Citation: Bowen Yang,  Rui Wang,  Benjian Xin,  Lili Liu,  Zhiqiang Niu. C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100015. doi: 10.3866/PKU.WHXB202310024 shu

C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries

  • Corresponding author: Lili Liu,  Zhiqiang Niu, 
  • Received Date: 19 October 2023
    Revised Date: 9 November 2023
    Accepted Date: 9 November 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2019YFA0705601) and the National Natural Science Foundation of China (51972231).

  • Lithium-based semi-solid flow batteries (LSSFBs) could potentially be applied in large-scale energy storage systems due to their high safety and relatively independent equipment units. However, the electrochemical performance of LSSFBs is limited by the unstable contact between conductive additives and active materials, as well as the poor conductivity of active materials. Therefore, it is necessary to develop semi-solid electrodes with high stability and specific capacity to obtain LSSFBs with satisfied energy density. Herein, carbon-coated SnO2/multi-walled carbon nanotubes (C-SnO2/MWCNTs) composite was designed as the anode material of LSSFBs. In such composite, SnO2 nanoparticles are uniformly distributed on the surface of MWCNTs and coated with carbon layer, which was identified by field-emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD) results. In general, the traditional SnO2 as active material in electrodes will suffer from volume expansion and collapse of structure, which will decline the cycle life of batteries. In this composite, the nanoparticle structure endows SnO2 with more reaction active sites. Furthermore, MWCNTs and carbon layer can construct a stable conductive network, which enhances the electron transport in SnO2-based electrodes. Simultaneously, MWCNTs and carbon layer also achieve an integrated architecture. Thus, the electron transfer dynamics of SnO2-based electrodes could be improved and their volume expansion is effectively suppressed during charging/discharging process, resulting in improved rate and cycling performance. The coin-type batteries based on C-SnO2/MWCNTs can maintain a discharge capacity of 725 mAh∙g−1 after 100 cycles under a current density of 0.5 A∙g−1. On the contrary, the discharge capacity of the batteries based on bulk SnO2 almost disappears after 100 cycles, which is attributed to the poor conductivity and excessive volume expansion of electrode materials. In addition, the MWCNTs will enhance the suspension stability of the semi-solid electrode. When the mass fraction of the C-SnO2/MWCNTs in the semi-solid electrode is 8.0%, the semi-solid electrode has superior suspension and electron conductivity, as well as suitable viscosity. Furthermore, the lithium storage mechanism of the semi-solid electrode was explored by ex situ XRD and X-ray photoelectron spectroscopy. The results show that, in C-SnO2/MWCNTs composite, SnO2 has a dual Li+ ions storage mechanism involving conversion and alloying reactions. When the flow rate is controlled with 5 mL∙min−1, the conduction network reaches a dynamic balance, and the semi-solid electrode exhibits low charge transfer resistance. These advantages endow the LSSFBs with superior rate and cycling performance. The semi-solid flow batteries could maintain 42.4% of their initial capacity (690.8 mAh∙g−1) after cycling for 962 h at 0.2 mA∙cm−2. This work provides a promising strategy for optimizing the semi-solid electrode of LSSFBs.
  • 加载中
    1. [1]

      (1) Yao, Y. X.; Lei, J. X.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6 (6), 582. doi: 10.1038/s41560-020-00772-8

    2. [2]

      (2) Hou, S.; Chen, L.; Fan, X. L.; Fan, X. T.; Ji, X.; Wang, B. Y.; Cui, C. Y.; Chen, J.; Yang, C. Y.; Wang, W.; et al. Nat. Commun. 2022, 13 (1), 1281. doi: 10.1038/s41467-022-28880-x

    3. [3]

    4. [4]

      (4) Yang, B.; Wang, Z. Y.; Wang, W. W.; Lu, Y. C. Energy Mater. Adv. 2022, 2022, 9795675. doi: 10.34133/2022/9795675

    5. [5]

      (5) Lim, H. S.; Chae, S.; Yan, L. T.; Li, G. S.; Feng, R. Z.; Shin, Y.; Nie, Z. M.; Sivakumar, B. M.; Zhang, X.; Liang, Y. G.; et al. Energy Mater. Adv. 2022, 2022, 9863679. doi: 10.34133/2022/9863679

    6. [6]

      (6) Fan, X. Y.; Liu, B.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Lv, X. J.; Xie, Y.; Chen, B.; Hu, W. B.; et al. Trans. Tianjin Univ. 2020, 26 (2), 92. doi: 10.1007/s12209-019-00231-w

    7. [7]

      (7) Sun, J.; Jiang, H. R.; Zhao, C.; Fan, X. Z.; Chao, C.; Zhao, T. Sci. Bull. 2021, 66 (9), 904. doi: 10.1016/j.scib.2020.12.019

    8. [8]

      (8) Ling, J.; Kunwar, R.; Li, L. L.; Peng, S. J.; Misnon, I. I.; Ab Rahim, M. H.; Yang, C. C.; Jose, R. eScience 2022, 2 (4), 347. doi: 10.1016/j.esci.2022.07.002

    9. [9]

      (9) Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. eScience 2022, 2 (2), 138. doi: 10.1016/j.esci.2022.02.008

    10. [10]

      (10) Rudola, A.; Wright, C. J.; Barker, J. Energy Mater. Adv. 2021, 2021, 9798460. doi: 10.34133/2021/9798460

    11. [11]

      (11) Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. SmartMat 2022, 3 (4), 685. doi: 10.1002/smm2.1115

    12. [12]

      (12) Chen, T. M.; Jin, Y.; Lv, H. Y.; Yang, A. T.; Liu, M. Y.; Chen, B.; Xie, Y.; Chen, Q. Trans. Tianjin Univ. 2020, 26 (3), 208. doi: 10.1007/s12209-020-00236-w

    13. [13]

      (13) Sun, H.; Yu, M. F.; Li, Q.; Zhuang, K. M.; Li, J.; Almheiri, S.; Zhang, X. C. Energy 2019, 168, 693. doi: 10.1016/j.energy.2018.11.130

    14. [14]

    15. [15]

      (15) Wang, X.; Chai, J. C.; Jiang, J. B. Nano Mater. Sci. 2021, 3 (1), 17. doi: 10.1016/j.nanoms.2020.06.003

    16. [16]

      (16) Ventosa, E. Curr. Opin. Chem. Eng. 2022, 37, 100834. doi: 10.1016/j.coche.2022.100834

    17. [17]

      (17) Huang, Q. Z.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys. 2013, 15 (6), 1793. doi: 10.1039/C2CP44466F

    18. [18]

      (18) Zhang, L.; Wu, X. K.; Qian, W. W.; Zhang, H. T.; Zhang, S. J. Green Energy Environ. 2021, 6 (1), 5. doi: 10.1016/j.gee.2020.09.012

    19. [19]

      (19) Narayanan, A.; Mugele, F.; Duits, M. H. G. Langmuir 2017, 33 (7), 1629. doi: 10.1021/acs.langmuir.6b04322

    20. [20]

    21. [21]

      (21) Duduta, M. H.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2011, 1 (4), 511. doi: 10.1002/aenm.201100152

    22. [22]

      (22) Li, B.; Liu, J. Natl. Sci. Rev. 2017, 4 (1), 91. doi: 10.1093/nsr/nww098

    23. [23]

      (23) Wei, J.; Zhang, P. B.; Liu, Y. Z.; Liang, J. C.; Xia, Y. R.; Tao, A. Y.; Zhang, K. Q.; Tie, Z. X.; Jin, Z. ACS Energy Lett. 2022, 7 (2), 862. doi: 10.1021/acsenergylett.2c00032

    24. [24]

      (24) Yazami, R. Electrochim. Acta 1999, 45 (1), 87. doi: 10.1016/S0013-4686(99)00195-4

    25. [25]

      (25) Hatzell, K. B.; Fan, L.; Beidaghi, M.; Boota, M.; Pomerantseva, E.; Kumbur, E. C.; Gogotsi, Y. ACS Appl. Mater. Interfaces 2014, 6 (11), 8886. doi: 10.1021/am501650q

    26. [26]

    27. [27]

      (27) Wei, T. S.; Fan, F. Y.; Helal, A.; Smith, K. C.; McKinley, G. H.; Chiang, Y.-M.; Lewis, J. A. Adv. Energy Mater. 2015, 5 (15), 1500535. doi: 10.1002/aenm.201500535

    28. [28]

      (28) Shen, X.; Zhang, X. Q.; Ding, F.; Huang, J. Q.; Xu, R.; Chen, X.; Yan, C.; Su, F. Y.; Chen, C. M.; Liu, X. J.; et al. Energy Mater. Adv. 2021, 2021, 1205324. doi: 10.34133/2021/1205324

    29. [29]

      (29) Tang, Y. J.; Yang, L. P.; Zhu, Y. M.; Zhang, F. J.; Zhang, H. T. J. Mater. Chem. A 2022, 10 (10), 5620. doi: 10.1039/D1TA10883B

    30. [30]

      (30) Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e

    31. [31]

      (31) Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788. doi: 10.1021/cr500232y

    32. [32]

      (32) Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Adv. Mater. 2013, 25 (29), 3979. doi: 10.1002/adma.201301051

    33. [33]

      (33) Ma, Y.; Ajayan, P. M.; Yang, S. B.; Gong, Y. J. Small 2018, 14 (38), 1801606. doi: 10.1002/smll.201801606

    34. [34]

      (34) Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; et al. Science 2010, 330 (6010), 1515. doi: 10.1126/science.1195628

    35. [35]

    36. [36]

    37. [37]

      (36) Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K.; et al. Energy Storage Mater. 2019, 16, 597. doi: 10.1016/j.ensm.2018.08.002

    38. [38]

    39. [39]

      (38) Zhao, S. Q.; Sewell, C. D.; Liu, R. P.; Jia, S. R.; Wang, Z. W.; He, Y. J.; Yuan, K. J.; Jin, H. L.; Wang, S.; Liu, X. Q.; et al. Adv. Energy Mater. 2020, 10 (6), 1902657. doi: 10.1002/aenm.201902657

    40. [40]

      (39) Peng, X. D.; Xiong, C.; Lin, Y. K.; Zhao, C.; Zhao, T. S. SmartMat 2021, 2 (4), 579. doi: 10.1002/smm2.1061

    41. [41]

      (40) Cui, S. Q.; Zhang, J. J.; Fan, S. Z.; Xing, X. T.; Deng, L. B.; Gong, Y. J. Nano Lett. 2022, 22 (23), 9559. doi: 10.1021/acs.nanolett.2c03699

    42. [42]

      (41) Lan, X. X.; Xiong, X. Y.; Liu, J.; Yuan, B.; Hu, R. Z.; Zhu, M. Small 2022, 18 (26), 2201110. doi: 10.1002/smll.202201110

    43. [43]

      (42) Shukla, G.; Franco, A. A. Batteries Supercaps 2019, 2 (7), 579. doi: 10.1002/batt.201800152

    44. [44]

      (43) Chen, H. N.; Zou, Q. L.; Liang, Z. J.; Liu, H.; Li, Q.; Lu, Y. C. Nat. Commun. 2015, 6 (1), 5877. doi: 10.1038/ncomms6877

    45. [45]

      (44) Pan, S. S.; Yang, L. P.; Su, P. P.; Zhang, H. T.; Zhang, S. J. Small 2022, 18 (33), 2202139. doi: 10.1002/smll.202202139

    46. [46]

    47. [47]

      (46) Cao, H. M.; Deng, S. Z.; Tie, Z. W.; Tian, J. L.; Liu, L. L.; Niu, Z. Q. Sci. China Chem. 2022, 65 (9), 1725. doi: 10.1007/s11426-022-1292-0

    48. [48]

      (47) Cheng, Y. Y.; Huang, J. F.; Qi, H.; Cao, L. Y.; Yang, J.; Xi, Q.; Luo, X. M.; Yanagisawa, K.; Li, J. Y. Small 2017, 13 (31), 1700656. doi: 10.1002/smll.201700656

    49. [49]

    50. [50]

      (49) Liu, M.; Zhang, S.; Dong, H. C.; Chen, X.; Gao, S.; Sun, Y. P.; Li, W. H.; Xu, J. Q.; Chen, L. W.; Yuan, A. B.; et al. ACS Sustain. Chem. Eng. 2019, 7 (4), 4195. doi: 10.1021/acssuschemeng.8b05869

    51. [51]

      (50) Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y. Sci. Bull. 2015, 60 (9), 892. doi: 10.1007/s11434-015-0767-2

    52. [52]

      (51) Tang, J. Y.; Peng, X. Y.; Lin, T. E.; Huang, X.; Luo, B.; Wang, L. Z. eScience 2021, 1 (2), 203. doi: 10.1016/j.esci.2021.12.004

    53. [53]

      (52) Deng, S. Z.; Tie, Z. W.; Yue, F.; Cao, H. M.; Yao, M. J.; Niu, Z. Q. Angew. Chem. Int. Ed. 2022, 61 (12), e202115877. doi: 10.1002/anie.202115877

    54. [54]

      (53) Pan, S. S.; Zhang, H. T.; Xing, C. X.; Yang, L. P.; Su, P. P.; Bi, J. J.; Zhang, S. J. J. Power Sources 2021, 508, 230341. doi: 10.1016/j.jpowsour.2021.230341

    55. [55]

      (54) Parant, H.; Muller, G.; Le Mercier, T.; Tarascon, J. M.; Poulin, P.; Colin, A. Carbon 2017, 119, 10. doi: 10.1016/j.carbon.2017.04.014

    56. [56]

      (55) Chen, H. N.; Liu, Y.; Zhang, X. F.; Lan, Q.; Chu, Y.; Li, Y. L.; Wu, Q. X. J. Power Sources 2021, 485, 229319. doi: 10.1016/j.jpowsour.2020.229319

    57. [57]

      (56) Ma, Y. J.; Ma, Y.; Giuli, G.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Ulissi, U.; Passerini, S.; Bresser, D. Sustain. Energy Fuels 2018, 2 (12), 2601. doi: 10.1039/C8SE00424B

    58. [58]

      (57) Hu, R. Z.; Chen, D. C.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B. T.; Rainwater, B.; Yang, C. H.; Zhu, M.; Liu, M. L. Energy Environ. Sci. 2016, 9 (2), 595. doi: 10.1039/C5EE03367E

    59. [59]

      (58) Wang, M. S.; Wang, Z. Q.; Jia, R.; Yang, Z. L.; Yang, Y.; Zhu, F. Y.; Huang, Y.; Li, X. J. Electroanal. Chem. 2018, 815, 30. doi: 10.1016/j.jelechem.2018.02.031

    60. [60]

    61. [61]

      (60) Liu, Y. X.; Liu, P.; Wu, D. Q.; Huang, Y. S.; Tang, Y. P.; Su, Y. Z.; Zhang, F.; Feng, X. L. Chem. Eur. J. 2015, 21 (14), 5617. doi: 10.1002/chem.201406029

    62. [62]

      (61) Xie, F. R.; Zhao, S. Q.; Bo, X. X.; Li, G. H.; Fei, J. M.; Ahmed, E.-A. M. A.; Zhang, Q. C.; Jin, H. L.; Wang, S.; Lin, Z. Q. J. Mater. Chem. A 2023, 11 (1), 53. doi: 10.1039/D2TA07435D

    63. [63]

      (62) Choo, K. Y.; Yoo, C. Y.; Han, M. H.; Kim, D. K. J. Electroanal. Chem. 2017, 806, 50. doi: 10.1016/j.jelechem.2017.10.040

    64. [64]

      (63) Richards, J. J.; Hipp, J. B.; Riley, J. K.; Wagner, N. J.; Butler, P. D. Langmuir 2017, 33 (43), 12260. doi: 10.1021/acs.langmuir.7b02538

    65. [65]

      (64) Du, L. Y.; Bi, S. S.; Hu, Y.; Wang, R.; Zhu, J. C.; Zhang, M. H.; Niu, Z. Q. Carbon Energy 2022, 4 (4), 517. doi: 10.1002/cey2.181

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(1)
  • Abstract views(128)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return