Citation: Mengfei He,  Chao Chen,  Yue Tang,  Si Meng,  Zunfa Wang,  Liyu Wang,  Jiabao Xing,  Xinyu Zhang,  Jiahui Huang,  Jiangbo Lu,  Hongmei Jing,  Xiangyu Liu,  Hua Xu. Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100016. doi: 10.3866/PKU.WHXB202310029 shu

Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode

  • Corresponding author: Hua Xu, xuhua-nano@snnu.edu.cn
  • Received Date: 23 October 2023
    Revised Date: 15 November 2023
    Accepted Date: 17 November 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (22222505, 51972204, 22375121), the Fundamental Research Funds for the Central Universities (GK202308002), the Natural Science Basic Research Plan in Shaanxi Province (2021JM-203), the College Students’ Innovation and Entrepreneurship Training Program (S202310718158), the Shaanxi Sanqin Scholars Innovation Team, and the Fundamental Innovation Project, Scientific Research Training Project and Young Scientist Initiative Project in School of Materials Science and Engineering.

  • Two-dimensional (2D) transition-metal dichalcogenides (TMDs) exhibit diverse structures, encompassing a broad spectrum of electronic types ranging from metal, semiconductor, to insulator and topological insulator. They hold immense potential for both Moore and more-than-Moore device applications. Among them, manganese telluride (MnTe), an emerging nonlayered 2D material, has garnered considerable attention due to its exceptional properties and significant application potential in next-generation electronic and optoelectronic devices. However, the controllable synthesis of ultra-thin 2D MnTe remains a great challenge, which hindering the comprehensive exploration of its fundamental properties and potential applications. In this study, we present the synthesis of large-area MnTe nanosheets through chemical vapor deposition growth, showcasing its thickness-dependent properties and device applications. By increasing the growth temperature from 500 to 750 ℃, the MnTe nanosheets’ thickness transitions from thin-layer to a thick flake, the domain size increases from 10 to 125 μm, the morphology changes from triangle to hexagon, culminating in a highly symmetrical round shape. Structural characterization and second harmonic generation measurements reveal that the obtained MnTe nanosheets exhibit high crystallization quality and superior second-order optical nonlinearity. The field effect transistor (FET) constructed with thin-layer MnTe demonstrates a p-type semiconductor characteristic, transitioning to a semimetal feature as the thickness increases to a thick flake. Leveraging these thickness-dependent electrical conduction transition features, we explore diverse applications of MnTe with varying thicknesses. The semiconductive thin-layer MnTe, serving as the photosensitive channel in a device, achieves superior photoresponse, showcasing considerable potential for photodetection appliations. The semimetallic thick-layer MnTe, acting as the contact electrode in a MoS2 FET, significantly enhances device performance, with carrier mobility increasing from 12.76 cm2∙V−1∙s−1 (Au contact) to 47.34 cm2∙V−1∙s−1 (MnTe contact). This work lays the foundation for the controllable synthesis of nonlayered 2D MnTe and provides insights into its prospective development for constructing innovative electronic and optoelectronic devices.
  • 加载中
    1. [1]

      (1) Mak, K. F.; Shan, J. Nat. Photon. 2016, 10, 216. doi: 10.1038/nphoton.2015.282

    2. [2]

      (2) Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi: 10.1038/natrevmats.2017.33

    3. [3]

      (3) Wang, F. K.; Pei, K.; Li, Y.; Li, H. Q.; Zhai, T. Y. Adv. Mater. 2021, 33, 2005303. doi: 10.1002/adma.202005303

    4. [4]

      (4) Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C.; et al. Nature 2018, 556, 355. doi: 10.1038/s41586-018-0008-3

    5. [5]

    6. [6]

      (6) Li, X. B.; Chen, C.; Yang, Y.; Lei, Z. B.; Xu, H. Adv. Sci. 2020, 7, 2002320. doi: 10.1002/advs.202002320

    7. [7]

    8. [8]

      (8) Zhao, T. G.; Guo, J. X.; Li, T. T.; Wang, Z.; Peng, M.; Zhong, F.; Chen, Y.; Yu, Y. Y.; Xu, T. F.; Xie, R. Z.; et al. Chem. Soc. Rev. 2023, 52, 1650. doi: 10.1039/D2CS00657J

    9. [9]

      (9) Castellanos-Gomez, A.; Duan, X. F.; Fei, Z.; Gutierrez, H. R.; Huang, Y.; Huang, X. Y.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Nat. Rev. Methods Primers 2022, 2, 58. doi: 10.1038/s43586-022-00139-1

    10. [10]

      (10) Yang, Y.; Zhang, K. X.; Zhang, L. B.; Hong, G.; Chen, C.; Jing, H. M.; Lu, J. B.; Wang, P.; Chen, X. S.; Wang, L.; et al. InfoMat 2021, 3, 705. doi: 10.1002/inf2.12193

    11. [11]

      (11) Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Mater. Today 2017, 20, 116. doi: 10.1016/j.mattod.2016.10.002

    12. [12]

      (12) Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Nat. Commun. 2018, 9, 919. doi: 10.1038/s41467-018-03436-0

    13. [13]

      (13) Ma, H. F.; Qian, Q.; Qin, B.; Wan, Z.; Wu, R. X.; Zhao, B.; Zhang, H. M.; Zhang, Z. C.; Li, J.; Zhang, Z. W.; et al. Adv. Sci. 2022, 9, 2103507. doi: 10.1002/advs.202103507

    14. [14]

      (14) Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L. N.; Pan, X. Q.; Wang, D.; Wang, Z. G.; et al. Nano Lett. 2018, 18, 3435. doi: 10.1021/acs.nanolett.8b00452

    15. [15]

      (15) Yang, X. D.; Li, J.; Song, R.; Zhao, B.; Tang, J. M.; Kong, L. G.; Huang, H.; Zhang, Z. W.; Liao, L.; Liu, Y.; et al. Nat. Nanotechnol. 2023, 18, 471. doi: 10.1038/s41565-023-01342-1

    16. [16]

      (16) Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Adv. Funct. Mater. 2019, 29, 1803807. doi: 10.1002/adfm.201803807

    17. [17]

      (17) Zhao, T. G.; Zhong, F.; Wang, S. C.; Wang, Y. K.; Xu, T. F.; Chen, Y.; Yu, Y. Y.; Guo, J. X.; Wang, Z.; Yu, J. C.; et al. Adv. Opt. Mater. 2023, 11, 2202208. doi: 10.1002/adom.202202208

    18. [18]

      (18) Wang, F.; Luo, P.; Zhang, Y.; Huang, Y.; Zhang, Q.; Li, Y.; Zhai, T. Sci. China Mater. 2020, 63, 1537. doi: 10.1007/s40843-020-1353-3

    19. [19]

      (19) Song, S.; Sim, Y.; Kim, S.-Y.; Kim, J. H.; Oh, I.; Na, W.; Lee, D. H.; Wang, J.; Yan, S.; Liu, Y.; et al. Nat. Electron. 2020, 3, 207. doi: 10.1038/s41928-020-0396-x

    20. [20]

      (20) Qiu, D.; Gong, C. H.; Wang, S. S.; Zhang, M.; Yang, C.; Wang, X. F.; Xiong, J. Adv. Mater. 2021, 33, 2006124. doi: 10.1002/adma.202006124

    21. [21]

      (21) Wang, J. Y.; Zheng, H. S.; Xu, G. C.; Sun, L. F.; Hu, D. K.; Lu, Z. X.; Liu, L.; Zheng, J. Y.; Tao, C. G.; Jiao, L. Y. J. Am. Chem. Soc. 2016, 138, 16216. doi: 10.1021/jacs.6b10414

    22. [22]

      (22) Wilson, N. P.; Yao, W.; Shan, J.; Xu, X. Nature 2021, 599, 383. doi: 10.1038/s41586-021-03979-1

    23. [23]

      (23) Cheng, R. Q.; Wen, Y.; Yin, L.; Wang, F. M.; Wang, F.; Liu, K. L.; Shifa, T. A.; Li, J.; Jiang, C.; Wang, Z. X.; et al. Adv. Mater. 2017, 29, 1703122. doi: 10.1002/adma.201703122

    24. [24]

      (24) Gong, C. H.; Chu, J. W.; Yin, C. J.; Yan, C. Y.; Hu, X. Z.; Qian, S. F.; Hu, Y.; Hu, K.; Huang, J. W.; Wang, H. B.; et al. Adv. Mater. 2019, 31, 1903580. doi: 10.1002/adma.201903580

    25. [25]

      (25) Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G.; et al. Adv. Funct. Mater. 2018, 28, 1705833. doi: 10.1002/adfm.201705833

    26. [26]

      (26) Mori, S.; Hatayama, S.; Shuang, Y.; Ando, D.; Sutou, Y. Nat. Commun. 2020, 11, 85. doi: 10.1038/s41467-019-13747-5

    27. [27]

      (27) Yin, G.; Yu, J.-X.; Liu, Y. Z.; Lake, R. K.; Zang, J. D.; Wang, K. L. Phys. Rev. Lett. 2019, 122, 106602. doi: 10.1103/PhysRevLett.122.106602

    28. [28]

      (28) Xiong, W. J.; Wang, Z. C.; Zhang, X. M.; Wang, C.; Yin, L. C.; Gong, Y. R.; Zhang, Q. T.; Li, S.; Liu, Q. F.; Wang, P.; et al. Small 2023, 19, 2206058. doi: 10.1002/smll.202206058

    29. [29]

      (29) Li, S. X.; Wu, J. H.; Liang, B. X.; Liu, L. H.; Zhang, W.; Wazir, N.; Zhou, J.; Liu, Y. W.; Nie, Y. F.; Hao, Y. F.; et al. Chem. Mater. 2022, 34, 873. doi: 10.1021/acs.chemmater.1c04066

    30. [30]

      (30) Ferrer-Roca, C.; Segura, A.; Reig, C.; Muñoz, V. Phys. Rev. B 2000, 61. doi: 10.1103/PhysRevB.61.13679

    31. [31]

      (31) Ye, K.; Yan, J. X.; Liu, L. X.; Li, P. H.; Yu, Z. P.; Gao, Y.; Yang, M. M.; Huang, H.; Nie, A. M.; Shu, Y.; et al. Small 2023, 19, 2300246. doi: 10.1002/smll.202300246

    32. [32]

      (32) Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; et al. Nat. Commun. 2016, 7, 11623. doi: 10.1038/ncomms11623

    33. [33]

      (33) Luo, Y. Y.; Wang, J. H.; Yang, J. M.; Mao, D. S.; Cui, J.; Jia, B. H.; Liu, X. S.; Nielsch, K.; Xu, X.; He, J. Q. Energy Environ. Sci. 2023, 16, 3743. doi: 10.1039/D3EE01902K

    34. [34]

      (34) Puthirath Balan, A.; Radhakrishnan, S.; Neupane, R.; Yazdi, S.; Deng, L.; A. de los Reyes, C.; Apte, A.; B. Puthirath, A.; Rao, B. M.; Paulose, M.; et al. ACS Appl. Nano Mater. 2018, 1, 6427.doi: 10.1021/acsanm.8b01642

    35. [35]

      (35) Wang, T. K.; Sun, F. P.; Hong, W. T.; Jian, C. Y.; Ju, Q. K.; He, X.; Cai, Q.; Liu, W. J. Mater. Chem. C 2023, 11, 1464. doi: 10.1039/D2TC03853F

    36. [36]

      (36) Siol, S.; Han, Y.; Mangum, J.; Schulz, P.; Holder, A. M.; Klein, T. R.; van Hest, M. F. A. M.; Gorman, B.; Zakutayev, A. J. Mater. Chem. C 2018, 6, 6297. doi: 10.1039/C8TC01828F

    37. [37]

      (37) Zhou, N.; Zhang, Z. M.; Wang, F. K.; Li, J. H.; Xu, X.; Li, H. R.; Ding, S.; Liu, J. M.; Li, X. B.; Xie, Y.; et al. Adv. Sci. 2022, 9, 2202177. doi: 10.1002/advs.202202177

    38. [38]

      (38) Ramdas, A. K. J. Appl. Phys. 1982, 53, 7649. doi: 10.1063/1.330175

    39. [39]

      (39) Li, L. J.; Li, H. D.; Li, J.; Wu, H.; Yang, L.; Zhang, W. F.; Chang, H. X. Chem. Mater. 2021, 33, 338. doi: 10.1021/acs.chemmater.0c03898

    40. [40]

      (40) Dong, J. C.; Zhang, L. N.; Ding, F. Adv. Mater. 2019, 31, 1801583. doi: 10.1002/adma.201801583

    41. [41]

      (41) Chen, C.; Chen, X. D.; Wu, C. W.; Wang, X.; Ping, Y.; Wei, X.; Zhou, X.; Lu, J. B.; Zhu, L. J.; Zhou, J. D.; et al. Adv. Mater. 2022, 34, 2107512. doi: 10.1002/adma.202107512

    42. [42]

      (42) Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Nature 2018, 557, 696. doi: 10.1038/s41586-018-0129-8

    43. [43]

      (43) Zhang, X. K.; Kang, Z.; Gao, L.; Liu, B. S.; Yu, H. H.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Adv. Mater. 2021, 33, 2104935. doi: 10.1002/adma.202104935

  • 加载中
    1. [1]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    2. [2]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    8. [8]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    9. [9]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    14. [14]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    15. [15]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(139)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return