Citation: Xuechen Hu, Qiuying Xia, Fan Yue, Xinyi He, Zhenghao Mei, Jinshi Wang, Hui Xia, Xiaodong Huang. Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230904. doi: 10.3866/PKU.WHXB202309046 shu

Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery

  • Corresponding author: Xiaodong Huang, xdhuang@seu.edu.cn
  • Received Date: 28 September 2023
    Revised Date: 3 November 2023
    Accepted Date: 6 November 2023
    Available Online: 13 November 2023

    Fund Project: the National Key R&D Program of China 2020YFB2007400

  • Owing to their remarkable miniaturization and integration capabilities, all-solid-state thin-film lithium-ion batteries are quite appropriate as the on-chip power for microsystems, such as implantable medical devices, micro-electro-mechanical systems and integrated circuits. The performance of the all-solid-state thin-film lithium-ion batteries is greatly determined by the anode film. Metal Li is usually adopted as the anode material, however, the issues, including Li dendrite growth and poor thermal stability, hinder its applications in the high-temperature and high-safety fields, such as industrial and military. Therefore, various anode materials have been investigated in recent years. Unfortunately, few anode materials can achieve high specific capacity and good stability simultaneously. Due to its relatively high specific capacity and good electrochemical stability, LiNbO3 has been widely used as a coating layer in the batteries and has been demonstrated to effectively suppress side reactions at the electrode|electrolyte interface. However, there is still lack of deep understanding of the electrochemical characteristics of LiNbO3; also, no previous work has been performed to explore the applications of LiNbO3 in the all-solid-state thin-film lithium-ion batteries. In this work, the electrochemical characteristics of LiNbO3 as a new anode material are carefully investigated. It is found that the LiNbO3 anode has relatively high specific capacity (410.2 mAh·g−1), high rate capability (80.9 mAh·g−1 at 30C), good cycling stability (100% capacity retention over 2000 cycles at 1C) and high ionic conductivity (4.5 × 10−8 S·cm–1 at room temperature). Moreover, an all-solid-state thin-film lithium-ion battery with a Pt current collector|NCM523 cathode|LiPON electrolyte|LiNbO3 anode|Pt current collector configuration is also prepared. This full battery presents good performance in terms of its relatively high area capacity (16.3 μAh·cm−2 at a current density of 0.5 μA·cm−2), good rate characteristic (1.9 μAh·cm−2 even at a high current density of 30 μA·cm−2) and good stability (86.4% capacity retention after 300 cycles). Particularly, the retained capacity remains as high as 95.6% even when this full battery operates continuously at 100 ℃ for ~200 h, demonstrating its good thermal stability. As confirmed by both the electrochemical and micro characterization, the LiPON|LiNbO3 interface is quite stable under both the repeated charge/discharge cycling and high temperature operation, which contributes to the good performance of this full battery even under high temperatures. For comparison, the LiPON|Li interface degrades significantly under high temperatures, thus resulting in poor performance of the corresponding full battery. This work is helpful to develop a new anode film and all-solid-state thin-film lithium-ion battery which is suitable for the industrial and military applications.
  • 加载中
    1. [1]

      Liu, J.; Xu, J. Y.; Lin, Y.; Li, J.; Lai, Y. Q.; Yuan, C. F.; Zhang, J.; Zhu, K. Acta Chim. Sin. 2013, 71 (6), 869.  doi: 10.6023/A13020170

    2. [2]

      Wang, Z. C.; Chen, Y. H.; Zhou, Y. Y.; Ouyang, J.; Xu, S.; Wei, L. Nanoscale Adv. 2022, 4 (20), 4237. doi: 10.1039/D2NA00566B  doi: 10.1039/D2NA00566B

    3. [3]

      Prabhu, S. A.; Kunhiraman, A. K.; Naveen, T. B.; Rakkesh, R. A.; Peeters, M. Sustain. Chem. Pharm. 2022, 28, 100693. doi: 10.1016/j.scp.2022.100693  doi: 10.1016/j.scp.2022.100693

    4. [4]

      Zhu, J. Y.; Feng, J. M.; Guo, Z. S. Energy Storage Sci. Technol. 2015, 4 (1), 66.  doi: 10.3969/j.issn.2095-4239.2015.01.007

    5. [5]

      Deng, J. H.; Yang, X. Q.; Zhang, G. Q. Mater. Today Commun. 2022, 31, 103570. doi: 10.1016/j.mtcomm.2022.103570  doi: 10.1016/j.mtcomm.2022.103570

    6. [6]

      Kang, D. M.; Hart, N.; Xiao, M. Y.; Lemmon, J. P. Acta Phys. -Chim. Sin. 2021, 37 (2), 2008013.  doi: 10.3866/PKU.WHXB202008013

    7. [7]

      Geng, Z.; Lu, J. Z.; Li, Q.; Qiu, J. L.; Wang, Y.; Peng, J. Y.; Huang, J.; Li, W. J.; Yu, X. Q.; Li, H. Energy Stor. Mater. 2019, 23, 646. doi: 10.1016/j.ensm.2019.03.005  doi: 10.1016/j.ensm.2019.03.005

    8. [8]

      Hu, J. G.; Kontos, A. G.; Georgiou, C. A.; Bidikoudi, M.; Stein, N.; Breen, B.; Falaras, P. Electrochim. Acta 2018, 271, 268. doi: 10.1016/j.electacta.2018.03.125  doi: 10.1016/j.electacta.2018.03.125

    9. [9]

      Baranwal, A. K.; Kanaya, S.; Peiris, T. A. N.; Mizuta, G.; Nishina, T.; Kanda, H.; Miyasaka, T.; Segawa, H.; Ito, S. ChemSusChem 2016, 9 (18), 2604. doi: 10.1002/cssc.201600933  doi: 10.1002/cssc.201600933

    10. [10]

      Wen, L. J.; Wan, Y.; Jin, C.; Xu, G.; Ma, H.; Zhou, L.; Yue, Z. H. J. Energy Storage 2023, 73, 108835. doi: 10.1016/j.est.2023.108835  doi: 10.1016/j.est.2023.108835

    11. [11]

      Song, A.; Zhang, W. J.; Guo, H. T.; Dong, L.; Jin, T.; Shen, C.; Xie, K. Y. Adv. Energy Mater. 2023, 13 (39), 2301464. doi: 10.1002/aenm.202301464  doi: 10.1002/aenm.202301464

    12. [12]

      Zhang, M. M.; Chen, J. Y.; Li, H.; Wang, C. R. Rare Metals 2021, 40 (2), 249. doi: 10.1007/s12598-020-01499-x  doi: 10.1007/s12598-020-01499-x

    13. [13]

      Erdas, A.; Ozcan, S.; Nalci, D.; Guler, M. O.; Akbulut, H. Surf. Coat. Tech. 2015, 271, 136. doi: 10.1016/j.surfcoat.2014.12.067  doi: 10.1016/j.surfcoat.2014.12.067

    14. [14]

      Xu, J. K.; Du, Y.; Tian, Y. H.; Wang, C. X. Int. J. Optomechatronics 2020, 14 (1), 94. doi: 10.1080/15599612.2020.1857890  doi: 10.1080/15599612.2020.1857890

    15. [15]

      Ju, Y.; Zhou, H.; Huang, Y. L.; Zhao, Y.; Deng, X.; Yang, Z. G.; Wang, F. J.; Gu, Q. Q.; Deng, G. L.; Zuo, H. Y. Nanoscale 2023, 15 (34), 13965. doi: 10.1039/D3NR02278A  doi: 10.1039/D3NR02278A

    16. [16]

      Son J. T. Electrochem. Commun. 2004, 6 (10), 990. doi: 10.1016/j.elecom.2004.07.007  doi: 10.1016/j.elecom.2004.07.007

    17. [17]

      Kim, H.; Byun, D.; Chang, W.; Jung, H. G.; Choi, W. J. Mater. Chem. A 2017, 5 (47), 25077. doi: 10.1039/C7TA07898F  doi: 10.1039/C7TA07898F

    18. [18]

      Lu, G. Z.; Peng, W. X.; Zhang, Y. T.; Wang, X. Q.; Shi, X. X.; Song, D. W.; Zhang, H. Z.; Zhang, L. Q. Electrochim. Acta 2021, 368, 137639. doi: 10.1016/j.electacta.2020.137639  doi: 10.1016/j.electacta.2020.137639

    19. [19]

      Fan, Q.; Lei, L. X.; Yin, G.; Sun, Y. M. Chem. Commun. 2014, 50 (18), 2370. doi: 10.1039/C3CC48367C  doi: 10.1039/C3CC48367C

    20. [20]

      Verma, A.; Smith, K.; Santhanagopalan, S.; Abraham, D.; Yao, K. P.; Mukherjee, P. P. J. Electrochem. Soc. 2017, 164 (13), A3380. doi: 10.1149/2.1701713jes  doi: 10.1149/2.1701713jes

    21. [21]

      Luo, H.; Xu, C. Y.; Wang, B.; Jin, F.; Wang, L.; Liu, T.; Zhou, Y.; Wang, D. L. Electrochim. Acta 2019, 313, 10. doi: 10.1016/j.electacta.2019.05.018  doi: 10.1016/j.electacta.2019.05.018

    22. [22]

      Pagani, F.; Döbeli, M.; Battaglia, C. Batteries Supercaps 2021, 4 (2), 316. doi: 10.1002/batt.202000159  doi: 10.1002/batt.202000159

    23. [23]

      Chiang, C. Y.; Reddy, M. J.; Chu, P. P. Solid State Ion. 2004, 175 (1–4), 631. doi: 10.1016/j.ssi.2003.12.039  doi: 10.1016/j.ssi.2003.12.039

  • 加载中
    1. [1]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    11. [11]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    14. [14]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(2)
  • Abstract views(245)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return