Citation: Bowen Yang, Rui Wang, Benjian Xin, Lili Liu, Zhiqiang Niu. C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 231002. doi: 10.3866/PKU.WHXB202310024 shu

C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries

  • Corresponding author: Lili Liu, lililiuhappy@163.com Zhiqiang Niu, zqniu@nankai.edu.cn
  • Received Date: 19 October 2023
    Revised Date: 9 November 2023
    Accepted Date: 9 November 2023

    Fund Project: the National Key Research and Development Program of China 2019YFA0705601the National Natural Science Foundation of China 51972231

  • Lithium-based semi-solid flow batteries (LSSFBs) could potentially be applied in large-scale energy storage systems due to their high safety and relatively independent equipment units. However, the electrochemical performance of LSSFBs is limited by the unstable contact between conductive additives and active materials, as well as the poor conductivity of active materials. Therefore, it is necessary to develop semi-solid electrodes with high stability and specific capacity to obtain LSSFBs with satisfied energy density. Herein, carbon-coated SnO2/multi-walled carbon nanotubes (C-SnO2/MWCNTs) composite was designed as the anode material of LSSFBs. In such composite, SnO2 nanoparticles are uniformly distributed on the surface of MWCNTs and coated with carbon layer, which was identified by field-emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD) results. In general, the traditional SnO2 as active material in electrodes will suffer from volume expansion and collapse of structure, which will decline the cycle life of batteries. In this composite, the nanoparticle structure endows SnO2 with more reaction active sites. Furthermore, MWCNTs and carbon layer can construct a stable conductive network, which enhances the electron transport in SnO2-based electrodes. Simultaneously, MWCNTs and carbon layer also achieve an integrated architecture. Thus, the electron transfer dynamics of SnO2-based electrodes could be improved and their volume expansion is effectively suppressed during charging/discharging process, resulting in improved rate and cycling performance. The coin-type batteries based on C-SnO2/MWCNTs can maintain a discharge capacity of 725 mAh∙g−1 after 100 cycles under a current density of 0.5 A∙g−1. On the contrary, the discharge capacity of the batteries based on bulk SnO2 almost disappears after 100 cycles, which is attributed to the poor conductivity and excessive volume expansion of electrode materials. In addition, the MWCNTs will enhance the suspension stability of the semi-solid electrode. When the mass fraction of the C-SnO2/MWCNTs in the semi-solid electrode is 8.0%, the semi-solid electrode has superior suspension and electron conductivity, as well as suitable viscosity. Furthermore, the lithium storage mechanism of the semi-solid electrode was explored by ex situ XRD and X-ray photoelectron spectroscopy. The results show that, in C-SnO2/MWCNTs composite, SnO2 has a dual Li+ ions storage mechanism involving conversion and alloying reactions. When the flow rate is controlled with 5 mL∙min−1, the conduction network reaches a dynamic balance, and the semi-solid electrode exhibits low charge transfer resistance. These advantages endow the LSSFBs with superior rate and cycling performance. The semi-solid flow batteries could maintain 42.4% of their initial capacity (690.8 mAh∙g−1) after cycling for 962 h at 0.2 mA∙cm−2. This work provides a promising strategy for optimizing the semi-solid electrode of LSSFBs.
  • 加载中
    1. [1]

      Yao, Y. X.; Lei, J. X.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6 (6), 582. doi: 10.1038/s41560-020-00772-8  doi: 10.1038/s41560-020-00772-8

    2. [2]

      Hou, S.; Chen, L.; Fan, X. L.; Fan, X. T.; Ji, X.; Wang, B. Y.; Cui, C. Y.; Chen, J.; Yang, C. Y.; Wang, W.; et al. Nat. Commun. 2022, 13 (1), 1281. doi: 10.1038/s41467-022-28880-x  doi: 10.1038/s41467-022-28880-x

    3. [3]

      Yang, X. B.; Zhao, L.; Sui, X. L.; Meng, L. H.; Wang, Z. B. Acta Phys. -Chim. Sin. 2019, 35 (12), 1372.  doi: 10.3866/PKU.WHXB201905011

    4. [4]

      Yang, B.; Wang, Z. Y.; Wang, W. W.; Lu, Y. C. Energy Mater. Adv. 2022, 2022, 9795675. doi: 10.34133/2022/9795675  doi: 10.34133/2022/9795675

    5. [5]

      Lim, H. S.; Chae, S.; Yan, L. T.; Li, G. S.; Feng, R. Z.; Shin, Y.; Nie, Z. M.; Sivakumar, B. M.; Zhang, X.; Liang, Y. G.; et al. Energy Mater. Adv. 2022, 2022, 9863679. doi: 10.34133/2022/9863679  doi: 10.34133/2022/9863679

    6. [6]

      Fan, X. Y.; Liu, B.; Liu, J.; Ding, J.; Han, X. P.; Deng, Y. D.; Lv, X. J.; Xie, Y.; Chen, B.; Hu, W. B.; et al. Trans. Tianjin Univ. 2020, 26 (2), 92. doi: 10.1007/s12209-019-00231-w  doi: 10.1007/s12209-019-00231-w

    7. [7]

      Sun, J.; Jiang, H. R.; Zhao, C.; Fan, X. Z.; Chao, C.; Zhao, T. Sci. Bull. 2021, 66 (9), 904. doi: 10.1016/j.scib.2020.12.019  doi: 10.1016/j.scib.2020.12.019

    8. [8]

      Ling, J.; Kunwar, R.; Li, L. L.; Peng, S. J.; Misnon, I. I.; Ab Rahim, M. H.; Yang, C. C.; Jose, R. eScience 2022, 2 (4), 347. doi: 10.1016/j.esci.2022.07.002  doi: 10.1016/j.esci.2022.07.002

    9. [9]

      Guo, Y.; Wu, S. C.; He, Y. B.; Kang, F. Y.; Chen, L. Q.; Li, H.; Yang, Q. H. eScience 2022, 2 (2), 138. doi: 10.1016/j.esci.2022.02.008  doi: 10.1016/j.esci.2022.02.008

    10. [10]

      Rudola, A.; Wright, C. J.; Barker, J. Energy Mater. Adv. 2021, 2021, 9798460. doi: 10.34133/2021/9798460  doi: 10.34133/2021/9798460

    11. [11]

      Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. SmartMat 2022, 3 (4), 685. doi: 10.1002/smm2.1115  doi: 10.1002/smm2.1115

    12. [12]

      Chen, T. M.; Jin, Y.; Lv, H. Y.; Yang, A. T.; Liu, M. Y.; Chen, B.; Xie, Y.; Chen, Q. Trans. Tianjin Univ. 2020, 26 (3), 208. doi: 10.1007/s12209-020-00236-w  doi: 10.1007/s12209-020-00236-w

    13. [13]

      Sun, H.; Yu, M. F.; Li, Q.; Zhuang, K. M.; Li, J.; Almheiri, S.; Zhang, X. C. Energy 2019, 168, 693. doi: 10.1016/j.energy.2018.11.130  doi: 10.1016/j.energy.2018.11.130

    14. [14]

      Cong, G. T.; Lu, Y. C. Acta Phys. -Chim. Sin. 2022, 38 (6), 2106008.  doi: 10.3866/PKU.WHXB202106008

    15. [15]

      Wang, X.; Chai, J. C.; Jiang, J. B. Nano Mater. Sci. 2021, 3 (1), 17. doi: 10.1016/j.nanoms.2020.06.003  doi: 10.1016/j.nanoms.2020.06.003

    16. [16]

      Ventosa, E. Curr. Opin. Chem. Eng. 2022, 37, 100834. doi: 10.1016/j.coche.2022.100834  doi: 10.1016/j.coche.2022.100834

    17. [17]

      Huang, Q. Z.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys. 2013, 15 (6), 1793. doi: 10.1039/C2CP44466F  doi: 10.1039/C2CP44466F

    18. [18]

      Zhang, L.; Wu, X. K.; Qian, W. W.; Zhang, H. T.; Zhang, S. J. Green Energy Environ. 2021, 6 (1), 5. doi: 10.1016/j.gee.2020.09.012  doi: 10.1016/j.gee.2020.09.012

    19. [19]

      Narayanan, A.; Mugele, F.; Duits, M. H. G. Langmuir 2017, 33 (7), 1629. doi: 10.1021/acs.langmuir.6b04322  doi: 10.1021/acs.langmuir.6b04322

    20. [20]

      Xin, B. J.; Wang, R.; Liu, L. L.; Niu, Z. Q. Chem. J. Chin. Univ. 2023, 43 (5), 20220731.  doi: 10.7503/cjcu20220731

    21. [21]

      Duduta, M. H.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2011, 1 (4), 511. doi: 10.1002/aenm.201100152  doi: 10.1002/aenm.201100152

    22. [22]

      Li, B.; Liu, J. Natl. Sci. Rev. 2017, 4 (1), 91. doi: 10.1093/nsr/nww098  doi: 10.1093/nsr/nww098

    23. [23]

      Wei, J.; Zhang, P. B.; Liu, Y. Z.; Liang, J. C.; Xia, Y. R.; Tao, A. Y.; Zhang, K. Q.; Tie, Z. X.; Jin, Z. ACS Energy Lett. 2022, 7 (2), 862. doi: 10.1021/acsenergylett.2c00032  doi: 10.1021/acsenergylett.2c00032

    24. [24]

      Yazami, R. Electrochim. Acta 1999, 45 (1), 87. doi: 10.1016/S0013-4686(99)00195-4  doi: 10.1016/S0013-4686(99)00195-4

    25. [25]

      Hatzell, K. B.; Fan, L.; Beidaghi, M.; Boota, M.; Pomerantseva, E.; Kumbur, E. C.; Gogotsi, Y. ACS Appl. Mater. Interfaces 2014, 6 (11), 8886. doi: 10.1021/am501650q  doi: 10.1021/am501650q

    26. [26]

      Zhou, X. L.; Huang, R. A.; Wu, Z. C.; Bin, Y.; Dai, Y. N. Acta Phys. -Chim. Sin. 2010, 26 (12), 3187.  doi: 10.3866/PKU.WHXB20101212

    27. [27]

      Wei, T. S.; Fan, F. Y.; Helal, A.; Smith, K. C.; McKinley, G. H.; Chiang, Y.-M.; Lewis, J. A. Adv. Energy Mater. 2015, 5 (15), 1500535. doi: 10.1002/aenm.201500535  doi: 10.1002/aenm.201500535

    28. [28]

      Shen, X.; Zhang, X. Q.; Ding, F.; Huang, J. Q.; Xu, R.; Chen, X.; Yan, C.; Su, F. Y.; Chen, C. M.; Liu, X. J.; et al. Energy Mater. Adv. 2021, 2021, 1205324. doi: 10.34133/2021/1205324  doi: 10.34133/2021/1205324

    29. [29]

      Tang, Y. J.; Yang, L. P.; Zhu, Y. M.; Zhang, F. J.; Zhang, H. T. J. Mater. Chem. A 2022, 10 (10), 5620. doi: 10.1039/D1TA10883B  doi: 10.1039/D1TA10883B

    30. [30]

      Wu, F. X.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49 (5), 1569. doi: 10.1039/c7cs00863e  doi: 10.1039/c7cs00863e

    31. [31]

      Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788. doi: 10.1021/cr500232y  doi: 10.1021/cr500232y

    32. [32]

      Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Adv. Mater. 2013, 25 (29), 3979. doi: 10.1002/adma.201301051  doi: 10.1002/adma.201301051

    33. [33]

      Ma, Y.; Ajayan, P. M.; Yang, S. B.; Gong, Y. J. Small 2018, 14 (38), 1801606. doi: 10.1002/smll.201801606  doi: 10.1002/smll.201801606

    34. [34]

      Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A.; et al. Science 2010, 330 (6010), 1515. doi: 10.1126/science.1195628  doi: 10.1126/science.1195628

    35. [35]

      Wang, L. B.; Zhao, D. D.; Li, J. L.; Wang, H. Q.; Zhang, N. Sci. Sin. Chim. 2021, 51 (9), 1124.  doi: 10.1360/ssc-2021-0127

    36. [36]

      Min, X.; Sun, B.; Chen, S.; Fang, M. H.; Wu, X. W.; Liu, Y. G.; Abdelkader, A.; Huang, Z. H.; Liu, T.; Xi, K.; et al. Energy Storage Mater. 2019, 16, 597. doi: 10.1016/j.ensm.2018.08.002  doi: 10.1016/j.ensm.2018.08.002

    37. [37]

      Qian, C. L.; Gu, F. J.; Jin, S. L.; Wang, X. R.; Zhang, R.; Jin, M. L. J. Chin. Ceram. Soc. 2022, 50 (5), 1215.  doi: 10.14062/j.issn.0454-5648.20210691

    38. [38]

      Zhao, S. Q.; Sewell, C. D.; Liu, R. P.; Jia, S. R.; Wang, Z. W.; He, Y. J.; Yuan, K. J.; Jin, H. L.; Wang, S.; Liu, X. Q.; et al. Adv. Energy Mater. 2020, 10 (6), 1902657. doi: 10.1002/aenm.201902657  doi: 10.1002/aenm.201902657

    39. [39]

      Peng, X. D.; Xiong, C.; Lin, Y. K.; Zhao, C.; Zhao, T. S. SmartMat 2021, 2 (4), 579. doi: 10.1002/smm2.1061  doi: 10.1002/smm2.1061

    40. [40]

      Cui, S. Q.; Zhang, J. J.; Fan, S. Z.; Xing, X. T.; Deng, L. B.; Gong, Y. J. Nano Lett. 2022, 22 (23), 9559. doi: 10.1021/acs.nanolett.2c03699  doi: 10.1021/acs.nanolett.2c03699

    41. [41]

      Lan, X. X.; Xiong, X. Y.; Liu, J.; Yuan, B.; Hu, R. Z.; Zhu, M. Small 2022, 18 (26), 2201110. doi: 10.1002/smll.202201110  doi: 10.1002/smll.202201110

    42. [42]

      Shukla, G.; Franco, A. A. Batteries Supercaps 2019, 2 (7), 579. doi: 10.1002/batt.201800152  doi: 10.1002/batt.201800152

    43. [43]

      Chen, H. N.; Zou, Q. L.; Liang, Z. J.; Liu, H.; Li, Q.; Lu, Y. C. Nat. Commun. 2015, 6 (1), 5877. doi: 10.1038/ncomms6877  doi: 10.1038/ncomms6877

    44. [44]

      Pan, S. S.; Yang, L. P.; Su, P. P.; Zhang, H. T.; Zhang, S. J. Small 2022, 18 (33), 2202139. doi: 10.1002/smll.202202139  doi: 10.1002/smll.202202139

    45. [45]

      Xin, B. J.; Wang, R.; Hu, Y.; Liu, L. L.; Niu, Z. Q. Sci. Sin. Chim. 2022, 52 (7), 1148.  doi: 10.1360/ssc-2022-0102

    46. [46]

      Cao, H. M.; Deng, S. Z.; Tie, Z. W.; Tian, J. L.; Liu, L. L.; Niu, Z. Q. Sci. China Chem. 2022, 65 (9), 1725. doi: 10.1007/s11426-022-1292-0  doi: 10.1007/s11426-022-1292-0

    47. [47]

      Cheng, Y. Y.; Huang, J. F.; Qi, H.; Cao, L. Y.; Yang, J.; Xi, Q.; Luo, X. M.; Yanagisawa, K.; Li, J. Y. Small 2017, 13 (31), 1700656. doi: 10.1002/smll.201700656  doi: 10.1002/smll.201700656

    48. [48]

      Zhu, C.; Xu, J.; Ding, Y. L. J. Chin. Ceram. Soc. 2022, 50 (2), 364.  doi: 10.14062/j.issn.0454-5648.20210759

    49. [49]

      Liu, M.; Zhang, S.; Dong, H. C.; Chen, X.; Gao, S.; Sun, Y. P.; Li, W. H.; Xu, J. Q.; Chen, L. W.; Yuan, A. B.; et al. ACS Sustain. Chem. Eng. 2019, 7 (4), 4195. doi: 10.1021/acssuschemeng.8b05869  doi: 10.1021/acssuschemeng.8b05869

    50. [50]

      Song, L. X.; Yang, S. J.; Wei, W.; Qu, P.; Xu, M. T.; Liu, Y. Sci. Bull. 2015, 60 (9), 892. doi: 10.1007/s11434-015-0767-2  doi: 10.1007/s11434-015-0767-2

    51. [51]

      Tang, J. Y.; Peng, X. Y.; Lin, T. E.; Huang, X.; Luo, B.; Wang, L. Z. eScience 2021, 1 (2), 203. doi: 10.1016/j.esci.2021.12.004  doi: 10.1016/j.esci.2021.12.004

    52. [52]

      Deng, S. Z.; Tie, Z. W.; Yue, F.; Cao, H. M.; Yao, M. J.; Niu, Z. Q. Angew. Chem. Int. Ed. 2022, 61 (12), e202115877. doi: 10.1002/anie.202115877  doi: 10.1002/anie.202115877

    53. [53]

      Pan, S. S.; Zhang, H. T.; Xing, C. X.; Yang, L. P.; Su, P. P.; Bi, J. J.; Zhang, S. J. J. Power Sources 2021, 508, 230341. doi: 10.1016/j.jpowsour.2021.230341  doi: 10.1016/j.jpowsour.2021.230341

    54. [54]

      Parant, H.; Muller, G.; Le Mercier, T.; Tarascon, J. M.; Poulin, P.; Colin, A. Carbon 2017, 119, 10. doi: 10.1016/j.carbon.2017.04.014  doi: 10.1016/j.carbon.2017.04.014

    55. [55]

      Chen, H. N.; Liu, Y.; Zhang, X. F.; Lan, Q.; Chu, Y.; Li, Y. L.; Wu, Q. X. J. Power Sources 2021, 485, 229319. doi: 10.1016/j.jpowsour.2020.229319  doi: 10.1016/j.jpowsour.2020.229319

    56. [56]

      Ma, Y. J.; Ma, Y.; Giuli, G.; Diemant, T.; Behm, R. J.; Geiger, D.; Kaiser, U.; Ulissi, U.; Passerini, S.; Bresser, D. Sustain. Energy Fuels 2018, 2 (12), 2601. doi: 10.1039/C8SE00424B  doi: 10.1039/C8SE00424B

    57. [57]

      Hu, R. Z.; Chen, D. C.; Waller, G.; Ouyang, Y.; Chen, Y.; Zhao, B. T.; Rainwater, B.; Yang, C. H.; Zhu, M.; Liu, M. L. Energy Environ. Sci. 2016, 9 (2), 595. doi: 10.1039/C5EE03367E  doi: 10.1039/C5EE03367E

    58. [58]

      Wang, M. S.; Wang, Z. Q.; Jia, R.; Yang, Z. L.; Yang, Y.; Zhu, F. Y.; Huang, Y.; Li, X. J. Electroanal. Chem. 2018, 815, 30. doi: 10.1016/j.jelechem.2018.02.031  doi: 10.1016/j.jelechem.2018.02.031

    59. [59]

      Ma, R. B.; Fu, Y. B.; Ma, X. H. Acta Phys. -Chim. Sin. 2009, 25 (3), 441.  doi: 10.3866/PKU.WHXB20090308

    60. [60]

      Liu, Y. X.; Liu, P.; Wu, D. Q.; Huang, Y. S.; Tang, Y. P.; Su, Y. Z.; Zhang, F.; Feng, X. L. Chem. Eur. J. 2015, 21 (14), 5617. doi: 10.1002/chem.201406029  doi: 10.1002/chem.201406029

    61. [61]

      Xie, F. R.; Zhao, S. Q.; Bo, X. X.; Li, G. H.; Fei, J. M.; Ahmed, E.-A. M. A.; Zhang, Q. C.; Jin, H. L.; Wang, S.; Lin, Z. Q. J. Mater. Chem. A 2023, 11 (1), 53. doi: 10.1039/D2TA07435D  doi: 10.1039/D2TA07435D

    62. [62]

      Choo, K. Y.; Yoo, C. Y.; Han, M. H.; Kim, D. K. J. Electroanal. Chem. 2017, 806, 50. doi: 10.1016/j.jelechem.2017.10.040  doi: 10.1016/j.jelechem.2017.10.040

    63. [63]

      Richards, J. J.; Hipp, J. B.; Riley, J. K.; Wagner, N. J.; Butler, P. D. Langmuir 2017, 33 (43), 12260. doi: 10.1021/acs.langmuir.7b02538  doi: 10.1021/acs.langmuir.7b02538

    64. [64]

      Du, L. Y.; Bi, S. S.; Hu, Y.; Wang, R.; Zhu, J. C.; Zhang, M. H.; Niu, Z. Q. Carbon Energy 2022, 4 (4), 517. doi: 10.1002/cey2.181  doi: 10.1002/cey2.181

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    4. [4]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    9. [9]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    17. [17]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    18. [18]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    19. [19]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    20. [20]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

Metrics
  • PDF Downloads(1)
  • Abstract views(197)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return