Citation:
Bowen Yang, Rui Wang, Benjian Xin, Lili Liu, Zhiqiang Niu. C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries[J]. Acta Physico-Chimica Sinica,
;2025, 41(2): 100015.
doi:
10.3866/PKU.WHXB202310024
-
Lithium-based semi-solid flow batteries (LSSFBs) could potentially be applied in large-scale energy storage systems due to their high safety and relatively independent equipment units. However, the electrochemical performance of LSSFBs is limited by the unstable contact between conductive additives and active materials, as well as the poor conductivity of active materials. Therefore, it is necessary to develop semi-solid electrodes with high stability and specific capacity to obtain LSSFBs with satisfied energy density. Herein, carbon-coated SnO2/multi-walled carbon nanotubes (C-SnO2/MWCNTs) composite was designed as the anode material of LSSFBs. In such composite, SnO2 nanoparticles are uniformly distributed on the surface of MWCNTs and coated with carbon layer, which was identified by field-emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD) results. In general, the traditional SnO2 as active material in electrodes will suffer from volume expansion and collapse of structure, which will decline the cycle life of batteries. In this composite, the nanoparticle structure endows SnO2 with more reaction active sites. Furthermore, MWCNTs and carbon layer can construct a stable conductive network, which enhances the electron transport in SnO2-based electrodes. Simultaneously, MWCNTs and carbon layer also achieve an integrated architecture. Thus, the electron transfer dynamics of SnO2-based electrodes could be improved and their volume expansion is effectively suppressed during charging/discharging process, resulting in improved rate and cycling performance. The coin-type batteries based on C-SnO2/MWCNTs can maintain a discharge capacity of 725 mAh∙g−1 after 100 cycles under a current density of 0.5 A∙g−1. On the contrary, the discharge capacity of the batteries based on bulk SnO2 almost disappears after 100 cycles, which is attributed to the poor conductivity and excessive volume expansion of electrode materials. In addition, the MWCNTs will enhance the suspension stability of the semi-solid electrode. When the mass fraction of the C-SnO2/MWCNTs in the semi-solid electrode is 8.0%, the semi-solid electrode has superior suspension and electron conductivity, as well as suitable viscosity. Furthermore, the lithium storage mechanism of the semi-solid electrode was explored by ex situ XRD and X-ray photoelectron spectroscopy. The results show that, in C-SnO2/MWCNTs composite, SnO2 has a dual Li+ ions storage mechanism involving conversion and alloying reactions. When the flow rate is controlled with 5 mL∙min−1, the conduction network reaches a dynamic balance, and the semi-solid electrode exhibits low charge transfer resistance. These advantages endow the LSSFBs with superior rate and cycling performance. The semi-solid flow batteries could maintain 42.4% of their initial capacity (690.8 mAh∙g−1) after cycling for 962 h at 0.2 mA∙cm−2. This work provides a promising strategy for optimizing the semi-solid electrode of LSSFBs.
-
-
-
[1]
(1) Yao, Y. X.; Lei, J. X.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6 (6), 582. doi: 10.1038/s41560-020-00772-8
-
[2]
(2) Hou, S.; Chen, L.; Fan, X. L.; Fan, X. T.; Ji, X.; Wang, B. Y.; Cui, C. Y.; Chen, J.; Yang, C. Y.; Wang, W.; et al. Nat. Commun. 2022, 13 (1), 1281. doi: 10.1038/s41467-022-28880-x
-
[3]
-
[4]
(4) Yang, B.; Wang, Z. Y.; Wang, W. W.; Lu, Y. C. Energy Mater. Adv. 2022, 2022, 9795675. doi: 10.34133/2022/9795675
-
[5]
(5) Lim, H. S.; Chae, S.; Yan, L. T.; Li, G. S.; Feng, R. Z.; Shin, Y.; Nie, Z. M.; Sivakumar, B. M.; Zhang, X.; Liang, Y. G.; et al. Energy Mater. Adv. 2022, 2022, 9863679. doi: 10.34133/2022/9863679
-
[6]
(6) Fan, X. Y.; Liu, B.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Lv, X. J.; Xie, Y.; Chen, B.; Hu, W. B.; et al. Trans. Tianjin Univ. 2020, 26 (2), 92. doi: 10.1007/s12209-019-00231-w
-
[7]
(7) Sun, J.; Jiang, H. R.; Zhao, C.; Fan, X. Z.; Chao, C.; Zhao, T. Sci. Bull. 2021, 66 (9), 904. doi: 10.1016/j.scib.2020.12.019
-
[8]
(8) Ling, J.; Kunwar, R.; Li, L. L.; Peng, S. J.; Misnon, I. I.; Ab Rahim, M. H.; Yang, C. C.; Jose, R. eScience 2022, 2 (4), 347. doi: 10.1016/j.esci.2022.07.002
-
[9]
(9) Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. eScience 2022, 2 (2), 138. doi: 10.1016/j.esci.2022.02.008
-
[10]
(10) Rudola, A.; Wright, C. J.; Barker, J. Energy Mater. Adv. 2021, 2021, 9798460. doi: 10.34133/2021/9798460
-
[11]
(11) Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. SmartMat 2022, 3 (4), 685. doi: 10.1002/smm2.1115
-
[12]
(12) Chen, T. M.; Jin, Y.; Lv, H. Y.; Yang, A. T.; Liu, M. Y.; Chen, B.; Xie, Y.; Chen, Q. Trans. Tianjin Univ. 2020, 26 (3), 208. doi: 10.1007/s12209-020-00236-w
-
[13]
(13) Sun, H.; Yu, M. F.; Li, Q.; Zhuang, K. M.; Li, J.; Almheiri, S.; Zhang, X. C. Energy 2019, 168, 693. doi: 10.1016/j.energy.2018.11.130
-
[14]
-
[15]
(15) Wang, X.; Chai, J. C.; Jiang, J. B. Nano Mater. Sci. 2021, 3 (1), 17. doi: 10.1016/j.nanoms.2020.06.003
-
[16]
(16) Ventosa, E. Curr. Opin. Chem. Eng. 2022, 37, 100834. doi: 10.1016/j.coche.2022.100834
-
[17]
(17) Huang, Q. Z.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys. 2013, 15 (6), 1793. doi: 10.1039/C2CP44466F
-
[18]
(18) Zhang, L.; Wu, X. K.; Qian, W. W.; Zhang, H. T.; Zhang, S. J. Green Energy Environ. 2021, 6 (1), 5. doi: 10.1016/j.gee.2020.09.012
-
[19]
(19) Narayanan, A.; Mugele, F.; Duits, M. H. G. Langmuir 2017, 33 (7), 1629. doi: 10.1021/acs.langmuir.6b04322
-
[20]
-
[21]
(21) Duduta, M. H.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2011, 1 (4), 511. doi: 10.1002/aenm.201100152
-
[22]
(22) Li, B.; Liu, J. Natl. Sci. Rev. 2017, 4 (1), 91. doi: 10.1093/nsr/nww098
-
[23]
(23) Wei, J.; Zhang, P. B.; Liu, Y. Z.; Liang, J. C.; Xia, Y. R.; Tao, A. Y.; Zhang, K. Q.; Tie, Z. X.; Jin, Z. ACS Energy Lett. 2022, 7 (2), 862. doi: 10.1021/acsenergylett.2c00032
-
[24]
(24) Yazami, R. Electrochim. Acta 1999, 45 (1), 87. doi: 10.1016/S0013-4686(99)00195-4
-
[25]
(25) Hatzell, K. B.; Fan, L.; Beidaghi, M.; Boota, M.; Pomerantseva, E.; Kumbur, E. C.; Gogotsi, Y. ACS Appl. Mater. Interfaces 2014, 6 (11), 8886. doi: 10.1021/am501650q
-
[26]
-
[27]
(27) Wei, T. S.; Fan, F. Y.; Helal, A.; Smith, K. C.; McKinley, G. H.; Chiang, Y.-M.; Lewis, J. A. Adv. Energy Mater. 2015, 5 (15), 1500535. doi: 10.1002/aenm.201500535
-
[28]
(28) Shen, X.; Zhang, X. Q.; Ding, F.; Huang, J. Q.; Xu, R.; Chen, X.; Yan, C.; Su, F. Y.; Chen, C. M.; Liu, X. J.; et al. Energy Mater. Adv. 2021, 2021, 1205324. doi: 10.34133/2021/1205324
-
[29]
(29) Tang, Y. J.; Yang, L. P.; Zhu, Y. M.; Zhang, F. J.; Zhang, H. T. J. Mater. Chem. A 2022, 10 (10), 5620. doi: 10.1039/D1TA10883B
-
[30]
(30) Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e
-
[31]
(31) Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788. doi: 10.1021/cr500232y
-
[32]
(32) Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Adv. Mater. 2013, 25 (29), 3979. doi: 10.1002/adma.201301051
-
[33]
(33) Ma, Y.; Ajayan, P. M.; Yang, S. B.; Gong, Y. J. Small 2018, 14 (38), 1801606. doi: 10.1002/smll.201801606
-
[34]
(34) Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; et al. Science 2010, 330 (6010), 1515. doi: 10.1126/science.1195628
-
[35]
-
[36]
-
[37]
(36) Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K.; et al. Energy Storage Mater. 2019, 16, 597. doi: 10.1016/j.ensm.2018.08.002
-
[38]
-
[39]
(38) Zhao, S. Q.; Sewell, C. D.; Liu, R. P.; Jia, S. R.; Wang, Z. W.; He, Y. J.; Yuan, K. J.; Jin, H. L.; Wang, S.; Liu, X. Q.; et al. Adv. Energy Mater. 2020, 10 (6), 1902657. doi: 10.1002/aenm.201902657
-
[40]
(39) Peng, X. D.; Xiong, C.; Lin, Y. K.; Zhao, C.; Zhao, T. S. SmartMat 2021, 2 (4), 579. doi: 10.1002/smm2.1061
-
[41]
(40) Cui, S. Q.; Zhang, J. J.; Fan, S. Z.; Xing, X. T.; Deng, L. B.; Gong, Y. J. Nano Lett. 2022, 22 (23), 9559. doi: 10.1021/acs.nanolett.2c03699
-
[42]
(41) Lan, X. X.; Xiong, X. Y.; Liu, J.; Yuan, B.; Hu, R. Z.; Zhu, M. Small 2022, 18 (26), 2201110. doi: 10.1002/smll.202201110
-
[43]
(42) Shukla, G.; Franco, A. A. Batteries Supercaps 2019, 2 (7), 579. doi: 10.1002/batt.201800152
-
[44]
(43) Chen, H. N.; Zou, Q. L.; Liang, Z. J.; Liu, H.; Li, Q.; Lu, Y. C. Nat. Commun. 2015, 6 (1), 5877. doi: 10.1038/ncomms6877
-
[45]
(44) Pan, S. S.; Yang, L. P.; Su, P. P.; Zhang, H. T.; Zhang, S. J. Small 2022, 18 (33), 2202139. doi: 10.1002/smll.202202139
-
[46]
-
[47]
(46) Cao, H. M.; Deng, S. Z.; Tie, Z. W.; Tian, J. L.; Liu, L. L.; Niu, Z. Q. Sci. China Chem. 2022, 65 (9), 1725. doi: 10.1007/s11426-022-1292-0
-
[48]
(47) Cheng, Y. Y.; Huang, J. F.; Qi, H.; Cao, L. Y.; Yang, J.; Xi, Q.; Luo, X. M.; Yanagisawa, K.; Li, J. Y. Small 2017, 13 (31), 1700656. doi: 10.1002/smll.201700656
-
[49]
-
[50]
(49) Liu, M.; Zhang, S.; Dong, H. C.; Chen, X.; Gao, S.; Sun, Y. P.; Li, W. H.; Xu, J. Q.; Chen, L. W.; Yuan, A. B.; et al. ACS Sustain. Chem. Eng. 2019, 7 (4), 4195. doi: 10.1021/acssuschemeng.8b05869
-
[51]
(50) Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y. Sci. Bull. 2015, 60 (9), 892. doi: 10.1007/s11434-015-0767-2
-
[52]
(51) Tang, J. Y.; Peng, X. Y.; Lin, T. E.; Huang, X.; Luo, B.; Wang, L. Z. eScience 2021, 1 (2), 203. doi: 10.1016/j.esci.2021.12.004
-
[53]
(52) Deng, S. Z.; Tie, Z. W.; Yue, F.; Cao, H. M.; Yao, M. J.; Niu, Z. Q. Angew. Chem. Int. Ed. 2022, 61 (12), e202115877. doi: 10.1002/anie.202115877
-
[54]
(53) Pan, S. S.; Zhang, H. T.; Xing, C. X.; Yang, L. P.; Su, P. P.; Bi, J. J.; Zhang, S. J. J. Power Sources 2021, 508, 230341. doi: 10.1016/j.jpowsour.2021.230341
-
[55]
(54) Parant, H.; Muller, G.; Le Mercier, T.; Tarascon, J. M.; Poulin, P.; Colin, A. Carbon 2017, 119, 10. doi: 10.1016/j.carbon.2017.04.014
-
[56]
(55) Chen, H. N.; Liu, Y.; Zhang, X. F.; Lan, Q.; Chu, Y.; Li, Y. L.; Wu, Q. X. J. Power Sources 2021, 485, 229319. doi: 10.1016/j.jpowsour.2020.229319
-
[57]
(56) Ma, Y. J.; Ma, Y.; Giuli, G.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Ulissi, U.; Passerini, S.; Bresser, D. Sustain. Energy Fuels 2018, 2 (12), 2601. doi: 10.1039/C8SE00424B
-
[58]
(57) Hu, R. Z.; Chen, D. C.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B. T.; Rainwater, B.; Yang, C. H.; Zhu, M.; Liu, M. L. Energy Environ. Sci. 2016, 9 (2), 595. doi: 10.1039/C5EE03367E
-
[59]
(58) Wang, M. S.; Wang, Z. Q.; Jia, R.; Yang, Z. L.; Yang, Y.; Zhu, F. Y.; Huang, Y.; Li, X. J. Electroanal. Chem. 2018, 815, 30. doi: 10.1016/j.jelechem.2018.02.031
-
[60]
-
[61]
(60) Liu, Y. X.; Liu, P.; Wu, D. Q.; Huang, Y. S.; Tang, Y. P.; Su, Y. Z.; Zhang, F.; Feng, X. L. Chem. Eur. J. 2015, 21 (14), 5617. doi: 10.1002/chem.201406029
-
[62]
(61) Xie, F. R.; Zhao, S. Q.; Bo, X. X.; Li, G. H.; Fei, J. M.; Ahmed, E.-A. M. A.; Zhang, Q. C.; Jin, H. L.; Wang, S.; Lin, Z. Q. J. Mater. Chem. A 2023, 11 (1), 53. doi: 10.1039/D2TA07435D
-
[63]
(62) Choo, K. Y.; Yoo, C. Y.; Han, M. H.; Kim, D. K. J. Electroanal. Chem. 2017, 806, 50. doi: 10.1016/j.jelechem.2017.10.040
-
[64]
(63) Richards, J. J.; Hipp, J. B.; Riley, J. K.; Wagner, N. J.; Butler, P. D. Langmuir 2017, 33 (43), 12260. doi: 10.1021/acs.langmuir.7b02538
-
[65]
(64) Du, L. Y.; Bi, S. S.; Hu, Y.; Wang, R.; Zhu, J. C.; Zhang, M. H.; Niu, Z. Q. Carbon Energy 2022, 4 (4), 517. doi: 10.1002/cey2.181
-
[1]
-
-
-
[1]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[4]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[5]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[6]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[9]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[10]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[11]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[12]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[13]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[14]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[15]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[16]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[17]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[18]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[19]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[20]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(128)
- HTML views(26)