Citation: Yuhang Zhang, Weiwei Zhao, Hongwei Liu, Junpeng Lü. Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 231000. doi: 10.3866/PKU.WHXB202310004 shu

Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials

  • Corresponding author: Weiwei Zhao, 06301@njnu.edu.cn Hongwei Liu, phylhw@njnu.edu.cn
  • Received Date: 9 October 2023
    Revised Date: 1 November 2023
    Accepted Date: 3 November 2023

    Fund Project: the National Natural Science Foundation of China T2222011the National Natural Science Foundation of China 62174026the National Natural Science Foundation of China 12274234the National Key Research and Development Program of China 2023YFB3611400the National Key Research and Development Program of China 2019YFA0308000the Fundamental Research Funds for the Central Universities 242023k30027

  • In recent years, there has been a growing interest in self-powered photodetectors, which can detect light without needing an external power supply. This unique feature makes them highly attractive for addressing the current energy shortage and the future demand for miniaturized devices. Among various design approaches for self-powered photodetectors, the use of low-dimensional materials holds great promise. Low-dimensional nanomaterials offer several advantages for self-powered photodetectors. They can be assembled into large area ordered structures such as ultra-thin layers, nanowire arrays, and quantum dot superlattices. Additionally, their atomic-level thickness provides a large specific surface area and facilitates integration with other materials. By combining different low-dimensional materials with complementary enhancements in bandgap, carrier transport rate, and light collection efficiency, the performance of self-powered photodetectors can be significantly improved. These devices can be scaled down to micro-nano levels while taking advantage of the adjustable bandgap, wide spectral response, high carrier migration rate, and high light absorption efficiency offered by low-dimensional materials. This article introduces the performance metrics of photodetectors, including photoresponsivity, noise equivalent power, detectivity, and response time. It then discusses the latest advancements in self-powered photodetectors based on 0D, 1D, and 2D materials. In the section on 0D material self-powered photodetectors, the device structure design using 0D materials as heterojunction components and doping materials is presented, highlighting their respective advantages. The section on 1D material self-powered photodetectors summarizes three main device structure types: planar, vertical, and core-shell, along with their individual advantages. The focus is placed on the content related to 2D material self-powered photodetectors. Graphene, transition metal dichalcogenides (TMDs), and black phosphorus are the most widely used 2D materials, and their preparation methods and the latest advancements in self-powered photodetectors are discussed. The controllable diversity in electrical properties resulting from interlayer interactions in two-dimensional materials offers great potential for new principles and multifunctional electronic devices. Finally, the article summarizes and discusses the key challenges and future development directions for self-powered photodetectors based on low-dimensional materials. In summary, the utilization of low-dimensional materials in self-powered photodetectors presents a promising direction for the development of advanced optoelectronic devices. By utilizing the unique properties of these materials, such as their atomic-level thickness, large specific surface area, and controllable electrical properties, significant advancements can be made in the field of self-powered photodetectors. The challenges associated with these materials, such as their complex fabrication processes, will need to be addressed to fully realize their potential in practical applications.
  • 加载中
    1. [1]

      Zhou, J.; Huang, J. Adv. Sci. 2018, 5, 1700256. doi: 10.1002/advs.201700256  doi: 10.1002/advs.201700256

    2. [2]

      Tang, H.; Lü, J. Chin. Sci. Bull. 2023, 68, 3137. doi: 10.1360/tb-2023-0438  doi: 10.1360/tb-2023-0438

    3. [3]

      Cao, F.; Yan, T.; Li, Z.; Wu, L.; Fang, X. Adv. Opt. Mater. 2022, 10, 2200786. doi: 10.1002/adom.202200786  doi: 10.1002/adom.202200786

    4. [4]

      Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wang, T.; Wang, W.; Li, M. Nat. Energy 2019, 4, 150. doi: 10.1038/s41560-018-0324-8  doi: 10.1038/s41560-018-0324-8

    5. [5]

      Ma, N.; Zhang, K.; Yang, Y. Adv. Mater. 2017, 29, 1703694. doi: 10.1002/adma.201703694  doi: 10.1002/adma.201703694

    6. [6]

      Chen, H.; Liu, H.; Zhang, Z.; Hu, K.; Fang, X. Adv. Mater. 2016, 28, 403. doi: 10.1002/adma.201503534  doi: 10.1002/adma.201503534

    7. [7]

      Askari, H.; Xu, N.; Groenner Barbosa, B. H.; Huang, Y.; Chen, L.; Khajepour, A.; Chen, H.; Wang, Z. L. Mater. Today 2022, 52, 188. doi: 10.1016/j.mattod.2021.11.027  doi: 10.1016/j.mattod.2021.11.027

    8. [8]

      Chen, J.; You, D.; Zhang, Y.; Zhang, T.; Yao, C.; Zhang, Q.; Li, M.; Lu, Y.; He, Y. ACS Appl. Mater. Interf. 2020, 12, 53957. doi: 10.1021/acsami.0c15816  doi: 10.1021/acsami.0c15816

    9. [9]

      Qin, W.; Zhou, P.; Xu, X.; Huang, C.; Srinivasan, G.; Qi, Y.; Zhang, T. ACS Appl. Electron. Mater. 2022, 4, 2970. doi: 10.1021/acsaelm.2c00411  doi: 10.1021/acsaelm.2c00411

    10. [10]

      Li, P.; Zhang, Z. ACS Appl. Mater. Interfaces 2020, 12, 58132. doi: 10.1021/acsami.0c18028  doi: 10.1021/acsami.0c18028

    11. [11]

      Sahare, S.; Ghoderao, P.; Sharma, M. K.; Solovan, M.; Aepuru, R.; Kumar, M.; Chan, Y.; Ziółek, M.; Lee, S. -L.; Lin, Z. -H. Nano Energy 2023, 107, 108172. doi: 10.1016/j.nanoen.2023.108172  doi: 10.1016/j.nanoen.2023.108172

    12. [12]

      Ryu, H.; Kim, S. W. Small 2021, 17, 1903469. doi: 10.1002/smll.201903469  doi: 10.1002/smll.201903469

    13. [13]

      Qi, J.; Ma, N.; Yang, Y. Adv. Mater. Interf. 2018, 5, 1701189. doi: 10.1002/admi.201701189  doi: 10.1002/admi.201701189

    14. [14]

      Li, H.; Bowen, C. R.; Yang, Y. Nano Energy 2022, 102, 107657. doi: 10.1016/j.nanoen.2022.107657  doi: 10.1016/j.nanoen.2022.107657

    15. [15]

      Zhou, J.; Chen, L.; Wang, Y.; He, Y.; Pan, X.; Xie, E. Nanoscale 2016, 8, 50. doi: 10.1039/c5nr06167a  doi: 10.1039/c5nr06167a

    16. [16]

      Wang, Z. L. Mater. Today 2017, 20, 74. doi: 10.1016/j.mattod.2016.12.001  doi: 10.1016/j.mattod.2016.12.001

    17. [17]

      Zhang, Z. X.; Long-Hui, Z.; Tong, X. W.; Gao, Y.; Xie, C.; Tsang, Y. H.; Luo, L. B.; Wu, Y. C. J. Phys. Chem. Lett. 2018, 9, 1185. doi: 10.1021/acs.jpclett.8b00266  doi: 10.1021/acs.jpclett.8b00266

    18. [18]

      Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; Horantner, M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.; Alexander-Webber, J. A.; Abate, A.; et al. Nat. Commun. 2015, 6, 6142. doi: 10.1038/ncomms7142  doi: 10.1038/ncomms7142

    19. [19]

      Li, W.; Zhang, W.; Van Reenen, S.; Sutton, R. J.; Fan, J.; Haghighirad, A. A.; Johnston, M. B.; Wang, L.; Snaith, H. J. Energy Environ. Sci. 2016, 9, 490. doi: 10.1039/c5ee03522h  doi: 10.1039/c5ee03522h

    20. [20]

      Jariwala, D.; Marks, T. J.; Hersam, M. C. Nat. Mater. 2017, 16, 170. doi: 10.1038/nmat4703  doi: 10.1038/nmat4703

    21. [21]

      Wu, Z.; Zhang, Z.; Sun, M.; Tan, B.; Liu, B.; Han, W.; Xie, E.; Li, Y. Adv. Mater. Interf. 2021, 8. doi: 10.1002/admi.202101443  doi: 10.1002/admi.202101443

    22. [22]

      Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. doi: 10.1021/cr900137k  doi: 10.1021/cr900137k

    23. [23]

      Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. J. Am. Chem. Soc. 2007, 129, 11708. doi: 10.1021/ja068351m  doi: 10.1021/ja068351m

    24. [24]

      Wang, H.; Li, Z.; Li, D.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Adv. Funct. Mater. 2021, 31, 2103106. doi: 10.1002/adfm.202103106  doi: 10.1002/adfm.202103106

    25. [25]

      Liu, R.; Wang, F.; Liu, L.; He, X.; Chen, J.; Li, Y.; Zhai, T. Small Struct. 2020, 2, 2000136 doi: 10.1002/sstr.202000136  doi: 10.1002/sstr.202000136

    26. [26]

      Li, Z.; Yan, T.; Fang, X. Nat. Rev. Mater. 2023, 8, 587. doi: 10.1038/s41578-023-00583-9  doi: 10.1038/s41578-023-00583-9

    27. [27]

      Wang, K.; Wu, C.; Jiang, Y.; Yang, D.; Wang, K.; Priya, S. Sci. Adv. 2019, 5, eaau3241. doi: 10.1126/sciadv.aau3241  doi: 10.1126/sciadv.aau3241

    28. [28]

      Salam, J. A.; Jayakrishnan, R. J. Mater. Sci. 2023, 58, 5186. doi: 10.1007/s10853-023-08379-6  doi: 10.1007/s10853-023-08379-6

    29. [29]

      Xie, C.; Nie, B.; Zeng, L.; Liang, F. X.; Wang, M. Z.; Luo, L.; Feng, M.; Yu, Y.; Wu, C. Y.; Wu, Y.; et al. ACS Nano 2014, 8, 4015. doi: 10.1021/nn501001j  doi: 10.1021/nn501001j

    30. [30]

      Ouyang, T.; Zhao, X.; Xun, X.; Zhao, B.; Zhang, Z.; Qin, Z.; Kang, Z.; Liao, Q.; Zhang, Y. Adv. Funct. Mater. 2022, 32, 2202184. doi: 10.1002/adfm.202202184  doi: 10.1002/adfm.202202184

    31. [31]

      Nawaz, M. Z.; Xu, L.; Zhou, X.; Shah, K. H.; Wang, J.; Wu, B.; Wang, C. Mater. Adv. 2021, 2, 6031. doi: 10.1039/d1ma00580d  doi: 10.1039/d1ma00580d

    32. [32]

      Huang, H.; Fang, G.; Mo, X.; Yuan, L.; Zhou, H.; Wang, M.; Xiao, H.; Zhao, X. Appl. Phys. Lett. 2009, 94, 063512. doi: 10.1063/1.3082096  doi: 10.1063/1.3082096

    33. [33]

      Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S. -T. Adv. Funct. Mater. 2015, 25, 2910. doi: 10.1002/adfm.201500216  doi: 10.1002/adfm.201500216

    34. [34]

      Li, G.; Liu, L.; Wu, G.; Chen, W.; Qin, S.; Wang, Y.; Zhang, T. Small 2016, 12, 5019. doi: 10.1002/smll.201600835  doi: 10.1002/smll.201600835

    35. [35]

      Liu, X.; Wang, W.; Yang, F.; Feng, S.; Hu, Z.; Lu, J.; Ni, Z. Sci. China Inform. Sci. 2021, 64, 140404. doi: 10.1007/s11432-020-3101-1  doi: 10.1007/s11432-020-3101-1

    36. [36]

      Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Nat. Nanotechnol. 2010, 5, 366. doi: 10.1038/nnano.2010.46  doi: 10.1038/nnano.2010.46

    37. [37]

      Liu, Z.; Zheng, K.; Hu, L.; Liu, J.; Qiu, C.; Zhou, H.; Huang, H.; Yang, H.; Li, M.; Gu, C.; et al. Adv. Mater. 2010, 22, 999. doi: 10.1002/adma.200902153  doi: 10.1002/adma.200902153

    38. [38]

      Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotechnol. 2014, 9, 780. doi: 10.1038/nnano.2014.215  doi: 10.1038/nnano.2014.215

    39. [39]

      Zhang, J. Y.; Lyu, J. P.; Ni, Z. H. Chin. Opt. 2021, 14, 87. doi: 10.37188/co.2020-0139  doi: 10.37188/co.2020-0139

    40. [40]

      He, P.; Yuan, F.; Wang, Z.; Tan, Z.; Fan, L. Acta Phys. -Chim. Sin. 2018, 34, 1250. doi: 10.3866/PKU.WHXB201804041  doi: 10.3866/PKU.WHXB201804041

    41. [41]

      Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, aac5523. doi: 10.1126/science.aac5523  doi: 10.1126/science.aac5523

    42. [42]

      Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; Garcia de Arquer, F. P.; Gatti, F.; Koppens, F. H. Nat. Nanotechnol. 2012, 7, 363. doi: 10.1038/nnano.2012.60  doi: 10.1038/nnano.2012.60

    43. [43]

      Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Nat. Nanotechnol. 2009, 4, 40. doi: 10.1038/nnano.2008.313  doi: 10.1038/nnano.2008.313

    44. [44]

      Sun, Z.; Liu, Z.; Li, J.; Tai, G. A.; Lau, S. P.; Yan, F. Adv. Mater. 2012, 24, 5878. doi: 10.1002/adma.201202220  doi: 10.1002/adma.201202220

    45. [45]

      Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H.; Konstantatos, G. Adv. Mater. 2015, 27, 176. doi: 10.1002/adma.201402471  doi: 10.1002/adma.201402471

    46. [46]

      Grotevent, M. J.; Hail, C. U.; Yakunin, S.; Dirin, D. N.; Thodkar, K.; Borin Barin, G.; Guyot-Sionnest, P.; Calame, M.; Poulikakos, D.; Kovalenko, M. V.; et al. Adv. Opt. Mater. 2019, 7, 1900019. doi: 10.1002/adom.201900019  doi: 10.1002/adom.201900019

    47. [47]

      Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K.; et al. Nat. Mater. 2013, 12, 445. doi: 10.1038/nmat3539  doi: 10.1038/nmat3539

    48. [48]

      Oh, S. J.; Wang, Z.; Berry, N. E.; Choi, J. H.; Zhao, T.; Gaulding, E. A.; Paik, T.; Lai, Y.; Murray, C. B.; Kagan, C. R. Nano Lett. 2014, 14, 6210. doi: 10.1021/nl502491d  doi: 10.1021/nl502491d

    49. [49]

      Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E. H. Nat. Photonics 2007, 1, 531. doi: 10.1038/nphoton.2007.147  doi: 10.1038/nphoton.2007.147

    50. [50]

      Shen, K.; Xu, H.; Li, X.; Guo, J.; Sathasivam, S.; Wang, M.; Ren, A.; Choy, K. L.; Parkin, I. P.; Guo, Z.; et al. Adv. Mater. 2020, 32, 2000004. doi: 10.1002/adma.202000004  doi: 10.1002/adma.202000004

    51. [51]

      McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138. doi: 10.1038/nmat1299  doi: 10.1038/nmat1299

    52. [52]

      Ahmad, H.; Tamil, T. Appl. Nanosci. 2018, 8, 1755. doi: 10.1007/s13204-018-0842-5  doi: 10.1007/s13204-018-0842-5

    53. [53]

      Dai, Y.; Wang, X.; Peng, W.; Xu, C.; Wu, C.; Dong, K.; Liu, R.; Wang, Z. L. Adv. Mater. 2018, 30, 1705893. doi: 10.1002/adma.201705893  doi: 10.1002/adma.201705893

    54. [54]

      Ghamgosar, P.; Rigoni, F.; You, S.; Dobryden, I.; Kohan, M. G.; Pellegrino, A. L.; Concina, I.; Almqvist, N.; Malandrino, G.; Vomiero, A. Nano Energy 2018, 51, 308. doi: 10.1016/j.nanoen.2018.06.058  doi: 10.1016/j.nanoen.2018.06.058

    55. [55]

      Chen, D.; Wei, L.; Wang, D.; Chen, Y.; Tian, Y.; Yan, S.; Mei, L.; Jiao, J. J. Alloy. Compd. 2018, 735, 2491. doi: 10.1016/j.jallcom.2017.11.376  doi: 10.1016/j.jallcom.2017.11.376

    56. [56]

      Li, S.; Zhi, Y.; Lu, C.; Wu, C.; Yan, Z.; Liu, Z.; Yang, J.; Chu, X.; Guo, D.; Li, P.; et al. J. Phys. Chem. Lett. 2021, 12, 447. doi: 10.1021/acs.jpclett.0c03382  doi: 10.1021/acs.jpclett.0c03382

    57. [57]

      Wang, X.; Dai, Y.; Liu, R.; He, X.; Li, S.; Wang, Z. L. ACS Nano 2017, 11, 8339. doi: 10.1021/acsnano.7b03560  doi: 10.1021/acsnano.7b03560

    58. [58]

      Cao, Y.; Qu, P.; Wang, C.; Zhou, J.; Li, M.; Yu, X.; Yu, X.; Pang, J.; Zhou, W.; Liu, H.; et al. Adv. Opt. Mater. 2022, 10, 2200816. doi: 10.1002/adom.202200816  doi: 10.1002/adom.202200816

    59. [59]

      Hatch, S. M.; Briscoe, J.; Dunn, S. Adv. Mater. 2013, 25, 867. doi: 10.1002/adma.201204488  doi: 10.1002/adma.201204488

    60. [60]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666, doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    61. [61]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C.; Fan, H. J.; Fan, Z. X.; Gong, C.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2108017. doi: 10.3866/PKU.WHXB202108017  doi: 10.3866/PKU.WHXB202108017

    62. [62]

      Li, J.; Ding, Y.; Zhang, W.; Zhou, P. Acta Phys. -Chim. Sin. 2019, 35, 1058. doi: 10.3866/PKU.WHXB201812020  doi: 10.3866/PKU.WHXB201812020

    63. [63]

      Konstantatos, G. Nat. Commun. 2018, 9, 5266. doi: 10.1038/s41467-018-07643-7  doi: 10.1038/s41467-018-07643-7

    64. [64]

      Hu, T.; Mei, X.; Wang, Y.; Weng, X.; Liang, R.; Wei, M. Sci. Bull. 2019, 64, 1707. doi: 10.1016/j.scib.2019.09.021  doi: 10.1016/j.scib.2019.09.021

    65. [65]

      Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarosky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D.; et al. Adv. Mater. 2015, 27, 3760. doi: 10.1002/adma.201500889  doi: 10.1002/adma.201500889

    66. [66]

      Zhang, B. Y.; Liu, T.; Meng, B.; Li, X.; Liang, G.; Hu, X.; Wang, Q. J. Nat. Commun. 2013, 4, 1811. doi: 10.1038/ncomms2830  doi: 10.1038/ncomms2830

    67. [67]

      An, Q.; Meng, X.; Xiong, K.; Qiu, Y. Sci. Rep. 2017, 7, 4885. doi: 10.1038/s41598-017-05176-5  doi: 10.1038/s41598-017-05176-5

    68. [68]

      Qiao, H.; Li, Z.; Huang, Z.; Ren, X.; Kang, J.; Qiu, M.; Liu, Y.; Qi, X.; Zhong, J.; Zhang, H. Appl. Mater. Today 2020, 20, 100765. doi: 10.1016/j.apmt.2020.100765  doi: 10.1016/j.apmt.2020.100765

    69. [69]

      Tan, H.; Fan, Y.; Zhou, Y.; Chen, Q.; Xu, W.; Warner, J. H. ACS Nano 2016, 10, 7866. doi: 10.1021/acsnano.6b03722  doi: 10.1021/acsnano.6b03722

    70. [70]

      Gomathi, P. T.; Sahatiya, P.; Badhulika, S. Adv. Funct. Mater. 2017, 27, 1701611. doi: 10.1002/adfm.201701611  doi: 10.1002/adfm.201701611

    71. [71]

      Zheng, Z.; Zhang, T.; Yao, J.; Zhang, Y.; Xu, J.; Yang, G. Nanotechnology 2016, 27, 225501. doi: 10.1088/0957-4484/27/22/225501  doi: 10.1088/0957-4484/27/22/225501

    72. [72]

      Zou, Y.; Zhang, Z.; Yan, J.; Lin, L.; Huang, G.; Tan, Y.; You, Z.; Li, P. Nat. Commun. 2022, 13, 4372. doi: 10.1038/s41467-022-32062-0  doi: 10.1038/s41467-022-32062-0

    73. [73]

      Xiang, D.; Han, C.; Hu, Z.; Lei, B.; Liu, Y.; Wang, L.; Hu, W. P.; Chen, W. Small 2015, 11, 4829. doi: 10.1002/smll.201501298  doi: 10.1002/smll.201501298

    74. [74]

      Wu, D.; Guo, J.; Wang, C.; Ren, X.; Chen, Y.; Lin, P.; Zeng, L.; Shi, Z.; Li, X. J.; Shan, C. X.; et al. ACS Nano 2021, 15, 10119. doi: 10.1021/acsnano.1c02007  doi: 10.1021/acsnano.1c02007

    75. [75]

      Xu, Y.; Shi, Z.; Shi, X.; Zhang, K.; Zhang, H. Nanoscale 2019, 11, 14491. doi: 10.1039/c9nr04348a  doi: 10.1039/c9nr04348a

    76. [76]

      Liu, X.; Yang, X.; Gao, G.; Yang, Z.; Liu, H.; Li, Q.; Lou, Z.; Shen, G.; Liao, L.; Pan, C.; et al. ACS Nano 2016, 10, 7451. doi: 10.1021/acsnano.6b01839  doi: 10.1021/acsnano.6b01839

    77. [77]

      Vashishtha, P.; Prajapat, P.; Sharma, A.; Singh, P.; Walia, S.; Gupta, G. ACS Appl. Electron. Mater. 2023, 5, 1891. doi: 10.1021/acsaelm.3c00156  doi: 10.1021/acsaelm.3c00156

    78. [78]

      Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Adv. Opt. Mater. 2019, 8, 1900765. doi: 10.1002/adom.201900765  doi: 10.1002/adom.201900765

    79. [79]

      Bai, F.; Qi, J.; Li, F.; Fang, Y.; Han, W.; Wu, H.; Zhang, Y. Adv. Mater. Interf. 2018, 5, 1701275. doi: 10.1002/admi.201701275  doi: 10.1002/admi.201701275

    80. [80]

      Xu, Z.; Zeng, Y.; Meng, F.; Gao, S.; Fan, S.; Liu, Y.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Xiao, J.; et al. Adv. Mater. Interf. 2022, 9, 2200912. doi: 10.1002/admi.202200912  doi: 10.1002/admi.202200912

    81. [81]

      Xiao, P.; Mao, J.; Ding, K.; Luo, W.; Hu, W.; Zhang, X.; Zhang, X.; Jie, J. Adv. Mater. 2018, 30, 1801729. doi: 10.1002/adma.201801729  doi: 10.1002/adma.201801729

    82. [82]

      Cong, R.; Qiao, S.; Liu, J.; Mi, J.; Yu, W.; Liang, B.; Fu, G.; Pan, C.; Wang, S. Adv. Sci. 2018, 5, 1700502. doi: 10.1002/advs.201700502  doi: 10.1002/advs.201700502

    83. [83]

      Yang, S.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J. C.; Jiang, C.; Liu, Q.; et al. ACS Appl. Mater. Interf. 2016, 8, 2533. doi: 10.1021/acsami.5b10001  doi: 10.1021/acsami.5b10001

    84. [84]

      Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S.; Steele, G. A. Nano Lett. 2012, 12, 3187. doi: 10.1021/nl301164v  doi: 10.1021/nl301164v

    85. [85]

      Liu, Z. Acta Phys. -Chim. Sin. 2019, 35, 1309. doi: 10.3866/PKU.WHXB201909013  doi: 10.3866/PKU.WHXB201909013

    86. [86]

      Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W.; Li, Y.; Han, M.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; et al. Nat. Nanotechnol. 2014, 9, 676. doi: 10.1038/nnano.2014.150  doi: 10.1038/nnano.2014.150

    87. [87]

      Cheng, R.; Li, D.; Zhou, H.; Wang, C.; Yin, A.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Nano Lett. 2014, 14, 5590. doi: 10.1021/nl502075n  doi: 10.1021/nl502075n

    88. [88]

      Ren, X.; Qiao, H.; Huang, Z.; Tang, P.; Liu, S.; Luo, S.; Yao, H.; Qi, X.; Zhong, J. Opt. Commun. 2018, 406, 118. doi: 10.1016/j.optcom.2017.07.033  doi: 10.1016/j.optcom.2017.07.033

    89. [89]

      Xie, C.; Zeng, L.; Zhang, Z.; Tsang, Y. H.; Luo, L.; Lee, J. H. Nanoscale 2018, 10, 15285. doi: 10.1039/c8nr04004d  doi: 10.1039/c8nr04004d

    90. [90]

      Shang, H.; Gao, F.; Dai, M.; Hu, Y.; Wang, S.; Xu, B.; Wang, P.; Gao, B.; Zhang, J.; Hu, P. Small Methods. 2023, 7, 2200966. doi: 10.1002/smtd.202200966  doi: 10.1002/smtd.202200966

    91. [91]

      Duan, X.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H.; Wu, X.; Tang, Y.; Zhang, Q.; Pan, A.; et al. Nat. Nanotechnol. 2014, 9, 1024. doi: 10.1038/nnano.2014.222  doi: 10.1038/nnano.2014.222

    92. [92]

      Wu, W.; Zhang, Q.; Zhou, X.; Li, L.; Su, J.; Wang, F.; Zhai, T. Nano Energy 2018, 51, 45. doi: 10.1016/j.nanoen.2018.06.049  doi: 10.1016/j.nanoen.2018.06.049

    93. [93]

      Zeng, L. -H.; Wu, D.; Lin, S. -H.; Xie, C.; Yuan, H. -Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. -B.; Li, Z. -J.; et al. Adv. Funct. Mater. 2019, 29, 1806878. doi: 10.1002/adfm.201806878  doi: 10.1002/adfm.201806878

    94. [94]

      Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B.; et al. Adv. Funct. Mater. 2018, 28, 1705970. doi: 10.1002/adfm.201705970  doi: 10.1002/adfm.201705970

    95. [95]

      Li, J.; Han, J.; Li, H.; Fan, X.; Huang, K. Mat. Sci. Semicon. Proc. 2020, 107, 104804. doi: 10.1016/j.mssp.2019.104804  doi: 10.1016/j.mssp.2019.104804

    96. [96]

      Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351. doi: 10.1016/j.ssc.2008.02.024  doi: 10.1016/j.ssc.2008.02.024

    97. [97]

      Lv, P.; Zhang, X.; Zhang, X.; Deng, W.; Jie, J. IEEE Electron Dev. Lett. 2013, 34, 1337. doi: 10.1109/led.2013.2275169  doi: 10.1109/led.2013.2275169

    98. [98]

      Yu, X.; Shen, Y.; Liu, T.; Wu, T. T.; Jie Wang, Q. Sci. Rep. 2015, 5, 12014. doi: 10.1038/srep12014  doi: 10.1038/srep12014

    99. [99]

      Yu, T.; Wang, F.; Xu, Y.; Ma, L.; Pi, X.; Yang, D. Adv. Mater. 2016, 28, 4912. doi: 10.1002/adma.201506140  doi: 10.1002/adma.201506140

    100. [100]

      Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J. -H.; Kulandaivel, J. J. Mater. Chem. C 2018, 6, 9545. doi: 10.1039/c8tc02786b  doi: 10.1039/c8tc02786b

    101. [101]

      Tian, W.; Wang, Y.; Chen, L.; Li, L. Small 2017, 13, 1701848. doi: 10.1002/smll.201701848  doi: 10.1002/smll.201701848

    102. [102]

      Liu, K.; Wang, W.; Yu, Y.; Hou, X.; Liu, Y.; Chen, W.; Wang, X.; Lu, J.; Ni, Z. Nano Lett. 2019, 19, 8132. doi: 10.1021/acs.nanolett.9b03368  doi: 10.1021/acs.nanolett.9b03368

    103. [103]

      Zeng, L. H.; Wang, M. Z.; Hu, H.; Nie, B.; Yu, Y. Q.; Wu, C. Y.; Wang, L.; Hu, J. G.; Xie, C.; Liang, F. X.; et al. ACS Appl. Mater. Interf. 2013, 5, 9362. doi: 10.1021/am4026505  doi: 10.1021/am4026505

    104. [104]

      Bera, A.; Das Mahapatra, A.; Mondal, S.; Basak, D. ACS Appl. Mater. Interf. 2016, 8, 34506. doi: 10.1021/acsami.6b09943  doi: 10.1021/acsami.6b09943

    105. [105]

      Gan, Y.; Qin, S.; Du, Q.; Zhang, Y.; Zhao, J.; Li, M.; Wang, A.; Liu, Y.; Li, S.; Dong, R.; et al. Adv. Sci. 2022, 9, 2204332. doi: 10.1002/advs.202204332  doi: 10.1002/advs.202204332

    106. [106]

      Lee, Y. H.; Park, S.; Won, Y.; Mun, J.; Ha, J. H.; Lee, J. H.; Lee, S. H.; Park, J.; Yeom, J.; Rho, J.; et al. NPG Asia Mater. 2020, 12, 79. doi: 10.1038/s41427-020-00260-1  doi: 10.1038/s41427-020-00260-1

    107. [107]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353, 6298. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    108. [108]

      Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C. H.; Jeong, H. B.; Jeong, H. Y.; Chang, J.; Lee, K.; et al. Sci. Adv. 2021, 7, eabj2521. doi: 10.1126/sciadv.abj2521  doi: 10.1126/sciadv.abj2521

    109. [109]

      Bullock, J.; Amani, M.; Cho, J.; Chen, Y. -Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. -L.; et al. Nat. Photonics 2018, 12, 601. doi: 10.1038/s41566-018-0239-8  doi: 10.1038/s41566-018-0239-8

    110. [110]

      Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Adv. Funct. Mater. 2018, 28, 1705833. doi: 10.1002/adfm.201705833  doi: 10.1002/adfm.201705833

    111. [111]

      Ren, X.; Li, Z.; Huang, Z.; Sang, D.; Qiao, H.; Qi, X.; Li, J.; Zhong, J.; Zhang, H. Adv. Funct. Mater. 2017, 27, 1606834. doi: 10.1002/adfm.201606834  doi: 10.1002/adfm.201606834

    112. [112]

      Huang, H.; Ren, X.; Li, Z.; Wang, H.; Huang, Z.; Qiao, H.; Tang, P.; Zhao, J.; Liang, W.; Ge, Y.; et al. Nanotechnology 2018, 29, 235201. doi:10.1088/1361-6528/aab6ee  doi: 10.1088/1361-6528/aab6ee

  • 加载中
    1. [1]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    5. [5]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    17. [17]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    19. [19]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return