Citation: Weihan Zhang, Menglu Wang, Ankang Jia, Wei Deng, Shuxing Bai. Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 230904. doi: 10.3866/PKU.WHXB202309043 shu

Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets

  • Corresponding author: Shuxing Bai, shuxbai@qdu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 27 September 2023
    Revised Date: 10 November 2023
    Accepted Date: 13 November 2023
    Available Online: 2 January 2024

    Fund Project: the National Natural Science Foundation of China 22102078the Natural Science Foundation of Shandong Province, China ZR2021QB091

  • Olefins play a crucial role as fundamental raw materials in organic synthesis, particularly in the production of polyolefins and synthetic rubber. The conversion of alkynes to olefins is pivotal in both the polymer and fine chemical industries. However, this process faces significant challenges in terms of equilibrium selectivity and activity. The inherent low solubility of hydrogen, coupled with the thermodynamic ease of hydrogenating intermediate olefins compared to alkynes, contributes to a decline in olefin selectivity due to further hydrogenation leading to alkanes. Palladium-based catalysts, widely used for hydrogenation, exhibit robust hydrogen adsorption but lack selectivity. Researchers commonly modify catalyst structures by introducing other metals or non-metals to create intermetallic compounds, aiming to enhance olefin selectivity. This study focuses on synthesizing palladium-sulfur nanosheets (Pd-S NSs) using various sulfur sources to explore the impact of surface S species on the catalytic efficiency of selectively hydrogenating alkynes. Among these, Pd-S-PT NSs/C, utilizing 1,4-benzenedithiol (PT) as the sulfur source, demonstrated high styrene selectivity (92.3%–96.7%) following phenylacetylene hydrogenation for 2 h, showing notable selectivity for different alkynes' end-groups. Contrastingly, Pd-S-TU NSs/C, with thiourea (TU) as the sulfur source, exhibited poor olefin selectivity (72.4%). X-ray photoelectron spectroscopy (XPS) revealed that the improved olefin selectivity in Pd-S-PT NSs/C was attributed to hindered electron transfer from Pd to S, as well as the presence of surface S0 species, maintaining high hydrogenation activity while avoiding over-hydrogenation induced by oxidized S species (S4+). In situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) demonstrated weak styrene adsorption on Pd-S-PT NSs, inhibiting further hydrogenation to ethylbenzene. The ease of styrene desorption on Pd-S-PT NSs, indicated by reduced adsorption strength with increasing desorption temperature, highlighted high olefin selectivity. Conversely, stronger styrene adsorption on Pd-S-TU NSs facilitated additional hydrogenation to produce ethylbenzene, suggesting that the presence of additional S4+ species hindered improved styrene selectivity. This study not only introduces efficient catalysts for olefin hydrogenation but also advances fundamental research on precisely controlling catalytic processes, particularly focusing on the nuanced control of catalytic surfaces.
  • 加载中
    1. [1]

      Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. J. Am. Chem. Soc. 2011, 133, 12787. doi: 10.1021/ja204557m  doi: 10.1021/ja204557m

    2. [2]

      Teschner, D.; Borsodi, J.; Wootsch, A.; Revay, Z.; Havecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlogl, R. Science 2008, 320, 86. doi: 10.1126/science.1155200  doi: 10.1126/science.1155200

    3. [3]

      Liu, K. L.; Jiang, L. Z.; Huang, W. G.; Zhu, G. Z.; Zhang, Y. J.; Xu, C. F.; Qin, R. X.; Liu, P. X.; Hu, C. Y.; Wang, J. J.; et al. Nat. Commun. 2022, 13, 2597. doi: 10.1038/s41467-022-30327-2  doi: 10.1038/s41467-022-30327-2

    4. [4]

      Boudart, M.; Hwang, H. J. Catal. 1975, 39, 44. doi: 10.1016/0021-9517(75)90280-8  doi: 10.1016/0021-9517(75)90280-8

    5. [5]

      Liu, K.; Qin, R.; Zheng, N. J. Am. Chem. Soc. 2021, 143, 4483. doi: 10.1021/jacs.0c13185  doi: 10.1021/jacs.0c13185

    6. [6]

      Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem. Int. Ed. 2013, 52, 1481. doi: 10.1002/anie.201207845  doi: 10.1002/anie.201207845

    7. [7]

      Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Angew. Chem. Int. Ed. 2008, 120, 9439. doi: 10.1002/ange.200802844  doi: 10.1002/ange.200802844

    8. [8]

      Slack, E. D.; Gabriel, C. M.; Lipshutz, B. H. Angew. Chem. Int. Ed. 2014, 53, 14051. doi: 10.1002/ange.201407723  doi: 10.1002/ange.201407723

    9. [9]

      Ulan, J. G.; Maier, W. F.; Smith, D. A. J. Org. Chem. 1987, 52, 3132. doi: 10.1021/jo00390a032  doi: 10.1021/jo00390a032

    10. [10]

      Teschner, D.; Vass, E.; Havecker, M.; Zafeiratos, S.; Schnorch, P.; Sauer, H.; Knop-Gericke, A.; Schloegl, R.; Chamam, M.; Wootsch, A.; et al. J. Catal. 2006, 242, 26. doi: 10.1016/j.jcat.2006.05.030  doi: 10.1016/j.jcat.2006.05.030

    11. [11]

      Wang, Z.-Q.; Zhou, Z.-M.; Zhang, R.; Li, L.; Cheng, Z.-M. Acta Phys.-Chim. Sin. 2014, 30, 2315. doi: 10.3866/PKU.WHXB201410152  doi: 10.3866/PKU.WHXB201410152

    12. [12]

      Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H. J. Am. Chem. Soc. 2017, 139, 7294. doi: 10.1021/jacs.7b01471  doi: 10.1021/jacs.7b01471

    13. [13]

      Pachulski, A.; Schödel, R.; Claus, P. Appl. Catal. A: Gen. 2011, 400, 14. doi: 10.1016/j.apcata.2011.03.019  doi: 10.1016/j.apcata.2011.03.019

    14. [14]

      Vile, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; Lopez, N.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2015, 54, 11265. doi: 10.1002/anie.201505073  doi: 10.1002/anie.201505073

    15. [15]

      Ravanchi, M. T.; Sahebdelfar, S.; Komeili, S. Rev. Chem. Eng. 2018, 34, 215. doi: 10.1515/revce-2016-0036  doi: 10.1515/revce-2016-0036

    16. [16]

      Wei, Z. Z.; Yao, Z. H.; Zhou, Q.; Zhuang, G. L.; Zhong, X.; Deng, S. W.; Li, X. N.; Wang, J. G. ACS Catal. 2019, 9, 10656. doi: 10.1021/acscatal.9b03300  doi: 10.1021/acscatal.9b03300

    17. [17]

      Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sorensen, R. Z.; Christensen, C. H.; Norskov, J. K. Science 2008, 320, 1320. doi: 10.1126/science.1156660  doi: 10.1126/science.1156660

    18. [18]

      Dong, M. J.; Wang, X.; Wu, C. D. Adv. Funct. Mater. 2020, 30, 1908519. doi: 10.1002/adfm.201908519  doi: 10.1002/adfm.201908519

    19. [19]

      Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T.; Tsang, S. C. E. Nat. Commun. 2014, 5, 5787. doi: 10.1038/ncomms6787  doi: 10.1038/ncomms6787

    20. [20]

      Li, H. Z.; Gao, Y.; Wu, Y. M.; Liu, C. B.; Cheng, C. Q.; Chen, F. P.; Shi, Y. M.; Zhang, B. J. Am. Chem. Soc. 2022, 144, 19456. doi: 10.1021/jacs.2c07742  doi: 10.1021/jacs.2c07742

    21. [21]

      Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Angew. Chem. Int. Ed. 2020, 59, 21170. doi: 10.1002/anie.202009757  doi: 10.1002/anie.202009757

    22. [22]

      Yang, Y.; Zhu, X. J.; Wang, L. L.; Lang, J. Y.; Yao, G. H.; Qin, T.; Ren, Z. H.; Chen, L. W.; Liu, X.; Li, W.; et al. Nat. Commun. 2022, 13, 2754. doi: 10.1038/s41467-022-30540-z  doi: 10.1038/s41467-022-30540-z

    23. [23]

      Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Nat. Commun. 2018, 9, 2634. doi: 10.1038/s41467-018-05052-4  doi: 10.1038/s41467-018-05052-4

    24. [24]

      Zhao, X. J.; Zhou, L. Y.; Zhang, W. Y.; Hu, C. Y.; Dai, L.; Ren, L. T.; Wu, B. H.; Fu, G.; Zheng, N. F. Chem 2018, 4, 1080. doi: 10.1016/j.chempr.2018.02.011  doi: 10.1016/j.chempr.2018.02.011

    25. [25]

      Wu, R. F.; Tsiakaras, P.; Shen, P. K. Appl. Catal. B 2019, 251, 49. doi: 10.1016/j.apcatb.2019.03.045  doi: 10.1016/j.apcatb.2019.03.045

    26. [26]

      Gao, Y.; Yang, R.; Wang, C. H.; Liu, C. B.; Wu, Y. M.; Li, H. Z.; Zhang, B. Sci. Adv. 2022, 8, eabm9477. doi: 10.1126/sciadv.abm9477  doi: 10.1126/sciadv.abm9477

    27. [27]

      Zhu, Q. J.; Wegener, S. L.; Xie, C.; Uche, O.; Neurock, M.; Marks, T. J. Nat. Chem. 2013, 5, 104. doi: 10.1038/Nchem.1527  doi: 10.1038/Nchem.1527

    28. [28]

      Zhang, W. J.; Qin, R. X.; Fu, G.; Zheng, N. F. J. Am. Chem. Soc. 2021, 143, 15882. doi: 10.1021/jacs.1c08153  doi: 10.1021/jacs.1c08153

    29. [29]

      McCue, A. J.; Guerrero-Ruiz, A.; Ramirez-Barria, C.; Rodriguez-Ramos, I.; Anderson, J. A. J. Catal. 2017, 355, 40. doi: 10.1016/j.jcat.2017.09.004  doi: 10.1016/j.jcat.2017.09.004

    30. [30]

      Li, L. Y.; Yang, W. J.; Yang, Q. H.; Guan, Q. Q.; Lu, J. L.; Yu, S. H.; Jiang, H. L. ACS Catal. 2020, 10, 7753. doi: 10.1021/acscatal.0c00177  doi: 10.1021/acscatal.0c00177

    31. [31]

      Deng, X.; Wang, J. M.; Guan, N. J.; Li, L. D. Cell Rep. Phys. Sci. 2022, 3, 101017. doi: 10.1016/j.xcrp.2022.101017  doi: 10.1016/j.xcrp.2022.101017

    32. [32]

      Zhang, M.; Xu, Y.; Zhang, H. G.; Duan, Z. Y.; Ren, T. L.; Wang, Z. Q.; Li, X. N. A.; Wang, L.; Wang, H. J. Chem. Eng. J. 2022, 429, 132194. doi: 10.1016/j.cej.2021.132194  doi: 10.1016/j.cej.2021.132194

    33. [33]

      Yang, T.; Yang, C. Y.; Le, J. B.; Yu, Z. Y.; Bu, L. Z.; Li, L. G.; Bai, S. X.; Shao, Q.; Hu, Z. W.; Pao, C. W.; et al. Nano Res. 2022, 15, 1861. doi: 10.1007/s12274-021-3786-0  doi: 10.1007/s12274-021-3786-0

    34. [34]

      Zhang, Q. F.; Wu, J. C.; Su, C.; Feng, F.; Ding, Q. L.; Yuan, Z. L.; Wang, H.; Ma, L.; Lu, C. S.; Li, X. N. Chin. Chem. Lett. 2012, 23, 1111. doi: 10.1016/j.cclet.2012.07.016  doi: 10.1016/j.cclet.2012.07.016

    35. [35]

      Luo, Z. Y.; Li, J. J.; Li, Y. L.; Wu, D. J.; Zhang, L.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Gu, M.; Sun, X. L. Adv. Energy Mater. 2022, 12, 2103823. doi: 10.1002/aenm.202103823  doi: 10.1002/aenm.202103823

    36. [36]

      Yagi, S.; Nambu, M.; Tsukada, C.; Ogawa, S.; Kutluk, G.; Namatame, H.; Taniguchi, M. Appl. Surf. Sci. 2013, 267, 45. doi: 10.1016/j.apsusc.2012.05.098  doi: 10.1016/j.apsusc.2012.05.098

    37. [37]

      Capote, A. J.; Roberts, J. T.; Madix, R. J. Surf. Sci. Lett. 1989, 209, L151. doi: 10.1016/0167-2584(89)90611-7  doi: 10.1016/0167-2584(89)90611-7

    38. [38]

      Zhang, Y. L.; Wang, H. X.; Li, S. N.; Lu, B.; Zhao, J. X.; Cai, Q. H. Mol. Catal. 2021, 515, 111940. doi: 10.1016/j.mcat.2021.111940  doi: 10.1016/j.mcat.2021.111940

    39. [39]

      Bachiller-Baeza, B.; Anderson, J. A. J. Catal. 2002, 212, 231. doi: 10.1006/jcat.2002.3787  doi: 10.1006/jcat.2002.3787

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    20. [20]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

Metrics
  • PDF Downloads(1)
  • Abstract views(292)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return