chamba, J. Environ. Sci. Pollut. Res. 2020, 27, 29554. doi: 10.1007/s11356-020-09238-6

    5. [5]

      (5) Li, G.; Jin, Y.; Akram, M. W.; Chen, X. Renew. Sust. Energ. Rev. 2017, 79, 440. doi: 10.1016/j.rser.2017.05.055

    6. [6]

      (6) Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Small Struct. 2022, 3, 2200086. doi: 10.1002/sstr.202200086

    7. [7]

      (7) Kelly-Richards, S.; Silber-Coats, N.; Crootof, A.; Tecklin, D.; Bauer, C. Energy Policy 2017, 101, 251. doi: 10.1016/j.enpol.2016.11.035

    8. [8]

      (8) Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. Energy Strategy Rev. 2019, 24, 38. doi: 10.1016/j.esr.2019.01.006

    9. [9]

      (9) Ding, J.; Yang, H.; Zhang, S.; Liu, Q.; Cao, H.; Luo, J.; Liu, X. Small 2022, 18, 2204524. doi: 10.1002/smll.202204524

    10. [10]

      (10) Fuso Nerini, F.; Tomei, J.; To, L. S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Nat. Energy 2018, 3, 10. doi: 10.1038/s41560-017-0036-5

    11. [11]

      (11) Liu, W.; Feng, J.; Wei, T.; Liu, Q.; Zhang, S.; Luo, Y.; Luo, J.; Liu, X. Nano Res. 2023, 16, 2325. doi: 10.1007/s12274-022-4929-7

    12. [12]

      (12) Wei, T.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Chem. Commun. 2023, 59, 442. doi: 10.1039/D2CC05722K

    13. [13]

      (13) Dornan, M. Renew. Sust. Energ. Rev. 2014, 31, 726. doi: 10.1016/j.rser.2013.12.037

    14. [14]

      (14) Dehghani-Sanij, A. R.; Tharumalingam, E.; Dusseault, M. B.; Fraser, R. Renew. Sust. Energ. Rev. 2019, 104, 192. doi: 10.1016/j.rser.2019.01.023

    15. [15]

      (15) Meng, G.; Cao, H.; Wei, T.; Liu, Q.; Fu, J.; Zhang, S.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 11839. doi: 10.1039/D2CC04591E

    16. [16]

      (16) Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Chem. Rec. 2018, 18, 459. doi: 10.1002/tcr.201700057

    17. [17]

      (17) Zhang, Y.; Zhou, C.-G.; Yang, J.; Xue, S.-C.; Gao, H.-L.; Yan, X.-H.; Huo, Q.-Y.; Wang, S.-W.; Cao, Y.; Yan, J.; et al. J. Power Sources 2022, 520, 230800. doi: 10.1016/j.jpowsour.2021.230800

    18. [18]

      (18) Nowak, S.; Winter, M. J. Anal. At. Spectrom. 2017, 32, 1833. doi: 10.1039/C7JA00073A

    19. [19]

      (19) Chen, H.; Zhang, S.; Liu, Q.; Yu, P.; Luo, J.; Hu, G.; Liu, X. Inorg. Chem. Commun. 2022, 146, 110170. doi: 10.1016/j.inoche.2022.110170

    20. [20]

      (20) Karrech, A.; Regenauer-Lieb, K.; Abbassi, F. J. Energy Storage 2022, 45, 103623. doi: 10.1016/j.est.2021.103623

    21. [21]

      (21) Liu, T.; Yan, R.; Huang, H.; Pan, L.; Cao, X.; deMello, A.; Niederberger, M. Adv. Funct. Mater. 2020, 30, 2004410. doi: 10.1002/adfm.202004410

    22. [22]

      (22) Su, L.; Gong, L.; Wang, X.; Pan, H. Int. J. Energy Res. 2016, 40, 763. doi: 10.1002/er.3480

    23. [23]

      (23) Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81. doi: 10.1039/C4EE03192J

    24. [24]

      (24) Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Electrochem. Commun. 2015, 60, 172. doi: 10.1016/j.elecom.2015.09.002

    25. [25]

      (25) Song, S.; Duong, H. M.; Korsunsky, A. M.; Hu, N.; Lu, L. Sci. Rep. 2016, 6, 32330. doi: 10.1038/srep32330

    26. [26]

      (26) Luo, C.; Langrock, A.; Fan, X.; Liang, Y.; Wang, C. J. Mater. Chem. A 2017, 5, 18214. doi: 10.1039/C7TA04515H

    27. [27]

      (27) Fang, G.; Zhou, J.; Pan, A.; Liang, S. ACS Energy Lett. 2018, 3, 2480. doi: 10.1021/acsenergylett.8b01426

    28. [28]

      (28) Li, C.; Deng, W.; Li, Y.; Zhou, Z.; Hu, J.; Zhang, M.; Yuan, X.; Li, R. Chem. Commun. 2022, 58, 7702. doi: 10.1039/d2cc01798a

    29. [29]

      (29) Zhu, K.; Li, Z.; Sun, Z.; Liu, P.; Jin, T.; Chen, X.; Li, H.; Lu, W.; Jiao, L. Small 2022, 18, e2107662. doi: 10.1002/smll.202107662

    30. [30]

      (30) Ejigu, A.; Le Fevre, L. W.; Elgendy, A.; Spencer, B. F.; Bawn, C.; Dryfe, R. A. W. ACS Appl. Mater. Interfaces 2022, 14, 25232. doi: 10.1021/acsami.1c23278

    31. [31]

      (31) Shi, X.; Liu, H.; Xu, D.; Yu, Y.; Lu, X. J. Phys. Chem. C 2023, 127, 6233. doi: 10.1021/acs.jpcc.3c00810

    32. [32]

      (32) Zhang, Y.; Zheng, X.; Wang, N.; Lai, W. H.; Liu, Y.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Chem. Sci. 2022, 13, 14246. doi: 10.1039/d2sc04945g

    33. [33]

      (33) Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y.; et al. J. Mater. Chem. A 2017, 5, 23299. doi: 10.1039/c7ta07170a

    34. [34]

      (34) Liu, Y.; Liu, Y.; Wu, X. Chem. Rec. 2022, 22, e202200088. doi: 10.1002/tcr.202200088

    35. [35]

      (35) Zhang, C.; Holoubek, J.; Wu, X.; Daniyar, A.; Zhu, L.; Chen, C.; Leonard, D. P.; Rodríguez-Pérez, I. A.; Jiang, J.-X.; Fang, C.; et al. Chem. Commun. 2018, 54, 14097. doi: 10.1039/C8CC07730D

    36. [36]

      (36) Ge, H.; Feng, X.; Liu, D.; Zhang, Y. Nano Res. Energy 2023, 2, e9120039. doi: 10.26599/NRE.2023.9120039

    37. [37]

      (37) Zeng, X.; Xie, K.; Liu, S.; Zhang, S.; Hao, J.; Liu, J.; Pang, W. K.; Liu, J.; Rao, P.; Wang, Q.; et al. Energy Environ. Sci. 2021, 14, 5947. doi: 10.1039/d1ee01851e

    38. [38]

      (38) Dai, Y.; Zhang, C.; Zhang, W.; Cui, L.; Ye, C.; Hong, X.; Li, J.; Chen, R.; Zong, W.; Gao, X.; et al. Angew. Chem. Int. Ed. 2023, 62, e202301192. doi: 10.1002/anie.202301192

    39. [39]

      (39) Wu, H.; Yan, W.; Xing, Y.; Li, L.; Liu, J.; Li, L.; Huang, P.; Lai, C.; Wang, C.; Chen, W.; et al. Adv. Funct. Mater. 2023, 2213882. doi: 10.1002/adfm.202213882

    40. [40]

      (40) Zhou, J.; Shan, L.; Wu, Z.; Guo, X.; Fang, G.; Liang, S. Chem. Commun. 2018, 54, 4457. doi: 10.1039/c8cc02250j

    41. [41]

      (41) Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Nat. Energy 2016, 1, 16039. doi: 10.1038/nenergy.2016.39

    42. [42]

      (42) He, Y.; Pu, Y.; Zhu, B.; Zhu, H.; Wang, C.; Tang, W.; Tang, H. J. Alloy. Compd. 2023, 934, 167933. doi: 10.1016/j.jallcom.2022.167933

    43. [43]

      (43) Cao, J.; Zhang, D.; Yue, Y.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7909. doi: 10.1021/acsami.1c21581

    44. [44]

      (44) Yang, Q.; Mo, F.; Liu, Z.; Ma, L.; Li, X.; Fang, D.; Chen, S.; Zhang, S.; Zhi, C. Adv. Mater. 2019, 31, 1901521. doi: 10.1002/adma.201901521

    45. [45]

      (45) Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Adv. Energy Mater. 2015, 5, 1400930. doi: 10.1002/aenm.201400930

    46. [46]

      (46) Zhang, Y.; Chen, A.; Sun, J. J. Energy Chem. 2021, 54, 655. doi: 10.1016/j.jechem.2020.06.013

    47. [47]

      (47) Hao, J.; Mou, J.; Zhang, J.; Dong, L.; Liu, W.; Xu, C.; Kang, F. Electrochim. Acta 2018, 259, 170. doi: 10.1016/j.electacta.2017.10.166

    48. [48]

      (48) Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J. J. Power Sources 2015, 288, 320. doi: 10.1016/j.jpowsour.2015.04.140

    49. [49]

      (49) Liu, C.; Li, Q.; Sun, H.; Wang, Z.; Gong, W.; Cong, S.; Yao, Y.; Zhao, Z. J. Mater. Chem. A 2020, 8, 24031. doi: 10.1039/D0TA09212F

    50. [50]

      (50) He, B.; Huang, J.; Ji, P.; Hoang, T. K. A.; Han, M.; Li, L.; Zhang, L.; Gao, Z.; Ma, J.; Zhi, J.; et al. J. Power Sources 2023, 554, 232353. doi: 10.1016/j.jpowsour.2022.232353

    51. [51]

      (51) Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M. S.; Mathew, V.; Sun, Y.-K.; Hwang, J.-Y.; et al. Adv. Sci. 2021, 8, 2002636. doi: 10.1002/advs.202002636

    52. [52]

      (52) Hou, Z.; Zhang, X.; Dong, M.; Xiong, Y.; Zhang, Z.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Sci. China Mater. 2021, 64, 783. doi: 10.1007/s40843-020-1503-7

    53. [53]

      (53) Chen, L.; An, Q.; Mai, L. Adv. Mater. Interfaces 2019, 6, 1900387. doi: 10.1002/admi.201900387

    54. [54]

      (54) Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Small 2019, 15, 1804760. doi: 10.1002/smll.201804760

    55. [55]

      (55) Chen, K.; Sun, C.; Xue, D. Phys. Chem. Chem. Phys. 2015, 17, 732. doi: 10.1039/C4CP03888F

    56. [56]

      (56) Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564

    57. [57]

      (57) Shi, W.; Lee, W. S. V.; Xue, J. ChemSusChem. 2021, 14, 1634. doi: 10.1002/cssc.202002493

    58. [58]

      (58) Xu, C.; Li, B.; Du, H.; Kang, F. Angew. Chem. Int. Ed. 2012, 51, 933. doi: 10.1002/anie.201106307

    59. [59]

      (59) Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J. Energy Storage Mater. 2020, 24, 394. doi: 10.1016/j.ensm.2019.07.030

    60. [60]

      (60) Chen, Y.; Ma, D.; Shen, S.; Deng, P.; zhao, Z.; Yang, M.; Wang, Y.; Mi, H.; Zhang, P. Energy Storage Mater. 2023, 56, 600. doi: 10.1016/j.ensm.2023.01.049

    61. [61]

      (61) Du, Y.; Xu, Y.; Zhang, Y.; Yang, B.; Lu, H.; Ge, C.; Bin, D. Chem. Eng. J. 2023, 457, 141162 doi: 10.1016/j.cej.2022.141162

    62. [62]

      (62) Wu, X.; Jian, Z.; Li, Z.; Ji, X. Electrochem. Commun. 2017, 77, 54. doi: 10.1016/j.elecom.2017.02.012

    63. [63]

      (63) Wang, X.; Li, Y.; Wang, S.; Zhou, F.; Das, P.; Sun, C.; Zheng, S.; Wu, Z.-S. Adv. Energy Mater. 2020, 10, 2000081. doi: 10.1002/aenm.202000081

    64. [64]

      (64) He, P.; Yan, M.; Zhang, G.; Sun, R.; Chen, L.; An, Q.; Mai, L. Adv. Energy Mater. 2017, 7, 1601920. doi: 10.1002/aenm.201601920

    65. [65]

      (65) Wang, L.; Wu, Z.; Jiang, M.; Lu, J.; Huang, Q.; Zhang, Y.; Fu, L.; Wu, M.; Wu, Y. J. Mater. Chem. A 2020, 8, 9313. doi: 10.1039/D0TA01297A

    66. [66]

      (66) Liu, S.; Chen, X.; Zhang, Q.; Zhou, J.; Cai, Z.; Pan, A. ACS Appl. Mater. Interfaces 2019, 11, 36676. doi: 10.1021/acsami.9b12128

    67. [67]

      (67) Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. J. Am. Chem. Soc. 2017, 139, 9775. doi: 10.1021/jacs.7b04471

    68. [68]

      (68) Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Chem. Soc. Rev. 2015, 44, 699. doi: 10.1039/C4CS00218K

    69. [69]

      (69) Li, X.; Ji, C.; Shen, J.; Feng, J.; Mi, H.; Xu, Y.; Guo, F.; Yan, X. Adv. Sci. 2023, 10, 2205794. doi: 10.1002/advs.202205794

    70. [70]

      (70) Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4

    71. [71]

      (71) Jin, Y.; Zou, L.; Liu, L.; Engelhard, M. H.; Patel, R. L.; Nie, Z.; Han, K. S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Adv. Mater. 2019, 31, e1900567. doi: 10.1002/adma.201900567

    72. [72]

      (72) Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Chem. Commun. 2015, 51, 9265. doi: 10.1039/C5CC02585K

    73. [73]

      (73) Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J. Chem. Mater. 2015, 27, 3609. doi: 10.1021/cm504717p

    74. [74]

      (74) Zhao, S.; Han, B.; Zhang, D.; Huang, Q.; Xiao, L.; Chen, L.; Ivey, D. G.; Deng, Y.; Wei, W. J. Mater. Chem. A 2018, 6, 5733. doi: 10.1039/C8TA01031E

    75. [75]

      (75) Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174

    76. [76]

      (76) Zhang, H.; Wei, T.; Qiu, Y.; Zhang, S.; Liu, Q.; Hu, G.; Luo, J.; Liu, X. Small 2023, 19, 2207249. doi: 10.1002/smll.202207249

    77. [77]

      (77) Li, G.; Chen, W.; Zhang, H.; Gong, Y.; Shi, F.; Wang, J.; Zhang, R.; Chen, G.; Jin, Y.; Wu, T.; et al. Adv. Energy Mater. 2020, 10, 1902085. doi: 10.1002/aenm.201902085

    78. [78]

      (78) Liang, G.; Mo, F.; Li, H.; Tang, Z.; Liu, Z.; Wang, D.; Yang, Q.; Ma, L.; Zhi, C. Adv. Energy Mater. 2019, 9, 1901838. doi: 10.1002/aenm.201901838

    79. [79]

      (79) Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. Energy Environ. Sci. 2020, 13, 135. doi: 10.1039/c9ee03702k

    80. [80]

      (80) Lee, B.; Seo, H. R.; Lee, H. R.; Yoon, C. S.; Kim, J. H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. ChemSusChem 2016, 9, 2948. doi: 10.1002/cssc.201600702

    81. [81]

      (81) Ye, X.; Han, D.; Jiang, G.; Cui, C.; Guo, Y.; Wang, Y.; Zhang, Z.; Weng, Z.; Yang, Q.-H. Energy Environ. Sci. 2023, 16, 1016. doi: 10.1039/d3ee00018d

    82. [82]

      (82) Chen, H.; Dai, C.; Xiao, F.; Yang, Q.; Cai, S.; Xu, M.; Fan, H. J.; Bao, S.-J. Adv. Mater. 2022, 34, 2109092. doi: 10.1002/adma.202109092

    83. [83]

      (83) Liu, S.; Zhu, H.; Zhang, B.; Li, G.; Zhu, H.; Ren, Y.; Geng, H.; Yang, Y.; Liu, Q.; Li, C. C. Adv. Mater. 2020, 32, 2001113. doi: 10.1002/adma.202001113

    84. [84]

      (84) Liu, W.; Zhang, X.; Huang, Y.; Jiang, B.; Chang, Z.; Xu, C.; Kang, F. J. Energy Chem. 2021, 56, 365. doi: 10.1016/j.jechem.2020.07.027

    85. [85]

      (85) Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A.; et al. Energy Environ. Sci. 2018, 11, 2521. doi: 10.1039/C8EE01415A

    86. [86]

      (86) Wang, X.; Wang, Z.; Zhu, C.; Zheng, L.; Wu, Z.; Song, Y.; Wan, F.; Guo, X. ACS Energy Lett. 2023, 8, 4547. doi: 10.1021/acsenergylett.3c01821

    87. [87]

      (87) Yang, H.; Zhang, T.; Chen, D.; Tan, Y.; Zhou, W.; Li, L.; Li, W.; Li, G.; Han, W.; Fan, H. J.; et al. Adv. Mater. 2023, 35, 2300053. doi: 10.1002/adma.202300053

    88. [88]

      (88) Lee, B.; Yoon, C. S.; Lee, H. R.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Sci. Rep. 2014, 4, 6066. doi: 10.1038/srep06066

    89. [89]

      (89) Zhang, W.; Qin, X.; Wei, T.; Liu, Q.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2023, 638, 650. doi: 10.1016/j.jcis.2023.02.026

    90. [90]

      (90) Alfaruqi, M. H.; Islam, S.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y.-K.; Kim, K.; Kim, J. Electrochim. Acta 2018, 276, 1. doi: 10.1016/j.electacta.2018.04.139

    91. [91]

      (91) Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Chem. Soc. Rev. 2020, 49, 180. doi: 10.1039/C9CS00131J

    92. [92]

      (92) Ding, J.; Hou, X.; Qiu, Y.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Inorg. Chem. Commun. 2023, 151, 110621. doi: 10.1016/j.inoche.2023.110621

    93. [93]

      (93) Pan, C.; Zhang, R.; Nuzzo, R. G.; Gewirth, A. A. Adv. Energy Mater. 2018, 8, 1800589. doi: 10.1002/aenm.201800589

    94. [94]

      (94) Meggiolaro, D.; Mosconi, E.; De Angelis, F. ACS Energy Lett. 2019, 4, 779. doi: 10.1021/acsenergylett.9b00247

    95. [95]

      (95) Paier, J.; Penschke, C.; Sauer, J. Chem. Rev. 2013, 113, 3949. doi: 10.1021/cr3004949

    96. [96]

      (96) Xie, C.; Yan, D.; Chen, W.; Zou, Y.; Chen, R.; Zang, S.; Wang, Y.; Yao, X.; Wang, S. Mater. Today 2019, 31, 47. doi: 10.1016/j.mattod.2019.05.021

    97. [97]

      (97) Hu, C.; Dai, L. Adv. Mater. 2019, 31, 1804672. doi: 10.1002/adma.201804672

    98. [98]

      (98) Zhang, H.; Qi, G.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Inorg. Chem. Front. 2023, 10, 2423. doi: 10.1039/D3QI00013C

    99. [99]

      (99) Hu, L.; Zhu, T.; Liu, X.; Zhao, X. Adv. Funct. Mater. 2014, 24, 5211. doi: 10.1002/adfm.201400474

    100. [100]

      (100) Zhang, Y.; Deng, S.; Luo, M.; Pan, G.; Zeng, Y.; Lu, X.; Ai, C.; Liu, Q.; Xiong, Q.; Wang, X.; et al. Small 2019, 15, e1905452. doi: 10.1002/smll.201905452

    101. [101]

      (101) Zhao, Y.; Chang, C.; Teng, F.; Zhao, Y.; Chen, G.; Shi, R.; Waterhouse, G. I. N.; Huang, W.; Zhang, T. Adv. Energy Mater. 2017, 7, 1700005. doi: 10.1002/aenm.201700005

    102. [102]

      (102) Kim, H.-S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Nat. Mater. 2017, 16, 454. doi: 10.1038/nmat4810

    103. [103]

      (103) Xiong, T.; Yu, Z. G.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. Adv. Energy Mater. 2019, 9, 1803815. doi: 10.1002/aenm.201803815

    104. [104]

      (104) Sun, K.; Pang, J.; Zheng, Y.; Xing, F.; Jiang, R.; Min, J.; Ye, J.; Wang, L.; Luo, Y.; Gu, T.; et al. J. Alloy. Compd. 2022, 923, 166470. doi: 10.1016/j.jallcom.2022.166470

    105. [105]

      (105) Ang, Z. W. J.; Xiong, T.; Lee, W. S. V.; Xue, J. ChemNanoMat 2020, 6, 1357. doi: 10.1002/cnma.202000300

    106. [106]

      (106) Zheng, J.; Qin, C.; Chen, C.; Zhang, C.; Shi, P.; Chen, X.; Gan, Y.; Li, J.; Yao, J.; Liu, X.; et al. J. Mater. Chem. A 2023, 11, 24311. doi: 10.1039/D3TA05364D

    107. [107]

      (107) Liu, Y.; Wu, X. J. Energy Chem. 2023, 87, 334. doi: 10.1016/j.jechem.2023.08.022

    108. [108]

      (108) Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. J. Am. Chem. Soc. 2016, 138, 12894. doi: 10.1021/jacs.6b05958

    109. [109]

      (109) Guo, X.; Sun, H.; Li, C.; Zhang, S.; Li, Z.; Hou, X.; Chen, X.; Liu, J.; Shi, Z.; Feng, S. J. Energy Chem. 2022, 68, 538. doi: 10.1016/j.jechem.2021.12.033

    110. [110]

      (110) Long, J.; Gu, J.; Yang, Z.; Mao, J.; Hao, J.; Chen, Z.; Guo, Z. J. Mater. Chem. A 2019, 7, 17854. doi: 10.1039/C9TA05101E

    111. [111]

      (111) Liu, G.; Huang, H.; Bi, R.; Xiao, X.; Ma, T.; Zhang, L. J. Mater. Chem. A 2019, 7, 20806. doi: 10.1039/C9TA08049J

    112. [112]

      (112) Kataoka, F.; Ishida, T.; Nagita, K.; Kumbhar, V.; Yamabuki, K.; Nakayama, M. ACS Appl. Energy Mater. 2020, 3, 4720. doi: 10.1021/acsaem.0c00357

    113. [113]

      (113) Zhang, D.; Cao, J.; Zhang, X.; Insin, N.; Wang, S.; Han, J.; Zhao, Y.; Qin, J.; Huang, Y. Adv. Funct. Mater. 2021, 31, 2009412. doi: 10.1002/adfm.202009412

    114. [114]

      (114) Ma, K.; Li, Q.; Hong, C.; Yang, G.; Wang, C. ACS Appl. Mater. Interfaces 2021, 13, 55208. doi: 10.1021/acsami.1c17677

    115. [115]

      (115) Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X. J. Mater. Chem. A 2019, 7, 22079. doi: 10.1039/C9TA08418E

    116. [116]

      (116) Wang, J.; Sun, X.; Zhao, H.; Xu, L.; Xia, J.; Luo, M.; Yang, Y.; Du, Y. J. Phys. Chem. C 2019, 123, 22735. doi: 10.1021/acs.jpcc.9b05535

    117. [117]

      (117) Zhong, Y.; Xu, X.; Veder, J. P.; Shao, Z. iScience 2020, 23, 100943. doi: 10.1016/j.isci.2020.100943

    118. [118]

      (118) Tao, Y.; Li, Z.; Tang, L.; Pu, X.; Cao, T.; Cheng, D.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Electrochim. Acta 2020, 331, 135296. doi: 10.1016/j.electacta.2019.135296

    119. [119]

      (119) Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z.; et al. Appl. Surf. Sci. 2017, 404, 435. doi: 10.1016/j.apsusc.2017.02.009

    120. [120]

      (120) Wu, Y.; Zhang, K.; Chen, S.; Liu, Y.; Tao, Y.; Zhang, X.; Ding, Y.; Dai, S. ACS Appl. Energy Mater. 2019, 3, 319. doi: 10.1021/acsaem.9b01554

    121. [121]

      (121) Li, S.; Zhao, M.; Zhang, D.; Wu, X. Cryst. Growth Des. 2023, 23, 8156. doi: 10.1021/acs.cgd.3c00864

    122. [122]

      (122) Zhao, Y.; Zhang, P.; Liang, J.; Xia, X.; Ren, L.; Song, L.; Liu, W.; Sun, X. Energy Storage Mater. 2022, 47, 424. doi: 10.1016/j.ensm.2022.02.030

    123. [123]

      (123) Du, M.; Liu, C.; Zhang, F.; Dong, W.; Zhang, X.; Sang, Y.; Wang, J.-J.; Guo, Y.-G.; Liu, H.; Wang, S. Adv. Sci. 2020, 7, 2000083. doi: 10.1002/advs.202000083

    124. [124]

      (124) Ming, F.; Liang, H.; Lei, Y.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. ACS Energy Lett. 2018, 3, 2602. doi: 10.1021/acsenergylett.8b01423

    125. [125]

      (125) Zhu, K.; Wu, T.; Huang, K. Adv. Energy Mater. 2019, 9, 1901968. doi: 10.1002/aenm.201901968

    126. [126]

      (126) Zhang, J.; Li, W.; Wang, J.; Pu, X.; Zhang, G.; Wang, S.; Wang, N.; Li, X. Angew. Chem. Int. Ed. 2023, 62, e202215654. doi: 10.1002/anie.202215654

    127. [127]

      (127) Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Energy Environ. Sci. 2019, 12, 1999. doi: 10.1039/c9ee00718k

    128. [128]

      (128) Zhai, X. Z.; Qu, J.; Hao, S. M.; Jing, Y. Q.; Chang, W.; Wang, J.; Li, W.; Abdelkrim, Y.; Yuan, H.; Yu, Z. Z. Nanomicro Lett. 2020, 12, 56. doi: 10.1007/s40820-020-0397-3

    129. [129]

      (129) Sun, T.; Nian, Q.; Zheng, S.; Shi, J.; Tao, Z. Small 2020, 16, e2000597. doi: 10.1002/smll.202000597

    130. [130]

      (130) Shin, J.; Choi, D. S.; Lee, H. J.; Jung, Y.; Choi, J. W. Adv. Energy Mater. 2019, 9, 1900083. doi: 10.1002/aenm.201900083

    131. [131]

      (131) Jiang, H.; Zhang, Y.; Pan, Z.; Xu, L.; Zheng, J.; Gao, Z.; Hu, T.; Meng, C.; Wang, J. Mater. Chem. Front. 2020, 4, 1434. doi: 10.1039/D0QM00051E

    132. [132]

      (132) Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu, X.; An, Q.; Shuang, Y.; Shao, Y.; et al. Adv. Mater. 2018, 30. doi: 10.1002/adma.201703725

    133. [133]

      (133) Xia, C.; Guo, J.; Li, P.; Zhang, X.; Alshareef, H. N. Angew. Chem. Int. Ed. 2018, 57, 3943. doi: 10.1002/anie.201713291

    134. [134]

      (134) Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/C8EE01651H

    135. [135]

      (135) Bin, D.; Huo, W.; Yuan, Y.; Huang, J.; Liu, Y.; Zhang, Y.; Dong, F.; Wang, Y.; Xia, Y. Chem 2020, 6, 968. doi: 10.1016/j.chempr.2020.02.001

    136. [136]

      (136) Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z.; et al. Nano Energy 2019, 62, 79. doi: 10.1016/j.nanoen.2019.04.038

    137. [137]

      (137) Mao, J.; Wu, F.-F.; Shi, W.-H.; Liu, W.-X.; Xu, X.-L.; Cai, G.-F.; Li, Y.-W.; Cao, X.-H. Chin. J. Polym. Sci. 2020, 38, 514. doi: 10.1007/s10118-020-2353-6

    138. [138]

      (138) Xu, J.-W.; Gao, Q.-L.; Xia, Y.-M.; Lin, X.-S.; Liu, W.-L.; Ren, M.-M.; Kong, F.-G.; Wang, S.-J.; Lin, C. J. Colloid Interface Sci. 2021, 598, 419. doi: 10.1016/j.jcis.2021.04.057

    139. [139]

      (139) Xu, D.; Wang, H.; Li, F.; Guan, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Adv. Mater. Interfaces 2019, 6, 1801506. doi: 10.1002/admi.201801506

    140. [140]

      (140) Huang, A.; Zhou, W.; Wang, A.; Chen, M.; Chen, J.; Tian, Q.; Xu, J. Appl. Surf. Sci. 2021, 545, 149041. doi: 10.1016/j.apsusc.2021.149041

    141. [141]

      (141) Islam, S.; Alfaruqi, M. H.; Song, J.; Kim, S.; Pham, D. T.; Jo, J.; Kim, S.; Mathew, V.; Baboo, J. P.; Xiu, Z.; et al. J. Energy Chem. 2017, 26, 815. doi: 10.1016/j.jechem.2017.04.002

    142. [142]

      (142) Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Small 2018, 14, e1703850. doi: 10.1002/smll.201703850

    143. [143]

      (143) Li, W.; Gao, X.; Chen, Z.; Guo, R.; Zou, G.; Hou, H.; Deng, W.; Ji, X.; Zhao, J. Chem. Eng. J. 2020, 402, 125509. doi: 10.1016/j.cej.2020.125509

    144. [144]

      (144) Kim, C.; Ahn, B. Y.; Wei, T.-S.; Jo, Y.; Jeong, S.; Choi, Y.; Kim, I.-D.; Lewis, J. A. ACS Nano 2018, 12, 11838. doi: 10.1021/acsnano.8b02744

    145. [145]

      (145) Sun, J.; Zhao, Y.; Liu, Y.; Jiang, H.; Chen, D.; Xu, L.; Hu, T.; Meng, C.; Zhang, Y. J. Colloid Interface Sci. 2023, 633, 923. doi: 10.1016/j.jcis.2022.11.153

    146. [146]

      (146) Zhang, Z.; Xi, B.; Wang, X.; Ma, X.; Chen, W.; Feng, J.; Xiong, S. Adv. Funct. Mater. 2021, 31, 2103070. doi: 10.1002/adfm.202103070

    147. [147]

      (147) Wang, L.; Yang, H.; Liu, X.; Zeng, R.; Li, M.; Huang, Y.; Hu, X. Angew. Chem. Int. Ed. 2017, 56, 1105. doi: 10.1002/anie.201609527

    148. [148]

      (148) Zhang, Y.; Xu, G.; Liu, X.; Wei, X.; Cao, J.; Yang, L. ChemElectroChem 2020, 7, 2762. doi: 10.1002/celc.202000253

    149. [149]

      (149) Huang, J.; Tang, X.; Liu, K.; Fang, G.; He, Z.; Li, Z. Mater. Today Energy 2020, 17, 100475. doi: 10.1016/j.mtener.2020.100475

    150. [150]

      (150) Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Adv. Mater. 2017, 29, 1700274. doi: 10.1002/adma.201700274

    151. [151]

      (151) Suo, L.; Oh, D.; Lin, Y.; Zhuo, Z.; Borodin, O.; Gao, T.; Wang, F.; Kushima, A.; Wang, Z.; Kim, H.-C.; et al. J. Am. Chem. Soc. 2017, 139, 18670. doi: 10.1021/jacs.7b10688

    152. [152]

      (152) Guo, J.; Ming, J.; Lei, Y.; Zhang, W.; Xia, C.; Cui, Y.; Alshareef, H. N. ACS Energy Lett. 2019, 4, 2776. doi: 10.1021/acsenergylett.9b02029

    153. [153]

      (153) Guo, S.; Liang, S.; Zhang, B.; Fang, G.; Ma, D.; Zhou, J. ACS Nano 2019, 13, 13456. doi: 10.1021/acsnano.9b07042

    154. [154]

      (154) Li, S.; Yu, D.; Liu, L.; Yao, S.; Wang, X.; Jin, X.; Zhang, D.; Du, F. Chem. Eng. J. 2022, 430, 132673. doi: 10.1016/j.cej.2021.132673

    155. [155]

      (155) Hu, X.; Chen, X.; Chen, Y.; Li, Z.; Huang, Y.; Deng, L.; Cao, D. J. Alloy. Compd. 2023, 945, 169271. doi: 10.1016/j.jallcom.2023.169271

    156. [156]

      (156) Liu, H.; Liu, F.; Qu, Z.; Chen, J.; Liu, H.; Tan, Y.; Guo, J.; Yan, Y.; Zhao, S.; Zhao, X.; et al. Nano Res. Energy 2023, 2, e9120049. doi: 10.26599/NRE.2023.9120049

    157. [157]

      (157) Hu, X.; Han, X.; Hu, Y.; Cheng, F.; Chen, J. Nanoscale 2014, 6, 3522. doi: 10.1039/C3NR06361E

    158. [158]

      (158) Zang, X.; Wang, X.; Liu, H.; Ma, X.; Wang, W.; Ji, J.; Chen, J.; Li, R.; Xue, M. ACS Appl. Mater. Interfaces 2020, 12, 9347. doi: 10.1021/acsami.9b22470

    159. [159]

      (159) Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A. A.; Kheawhom, S. Sci. Rep. 2019, 9, 8441. doi: 10.1038/s41598-019-44915-8

    160. [160]

      (160) Gull, S.; Huang, S.-C.; Ni, C.-S.; Liu, S.-F.; Lin, W.-H.; Chen, H.-Y. J. Mater. Chem. A 2022, 10, 14540. doi: 10.1039/D2TA02734H

    161. [161]

      (161) Dong, X.; Sun, J.; Mu, Y.; Yu, Y.; Hu, T.; Miao, C.; Huang, C.; Meng, C.; Zhang, Y. J. Colloid Interface Sci. 2022, 610, 805. doi: 10.1016/j.jcis.2021.11.137

    162. [162]

      (162) Ho, V. C.; Oh, S. H.; Mun, J. Int. J. Energy Res. 2022, 46, 9720. doi: 10.1002/er.7841

    163. [163]

      (163) Wang, Y.; Ma, Z.; Chen, Y.; Zou, M.; Yousaf, M.; Yang, Y.; Yang, L.; Cao, A.; Han, R. P. Adv. Mater. 2016, 28, 10175. doi: 10.1002/adma.201603812

    164. [164]

      (164) Zhu, C.; Fang, G.; Zhou, J.; Guo, J.; Wang, Z.; Wang, C.; Li, J.; Tang, Y.; Liang, S. J. Mater. Chem. A 2018, 6, 9677. doi: 10.1039/C8TA01198B

    165. [165]

      (165) Ko, W. Y.; Lubis, A. L.; Wang, H. Y.; Wu, T. C.; Lin, S. T.; Lin, K. J. ChemElectroChem 2022, 9, e202200750. doi: 10.1002/celc.202200750

    166. [166]

      (166) Dhiman, A.; Ivey, D. G. Batteries Supercaps 2019, 3, 293. doi: 10.1002/batt.201900150

    167. [167]

      (167) Dou, P.; Cao, Z.; Wang, C.; Zheng, J.; Xu, X. Chem. Eng. J. 2017, 320, 405. doi: 10.1016/j.cej.2017.03.076

    168. [168]

      (168) Jing, F. Y.; Pei, J.; Zhou, Y. M.; Shang, Y. R.; Yao, S. Y.; Liu, S. S.; Chen, G. J. Colloid Interface Sci. 2022, 609, 557. doi: 10.1016/j.jcis.2021.11.064

    169. [169]

      (169) Wu, X.; Xiang, Y.; Peng, Q.; Wu, X.; Li, Y.; Tang, F.; Song, R.; Liu, Z.; He, Z.; Wu, X. J. Mater. Chem. A 2017, 5, 17990. doi: 10.1039/c7ta00100b

    170. [170]

      (170) Sun, G.; Jin, X.; Yang, H.; Gao, J.; Qu, L. J. Mater. Chem. A 2018, 6, 10926. doi: 10.1039/C8TA02747A

    171. [171]

      (171) Li, Y.; Wang, S.; Salvador, J. R.; Wu, J.; Liu, B.; Yang, W.; Yang, J.; Zhang, W.; Liu, J.; Yang, J. Chem. Mater. 2019, 31, 2036. doi: 10.1021/acs.chemmater.8b05093

    172. [172]

      (172) Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Mater. Today Energy 2020, 18, 100548. doi: 10.1016/j.mtener.2020.100548

    173. [173]

      (173) Kim, S. H.; Kim, J. M.; Ahn, D. B.; Lee, S. Y. Small 2020, 16, e2002837. doi: 10.1002/smll.202002837

    174. [174]

      (174) Wu, F.; Gao, X.; Xu, X.; Jiang, Y.; Gao, X.; Yin, R.; Shi, W.; Liu, W.; Lu, G.; Cao, X. ChemSusChem 2020, 13, 1537. doi: 10.1002/cssc.201903006

    175. [175]

      (175) Wu, Y.; Wang, M.; Tao, Y.; Zhang, K.; Cai, M.; Ding, Y.; Liu, X.; Hayat, T.; Alsaedi, A.; Dai, S. Adv. Funct. Mater. 2019, 30, 1907120. doi: 10.1002/adfm.201907120

    176. [176]

      (176) Zhang, Y.; Wan, F.; Huang, S.; Wang, S.; Niu, Z.; Chen, J. Nat. Commun. 2020, 11, 2199. doi: 10.1038/s41467-020-16039-5

    177. [177]

      (177) Liu, L.; Niu, Z.; Chen, J. Nano Res. 2017, 10, 1524. doi: 10.1007/s12274-017-1448-z

    178. [178]

      (178) Kraytsberg, A.; Ein-Eli, Y. Adv. Energy Mater. 2016, 6, 1600655. doi: 10.1002/aenm.201600655

    179. [179]

      (179) Xu, P.; Yi, H.; Shi, G.; Xiong, Z.; Hu, Y.; Wang, R.; Zhang, H.; Wang, B. Dalton Trans. 2022, 51, 4695. doi: 10.1039/D2DT00047D

    180. [180]

      (180) Sambandam, B.; Soundharrajan, V.; Kim, S.; Alfaruqi, M. H.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J. J. Mater. Chem. A 2018, 6, 15530. doi: 10.1039/C8TA02018C

    181. [181]

      (181) Liu, Y.; Hu, P.; Liu, H.; Wu, X.; Zhi, C. Mater. Today Energy 2020, 17, 100431. doi: 10.1016/j.mtener.2020.100431

    182. [182]

      (182) Zhu, Y.; Zhong, Y.; Chen, G.; Deng, X.; Cai, R.; Li, L.; Shao, Z. Chem. Commun. 2016, 52, 9402. doi: 10.1039/c6cc05252e

    183. [183]

      (183) Zhuang, Y.; Xie, Y.; Fei, B.; Cai, D.; Wang, Y.; Chen, Q.; Zhan, H. J. Mater. Chem. A 2021, 9, 21313. doi: 10.1039/d1ta05982c

    184. [184]

      (184) Wang, J.; Wang, J.-G.; Liu, H.; Wei, C.; Kang, F. J. Mater. Chem. A 2019, 7, 13727. doi: 10.1039/C9TA03541A

    185. [185]

      (185) Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Electrochim. Acta 2019, 304, 370. doi: 10.1016/j.electacta.2019.03.008

    186. [186]

      (186) Guo, X.; Li, J.; Jin, X.; Han, Y.; Lin, Y.; Lei, Z.; Wang, S.; Qin, L.; Jiao, S.; Cao, R. Nanomaterials 2018, 8, 301. doi: 10.3390/nano8050301

    187. [187]

      (187) Liang, L.; Xu, Y.; Li, Y.; Dong, H.; Zhou, M.; Zhao, H.; Kaiser, U.; Lei, Y. J. Mater. Chem. A 2017, 5, 1749. doi: 10.1039/c6ta10345f

    188. [188]

      (188) Yang, B.; Cao, X.; Wang, S.; Wang, N.; Sun, C. Electrochim. Acta 2021, 385, 138447. doi: 10.1016/j.electacta.2021.138447

    189. [189]

      (189) Wu, Y.; Tao, Y.; Zhang, X.; Zhang, K.; Chen, S.; Liu, Y.; Ding, Y.; Cai, M.; Liu, X.; Dai, S. Sci. China Mater. 2020, 63, 1196. doi: 10.1007/s40843-020-1293-8

    190. [190]

      (190) Li, S.; Wei, X.; Wu, C.; Zhang, B.; Wu, S.; Lin, Z. ACS Appl. Energy Mater. 2021, 4, 4208. doi: 10.1021/acsaem.1c00573

    191. [191]

      (191) Niu, B.; Li, Z.; Luo, D.; Ma, X.; Yang, Q.; Liu, Y.-E.; Yu, X.; He, X.; Qiao, Y.; Wang, X. Energy Environ. Sci. 2023, 16, 1662. doi: 10.1039/d2ee04023a

    192. [192]

      (192) Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8

    193. [193]

      (193) Soundharrajan, V.; Sambandam, B.; Kim, S.; Islam, S.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J. Energy Storage Mater. 2020, 28, 407. doi: 10.1016/j.ensm.2019.12.021

    194. [194]

      (194) Park, S.; An, G. H. Int. J. Energy Res. 2022, 46, 8464. doi: 10.1002/er.7687

    195. [195]

      (195) Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Nat. Commun. 2017, 8, 405. doi: 10.1038/s41467-017-00467-x

    196. [196]

      (196) Chuai, M.; Yang, J.; Tan, R.; Liu, Z.; Yuan, Y.; Xu, Y.; Sun, J.; Wang, M.; Zheng, X.; Chen, N.; et al. Adv. Mater. 2022, 34, 2203249. doi: 10.1002/adma.202203249

    197. [197]

      (197) Chuai, M.; Yang, J.; Wang, M.; Yuan, Y.; Liu, Z.; Xu, Y.; Yin, Y.; Sun, J.; Zheng, X.; Chen, N.; et al. eScience 2021, 1, 178. doi: 10.1016/j.esci.2021.11.002

    198. [198]

      (198) Yi, J.; Liang, P.; Liu, X.; Wu, K.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Energy Environ. Sci. 2018, 11, 3075. doi: 10.1039/c8ee01991f

    199. [199]

      (199) Lin, X. S.; Wang, Z. R.; Ge, L. H.; Xu, J. W.; Ma, W. Q.; Ren, M. M.; Liu, W. L.; Yao, J. S.; Zhang, C. B. ChemElectroChem 2022, 9, e202101724. doi: 10.1002/celc.202101724

    200. [200]

      (200) Zhang, H.; Luo, Z.; Deng, W.; Hu, J.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2023, 461, 142105. doi: 10.1016/j.cej.2023.142105

    201. [201]

      (201) Ren, H.; Li, S.; Wang, B.; Zhang, Y.; Wang, T.; Lv, Q.; Zhang, X.; Wang, L.; Han, X.; Jin, F.; et al. Adv. Mater. 2023, 35, 2208237. doi: 10.1002/adma.202208237

    202. [202]

      (202) Liu, S.; Wang, L.; Yang, H.; Gao, S.; Liu, Y.; Zhang, S.; Chen, Y.; Liu, X.; Luo, J. Small 2022, 18, 2104965. doi: 10.1002/smll.202104965

    203. [203]

      (203) Wang, R.; Wu, Q.; Wu, M.; Zheng, J.; Cui, J.; Kang, Q.; Qi, Z.; Ma, J.; Wang, Z.; Liang, H. Nano Res. 2022, 15, 7227. doi: 10.1007/s12274-022-4477-1

    204. [204]

      (204) Li, H.; Zhang, L.; Li, L.; Wu, C.; Huo, Y.; Chen, Y.; Liu, X.; Ke, X.; Luo, J.; Van Tendeloo, G. Nano Res. 2019, 12, 33. doi: 10.1007/s12274-018-2172-z

    205. [205]

      (205) Hu, B.; Xu, J.; Fan, Z.; Xu, C.; Han, S.; Zhang, J.; Ma, L.; Ding, B.; Zhuang, Z.; Kang, Q.; et al. Adv. Energy Mater. 2023, 13, 2203540. doi: 10.1002/aenm.202203540

    206. [206]

      (206) Gao, X.; Dai, Y.; Zhang, C.; Zhang, Y.; Zong, W.; Zhang, W.; Chen, R.; Zhu, J.; Hu, X.; Wang, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202300608. doi: 10.1002/anie.202300608

    207. [207]

      (207) Zhang, N.; Huang, F.; Zhao, S.; Lv, X.; Zhou, Y.; Xiang, S.; Xu, S.; Li, Y.; Chen, G.; Tao, C.; et al. Matter 2020, 2, 1260. doi: 10.1016/j.matt.2020.01.022

    208. [208]

      (208) Li, H.; Han, C.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Wang, Z.; Liu, Z.; Tang, Z.; et al. Energy Environ. Sci. 2018, 11, 941. doi: 10.1039/C7EE03232C

    209. [209]

      (209) Xiao, X.; Xiao, X.; Zhou, Y.; Zhao, X.; Chen, G.; Liu, Z.; Wang, Z.; Lu, C.; Hu, M.; Nashalian, A.; et al. Sci. Adv 2021. 7, eabl3742. doi: 10.1126/sciadv.abl3742

    210. [210]

      (210) Liu, Y.; Liu, Y.; Wu, X. EcoMat. 2023, 5 (11), e12409. doi: 10.1002/eom2.12409

    211. [211]

      (211) Liu, Y.; Liu, Y.; Wu, X.; Cho, Y.-R. ACS Sustainable Chem. Eng. 2023, 11 (36), 13298. doi: 10.1021/acssuschemeng.3c02379

    212. [212]

      (212) Zhou, W.; Fan, H. J.; Zhao, D.; Chao, D. Natl. Sci. Rev. 2023, 10, nwad265. doi: 10.1093/nsr/nwad265

    213. [213]

      (213) Yu, L.; Huang, J.; Wang, S.; Qi, L.; Wang, S.; Chen, C. Adv. Mater. 2023, 35, 2210789. doi: 10.1002/adma.202210789

    214. [214]

      (214) Wang, R.; Parent, L. R.; Gopalan, S.; Zhong, Y. Adv. Powder Mater. 2023, 2, 100062. doi: 10.1016/j.apmate.2022.100062

    215. [215]

      (215) Yan, L.; Zhang, S.; Kang, Q.; Meng, X.; Li, Z.; Liu, T.; Ma, T.; Lin, Z. Energy Storage Mater. 2023, 54, 339. doi: 10.1016/j.ensm.2022.10.027

    216. [216]

      (216) Liu, W.; Que, W.; Yin, R.; Dai, J.; Zheng, D.; Feng, J.; Xu, X.; Wu, F.; Shi, W.; Liu, X.; et al. Appl. Catal. B 2023, 328, 122488. doi: 10.1016/j.apcatb.2023.122488

    217. [217]

      (217) Liu, W.; Niu, X.; Feng, J.; Yin, R.; Ma, S.; Que, W.; Dai, J.; Tang, J.; Wu, F.; Shi, W.; et al. ACS Appl. Mater. Interfaces 2023, 15, 15344. doi: 10.1021/acsami.2c21616

    218. [218]

      (218) Liu, W.; Feng, J.; Yin, R.; Ni, Y.; Zheng, D.; Que, W.; Niu, X.; Dai, X.; Shi, W.; Wu, F.; et al. Chem. Eng. J. 2022, 430, 132990. doi: 10.1016/j.cej.2021.132990

    219. [219]

      (219) Gao, X.; Yang, J.; Xu, Z.; Nuli, Y.; Wang, J. Energy Storage Mater. 2023, 54, 382. doi: 10.1016/j.ensm.2022.10.046

    220. [220]

    221. [221]

    222. [222]

    223. [223]

      (223) Wang, T.; Zhang, Q.; Lian, K.; Qi, G.; Liu, Q.; Feng, L.; Hu, G.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2024, 655, 176. doi: 10.1016/j.jcis.2023.10.157

    224. [224]

      (224) Liu, W.; Niu, X.; Tang, J.; Liu, Q.; Luo J.; Liu, X.; Zhou, Y. Chem. Synth. 2023, 3, 44. doi: 10.20517/cs.2023.28

    225. [225]

      (225) Li, W.; Liu, K.; Feng, S.; Xiao, Y.; Zhang, L.; Mao, J.; Liu, Q.; Liu, X.; Luo, J.; Han, L. J. Colloid Interface Sci. 2024, 655, 726. doi: 10.1016/j.jcis.2023.11.069

    226. [226]

      (226) Zhang, H.; Aierke, A.; Zhou, Y.; Ni, Z.; Feng, L.; Chen, A.; Wågberg, T.; Hu, G. Carbon Energy 2023, 5, e217. doi: 10.1002/cey2.217

  • 加载中
    1. [1]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    2. [2]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    6. [6]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    7. [7]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    15. [15]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    16. [16]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

Metrics
  • PDF Downloads(6)
  • Abstract views(665)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return