Citation: Kexin Dong, Chuqi Shen, Ruyu Yan, Yanping Liu, Chunqiang Zhuang, Shijie Li. Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231001. doi: 10.3866/PKU.WHXB202310013 shu

Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation

  • Corresponding author: Shijie Li, lishijie@zjou.edu.cn
  • Received Date: 16 October 2023
    Revised Date: 15 November 2023
    Accepted Date: 15 November 2023
    Available Online: 21 December 2023

    Fund Project: the National Natural Science Foundation of China U1809214Natural Science Foundation of Zhejiang Province of China LY20E080014Natural Science Foundation of Zhejiang Province of China LTGN23E080001Science and Technology Project of Zhoushan of China 2022C41011

  • The escalating presence of pharmaceutical antibiotics in natural water poses an overwhelming threat to the sustainable development of society. Photocatalysis technology stands out as a promising and cutting-edge environmental purification alternative. C3N5, identified as a distinctive nonprecious nonmetal photocatalyst, holds potential for environmental protection. However, challenges persist originating from the sluggish photoreaction kinetics and severe photo-carrier reunion. Currently, the design of a special S-scheme photosystem proves to be a reliable strategy for obtaining outstanding photocatalysts. In this context, a plasmonic S-scheme photosystem involving Ag/Ag3PO4/C3N5 was developed through a feasible route. The compactly connected 0D/0D/2D Ag/Ag3PO4/C3N5 heterostructure, benefitting from the synergy between the plasmonic effect and the S-scheme junction, facilitates the efficient utilization of appreciably reinforced sunlight absorption, effective photo-carrier disassociation, and notable photoredox capacity. Consequently, this system generates •OH and •O2 effectively. Ag/Ag3PO4/C3N5 demonstrates a superb photocatalytic levofloxacin eradication rate of 0.0362 min−1, marking a substantial advancement of 24.8, 1.1, and 0.7 folds compared to C3N5, Ag3PO4, and Ag3PO4/C3N5, respectively. Impressively, Ag/Ag3PO4/C3N5 delivers remarkable anti-interference performance and reusability. This achievement signifies a significant step toward developing potent C3N5-involved photosystems for environmental purification.
  • 加载中
    1. [1]

      Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi: 10.1016/j.eehl.2022.10.001  doi: 10.1016/j.eehl.2022.10.001

    2. [2]

      Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi: 10.1016/j.eehl.2022.04.003  doi: 10.1016/j.eehl.2022.04.003

    3. [3]

      Previšić, A.; Vilenica, M.; Vučković, N.; Petrović, M.; Rožman, M. Environ. Sci. Technol. 2021, 55, 3736. doi: 10.1021/acs.est.0c07609  doi: 10.1021/acs.est.0c07609

    4. [4]

      Santos, A. J. D.; Barazorda-Ccahuana, H. L.; Caballero-Manrique, G.; Chérémond, Y.; Espinoza-Montero, P. J.; González-Rodríguez, J. R.; Jáuregui-Haza, U. J.; Lanza, M. R. V.; Nájera, A.; Oporto, C.; et al. Nat. Sustain. 2023, 6, 349. doi: 10.1038/s41893-022-01042-z  doi: 10.1038/s41893-022-01042-z

    5. [5]

      Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi: 10.1038/s41893-022-00915-7  doi: 10.1038/s41893-022-00915-7

    6. [6]

      Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022, 300, 118922. doi: 10.1016/j.envpol.2022.118922  doi: 10.1016/j.envpol.2022.118922

    7. [7]

      Liu, Y.; Wang, K.; Zhou, Z.; Wei, X.; Xia, S.; Wang, X.-M.; Xie, Y. F.; Huang, X. Environ. Sci. Technol. 2022, 56, 15220. doi: 10.1021/acs.est.2c06579  doi: 10.1021/acs.est.2c06579

    8. [8]

      Caban, M.; Stepnowski, P. Environ. Chem. Lett. 2021, 19, 3115. doi: 10.1007/s10311-021-01194-y  doi: 10.1007/s10311-021-01194-y

    9. [9]

      Xu, C.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Chem. Soc. Rev. 2019, 48, 3868. doi: 10.1039/c9cs00102f  doi: 10.1039/c9cs00102f

    10. [10]

      Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev. 2022, 51, 3561. doi: 10.1039/D1CS01182K  doi: 10.1039/D1CS01182K

    11. [11]

      Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H.; Krishnan, V. Small 2021, 18, 2101638. doi: 10.1002/smll.202101638  doi: 10.1002/smll.202101638

    12. [12]

      Liras, M.; Barawi, M.; de la O'Shea Peñ a, V. A. Chem. Soc. Rev. 2019, 48, 5454. doi: 10.1039/c9cs00377k  doi: 10.1039/c9cs00377k

    13. [13]

      Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nature Energy 2022, 7, 13. doi: 10.1038/s41560-021-00919-1  doi: 10.1038/s41560-021-00919-1

    14. [14]

      Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. Adv. Fiber Mater. 2022, 4, 342. doi: 10.1007/s42765-021-00122-7  doi: 10.1007/s42765-021-00122-7

    15. [15]

      Gong, H.; Wang, L.; Zhou, K.; Zhang, D.; Zhang, Y.; Adamaki, V.; Bowen, C.; Sergejevs, A. Adv. Powder Mater. 2022, 1, 100025. doi: 10.1016/j.apmate.2021.11.011  doi: 10.1016/j.apmate.2021.11.011

    16. [16]

      Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; et al. Adv. Powder Mater. 2023, 2, 100094. doi: 10.1016/j.apmate.2022.100094  doi: 10.1016/j.apmate.2022.100094

    17. [17]

      Zhou, W.; Jing, Q.; Li, J.; Chen, Y.; Hao, G.; Wang, L.-N. Acta Phys. -Chim. Sin. 2023, 39, 2211010.  doi: 10.3866/PKU.WHXB202211010

    18. [18]

      Zhang, Y.; Xu, J.; Zhou, J.; Wang, L. Chin. J. Catal. 2022, 43, 971. doi: 10.1016/S1872-2067(21)63934-7  doi: 10.1016/S1872-2067(21)63934-7

    19. [19]

      Liu, Z.; Tian, J.; Yu, C.; Fan, Q.; Liu, X. Chin. J. Catal. 2022, 43, 472. doi: 10.1016/S1872-2067(21)63876-7  doi: 10.1016/S1872-2067(21)63876-7

    20. [20]

      Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Chin. J. Struct. Chem. 2022, 41, 2201014. doi: 10.14102/j.cnki.0254-5861.2021-0027  doi: 10.14102/j.cnki.0254-5861.2021-0027

    21. [21]

      Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi: 10.1016/S1872-2067(22)64193-7  doi: 10.1016/S1872-2067(22)64193-7

    22. [22]

      Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi: 10.1038/s41570-022-00434-1  doi: 10.1038/s41570-022-00434-1

    23. [23]

      Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi: 10.1007/s42765-022-00189-w  doi: 10.1007/s42765-022-00189-w

    24. [24]

      Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2024, 180, 193. doi: 10.1016/j.jmst.2023.08.021  doi: 10.1016/j.jmst.2023.08.021

    25. [25]

      Xing, Y.; Liu, S. Chin. J. Struct. Chem. 2022, 41, 2209056. doi: 10.14102/j.cnki.0254-5861.2022-0188  doi: 10.14102/j.cnki.0254-5861.2022-0188

    26. [26]

      Selvaraj, V.; Ong, W.-J.; Pandikumar, A. Coordin. Chem. Rev. 2022, 464, 214541. doi: 10.1016/j.ccr.2022.214541  doi: 10.1016/j.ccr.2022.214541

    27. [27]

      Gibson, E. A. Nat. Catal. 2021, 4, 740. doi: 10.1038/s41929-021-00678-y  doi: 10.1038/s41929-021-00678-y

    28. [28]

      Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030  doi: 10.1016/j.jmst.2022.08.030

    29. [29]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    30. [30]

      Zhang, Y.; Zhang, L.; Zeng, D.; Wang, W.; Wang, J.; Wang, W.; Wang, W. Chin. J. Catal. 2022, 43, 2690. doi: 10.1016/S1872-2067(22)64114-7  doi: 10.1016/S1872-2067(22)64114-7

    31. [31]

      Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M. K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. J. Environ. Chem. Eng. 2021, 9, 106025. doi: 10.1016/j.jece.2021.106025  doi: 10.1016/j.jece.2021.106025

    32. [32]

      Chen, Z.; Wei, W.; Chen, H.; Ni, B.-J. Eco-Environ. Health 2022, 1, 86. doi: 10.1016/j.eehl.2022.05.001  doi: 10.1016/j.eehl.2022.05.001

    33. [33]

      Zhai, H.; Liu, Z.; Xu, L.; Liu, T.; Fan, Y.; Jin, L.; Dong, R.; Yi, Y.; Li, Y. Adv. Fiber Mater. 2022, 4, 1595. doi: 10.1007/s42765-022-00192-1  doi: 10.1007/s42765-022-00192-1

    34. [34]

      Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2022, 114, 81. doi: 10.1016/j.jmst.2021.12.003  doi: 10.1016/j.jmst.2021.12.003

    35. [35]

      Ng, S.-F.; Chen, X.; Foo, J. J.; Xiong, M.; Ong, W.-J. Chin. J. Catal. 2023, 47, 150. doi: 10.1016/S1872-2067(23)64417-1  doi: 10.1016/S1872-2067(23)64417-1

    36. [36]

      Li, Z.; Zhou, Y.; Zhou, Y.; Wang, K.; Yun, Y.; Chen, S.; Jiao, W.; Chen, L.; Zou, B.; Zhu, M. Nat. Comm. 2023, 14, 5742. doi: 10.1038/s41467-023-41522-0  doi: 10.1038/s41467-023-41522-0

    37. [37]

      Chellapandi, T.; Madhumitha, G.; Roopan, S. M.; Manjupriya, R.; Arunachalapandi, M.; Pouthika, K.; Elamathi, M. Sep. Purif. Technol. 2023, 307, 122865. doi: 10.1016/j.seppur.2022.122865  doi: 10.1016/j.seppur.2022.122865

    38. [38]

      Peng, C.; Han, L.; Huang, J.; Wang, S.; Zhang, X.; Chen, H. Chin. J. Catal. 2022, 43, 410. doi: 10.1016/S1872-2067(21)63813-5  doi: 10.1016/S1872-2067(21)63813-5

    39. [39]

      Debnath, B.; Singh, S.; Hossain, S. M.; Krishnamurthy, S.; Polshettiwar, V.; Ogal, S. Langmuir 2022, 38, 3139. doi: 10.1021/acs.langmuir.1c03127  doi: 10.1021/acs.langmuir.1c03127

    40. [40]

      Sathish, C.; Premkumar, S.; Chu, X.; Yu, X.; Breese, M. B. H.; Al-Abri, M.; Al-Muhtaseb, A. a. H.; Karakoti, A.; Yi, J.; Vinu, A. Angew. Chem. Int. Ed. 2021, 133, 21412. doi: 10.1002/ange.202108605  doi: 10.1002/ange.202108605

    41. [41]

      Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi: 10.1007/s42765-022-00149-4  doi: 10.1007/s42765-022-00149-4

    42. [42]

      Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi: 10.1007/s42765-022-00205-z  doi: 10.1007/s42765-022-00205-z

    43. [43]

      Debnath, B.; Hossain, S. M.; Sadhu, A.; Singh, S.; Polshettiwar, V.; Ogale, S. ACS Appl. Mater. Interfaces 2022, 14, 37076. doi: 10.1021/acsami.2c03758  doi: 10.1021/acsami.2c03758

    44. [44]

      Li, J.; Wang, Y.; Wang, Y.; Guo, Y.; Zhang, S.; Song, H.; Li, X.; Gao, Q.; Shang, W.; Hu, S.; et al. Nano Mater. Sci. 2023, 5, 237. doi: 10.1016/j.nanoms.2023.02.003  doi: 10.1016/j.nanoms.2023.02.003

    45. [45]

      Vadivel, S.; Fujii, M.; Rajendran, S. Chemosphere 2022, 307, 135716. doi: 10.1016/j.chemosphere.2022.135716  doi: 10.1016/j.chemosphere.2022.135716

    46. [46]

      Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022, 14, 26742. doi: 10.1021/acsami.2c04729  doi: 10.1021/acsami.2c04729

    47. [47]

      Bai, S.; Qiu, H.; Song, M.; He, G.; Wang, F.; Liu, Y.; Guo, L. eScience 2022, 2, 428. doi: 10.1016/j.esci.2022.06.006  doi: 10.1016/j.esci.2022.06.006

    48. [48]

      Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi: 10.1016/j.esci.2023.100095  doi: 10.1016/j.esci.2023.100095

    49. [49]

      Jia, X.; Shen, Z.; Han, Q.; Bi, H. Chin. J. Catal. 2022, 43, 288. doi: 10.1016/S1872-2067(20)63768-8  doi: 10.1016/S1872-2067(20)63768-8

    50. [50]

      Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al. Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563  doi: 10.1002/adma.202200563

    51. [51]

      Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007  doi: 10.1016/j.jmst.2023.04.007

    52. [52]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4  doi: 10.1016/S1872-2067(23)64444-4

    53. [53]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 202300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    54. [54]

      Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi: 10.1016/S1872-2067(21)63843-3  doi: 10.1016/S1872-2067(21)63843-3

    55. [55]

      Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046  doi: 10.14102/j.cnki.0254-5861.2021-0046

    56. [56]

      Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026  doi: 10.14102/j.cnki.0254-5861.2021-0026

    57. [57]

      Saravanakumar, K.; Maheskumar, V.; Yea, Y.; Yoon, Y.; Muthuraj, V.; Park, C. M. Compos. Part B: Eng. 2022, 234, 109726. doi: 10.1016/j.compositesb.2022.109726  doi: 10.1016/j.compositesb.2022.109726

    58. [58]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016.  doi: 10.3866/PKU.WHXB202212016

    59. [59]

      Zhu, B.; Hong, X.; Tang, L.; Liu, Q.; Tang, H. Acta Phys. -Chim. Sin. 2022, 38, 2111008.  doi: 10.3866/PKU.WHXB202111008

    60. [60]

      Qaraah, F. A.; Mahyoub, S. A.; Hezam, A.; Qaraah, A.; Drmosh, Q. A.; Xiu, G. Chin. J. Catal. 2022, 43, 2637. doi: 10.1016/S1872-2067(21)64038-X  doi: 10.1016/S1872-2067(21)64038-X

    61. [61]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    62. [62]

      Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1  doi: 10.1016/S1872-2067(23)64479-1

    63. [63]

      Wang, C.; You, C.; Rong, K.; Shen, C.; Fang, Y.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2307045.  doi: 10.3866/PKU.WHXB202307045

    64. [64]

      Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6  doi: 10.1016/S1872-2067(21)64005-6

    65. [65]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    66. [66]

      Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1  doi: 10.1016/S1872-2067(23)64496-1

    67. [67]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    68. [68]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    69. [69]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037.  doi: 10.3866/PKU.WHXB202209037

    70. [70]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026.  doi: 10.3866/PKU.WHXB202212026

    71. [71]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Adv. Powder Mater. 2023, 2, 100073. doi: 10.1016/j.apmate.2022.100073  doi: 10.1016/j.apmate.2022.100073

    72. [72]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/ange.202218688  doi: 10.1002/ange.202218688

    73. [73]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    74. [74]

      Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi: 10.1016/j.esci.2023.100208  doi: 10.1016/j.esci.2023.100208

    75. [75]

      He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal. B 2021, 281, 119479. doi: 10.1016/j.apcatb.2020.119479  doi: 10.1016/j.apcatb.2020.119479

    76. [76]

      Grilla, E.; Petala, A.; Frontistis, Z.; Konstantinou, I. K.; Kondarides, D. I.; Mantzavinos, D. Appl. Catal. B 2018, 231, 73. doi: 10.1016/j.apcatb.2018.03.011  doi: 10.1016/j.apcatb.2018.03.011

    77. [77]

      Cai, T.; Zeng, W.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. Appl. Catal. B 2020, 263, 118327. doi: 10.1016/j.apcatb.2019.118327  doi: 10.1016/j.apcatb.2019.118327

    78. [78]

      Zhu, Y.; Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal. 2022, 43, 2558. doi: 10.1016/S1872-2067(22)64099-3  doi: 10.1016/S1872-2067(22)64099-3

    79. [79]

      Wang, Y.; Han, D.; Wang, Z.; Gu, F. ACS Appl. Mater. Interfaces 2023, 15, 22085. doi: 10.1021/acsami.3c01255  doi: 10.1021/acsami.3c01255

    80. [80]

      van Turnhout, L.; Hattori, Y.; Meng, J.; Zheng, K.; Sá, J. Nano Lett. 2020, 20, 8220. doi: 10.1021/acs.nanolett.0c03344  doi: 10.1021/acs.nanolett.0c03344

    81. [81]

      Temerov, F.; Pham, K.; Juuti, P.; Mä kelä , J.; Grachova, E. V.; Kumar, S.; Eslava, S.; Saarinen, J. J. ACS Appl. Mater. Interfaces 2020, 12, 41200. doi: 10.1021/acsami.0c08624  doi: 10.1021/acsami.0c08624

    82. [82]

      Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. ACS Nano 2021, 15, 6038. doi: 10.1021/acsnano.0c10945  doi: 10.1021/acsnano.0c10945

    83. [83]

      Nayak, S.; Parida, K. M. ACS Omega 2018, 3, 7324. doi: 10.1021/acsomega.8b00847  doi: 10.1021/acsomega.8b00847

    84. [84]

      Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Appl. Catal. B 2020, 272, 118978. doi: 10.1016/j.apcatb.2020.118978  doi: 10.1016/j.apcatb.2020.118978

    85. [85]

      Dong, T.; Wang, P.; Yang, P. Int. J. Hydrog. Energy 2018, 43, 20607. doi: 10.1016/j.ijhydene.2018.09.079  doi: 10.1016/j.ijhydene.2018.09.079

    86. [86]

      Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108  doi: 10.14102/j.cnki.0254-5861.2022-0108

    87. [87]

      Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi: 10.1016/j.nanoms.2022.03.001  doi: 10.1016/j.nanoms.2022.03.001

    88. [88]

      Zhou, L.; Li, Y.; Zhang, Y.; Qiu, L.; Xing, Y. Acta Phys. -Chim. Sin. 2022, 38, 2112027.  doi: 10.3866/PKU.WHXB202112027

    89. [89]

      Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5  doi: 10.1007/s42765-022-00253-5

    90. [90]

      Liu, D.; Xue, C. Adv. Mater. 2021, 33, 2005738. doi: 10.1002/adma.202005738  doi: 10.1002/adma.202005738

    91. [91]

      Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38, 2109023.  doi: 10.3866/PKU.WHXB202109023

    92. [92]

      Muñ oz-Batista, M. J.; Ballari, M. M.; Kubacka, A.; Alfano, O. M.; Fernández-García, M. Chem. Soc. Rev. 2019, 48, 637. doi: 10.1039/C8CS00108A  doi: 10.1039/C8CS00108A

    93. [93]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    94. [94]

      Zhang, H.; Gu, H.; Wang, X.; Chang, S.; Li, Q.; Dai, W.-L. Chem. Eng. J. 2023, 457, 141185. doi: 10.1016/j.cej.2022.141185  doi: 10.1016/j.cej.2022.141185

    95. [95]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

  • 加载中
    1. [1]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    7. [7]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    8. [8]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    11. [11]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    12. [12]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    14. [14]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    18. [18]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    19. [19]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(5)
  • Abstract views(652)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return