Citation: Zehua Zhang, Haitao Yu, Yanyu Qi. Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100006. doi: 10.3866/PKU.WHXB202309042 shu

Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect

  • Corresponding author: Haitao Yu, haitaoyu@hebtu.edu.cn Yanyu Qi, hbsdqyy@hebtu.edu.cn
  • Received Date: 27 September 2023
    Revised Date: 7 November 2023
    Accepted Date: 9 November 2023

    Fund Project: the National Natural Science Foundation of China 21971054the National Natural Science Foundation of China 22002092S&T Program of Hebei B2022205014S&T Program of Hebei 22567622HScience Research Project of Hebei Education Department BJK2023014Postdoctoral Research Projects Merit-based Funding Programs of Hebei Province B2023005008Shijiazhuang Science and Technology Research and Development Program 241791047Athe Science Foundation of Hebei Normal University L2022B12the Science Foundation of Hebei Normal University L2023T01

  • Since the initial report on multiple resonance thermally activated delayed fluorescence (MR-TADF) molecules, their narrow band emissions, high quantum yields and other characteristics have consistently fueled research interest in the realm of organic electronics, particularly organic light emitting diodes (OLED). These molecules swiftly ascended to the forefront of research, serving as a pivotal focus, giving rise to numerous high-performance devices and meticulously crafted molecules. Devices featuring MR-TADF molecules as the luminescent core continually redefine our comprehension of OLED, with some employing hyperfluorescence technology attaining peak performance in specific photochromic domains today. Presently, with the escalating demand for ultra-high-resolution displays, the international telecommunication union (ITU) has unveiled the next generation color gamut standard, BT.2020. This standard delineates the broadest display color gamut, mandating monochromatic primary color wavelengths of 467, 532, and 630 nm, constituting an exceptionally extensive color gamut. Simultaneously, achieving high-resolution displays with such an expansive color gamut imposes unprecedentedly stringent requirements on the color purity of device elements. Consequently, it imposes a formidable color purity target for display technology. In the past, traditional fluorescent materials struggled to meet these demands. The advent of BT.2020, however, has presented new opportunities for the advancement of MR-TADF molecules, leading to a surge in popularity in this field. In recent years, with copious research and practical applications, the MR-TADF molecular family has undergone rapid evolution. Nevertheless, discussions and summaries primarily centered on the field's development, with limited focus on molecular design strategies. This deficiency hinders adequate reference for researchers entering the field. Consequently, this article expounds upon the design principles of select MR-TADF molecules reported in the past three years. It delves into aspects such as the X-π-X principle, fast reverse intersystem crossing processes, narrow-band emission, and high oscillator strength. Additionally, it posits future design directions, including the incorporation of non-traditional structures into the MR-TADF domain. Finally, the article offers suggestions for the prospective development and industrialization of the MR-TADF field.
  • 加载中
    1. [1]

      Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799  doi: 10.1063/1.98799

    2. [2]

      Wang, L. X.; Mei, Q. B.; Yan, F.; Tian, B.; Weng, J. N.; Zhang, B.; Huang, W. Acta Phys. -Chim Sin. 2012, 28, 1556.  doi: 10.3866/PKU.WHXB201205043

    3. [3]

      Lan, L. H.; Tao, H.; Li, M. L.; Gao, D. Y.; Zou, J. H.; Xu, M.; Wang, L.; Peng, J. B. Acta Phys. -Chim Sin. 2017, 33, 1548.  doi: 10.3866/PKU.WHXB201704283

    4. [4]

      Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, S. Y.; Kim, J. J. Adv. Mater. 2014, 26, 3844. doi: 10.1002/adma.201305733  doi: 10.1002/adma.201305733

    5. [5]

      Cocchi, M.; Virgili, D.; Fattori, V.; Rochester, D. L.; Williams, J. A. G. Adv. Funct. Mater. 2007, 17, 285. doi: 10.1002/adfm.200600167  doi: 10.1002/adfm.200600167

    6. [6]

      Chan, A. K. W.; Ng, M.; Wong, Y. C.; Chan, M. Y.; Wong, W. T.; Yam, V. W. W. J. Am. Chem. Soc. 2017, 139, 10750. doi: 10.1021/jacs.7b04952  doi: 10.1021/jacs.7b04952

    7. [7]

      Tang, M. C.; Lee, C. H.; Ng, M.; Wong, Y. C.; Chan, M. Y.; Yam, V. W. W. Angew. Chem. Int. Ed. 2018, 57, 5463. doi: 10.1002/anie.201711846  doi: 10.1002/anie.201711846

    8. [8]

      Matsuo, K.; Yasuda, T. Chem. Commun. 2017, 53, 8723. doi: 10.1039/c7cc04875k  doi: 10.1039/c7cc04875k

    9. [9]

      Li, J.; Nakagawa, T.; MacDonald, J.; Zhang, Q.; Nomura, H.; Miyazaki, H.; Adachi, C. Adv. Mater. 2013, 25, 3319. doi: 10.1002/adma.201300575  doi: 10.1002/adma.201300575

    10. [10]

      Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Angew. Chem. Int. Ed. 2015, 54, 13068. doi: 10.1002/anie.201506687  doi: 10.1002/anie.201506687

    11. [11]

      Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; et al. J. Am. Chem. Soc. 2016, 138, 628. doi: 10.1021/jacs.5b10950  doi: 10.1021/jacs.5b10950

    12. [12]

      Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hänisch, C.; Reineke, S.; Fan, J.; Liao, L. S. Adv. Mater. 2019, 31, 1902368. doi: 10.1002/adma.201902368  doi: 10.1002/adma.201902368

    13. [13]

      Jayakumar, J.; Wu, T. L.; Huang, M. J.; Huang, P. Y.; Chou, T. Y.; Lin, H. W.; Cheng, C. H. ACS Appl. Mater. Interfaces 2019, 11, 21042. doi: 10.1021/acsami.9b04664  doi: 10.1021/acsami.9b04664

    14. [14]

      Hall, D.; Suresh, S. M.; dos Santos, P. L.; Duda, E.; Bagnich, S.; Pershin, A.; Rajamalli, P.; Cordes, D. B.; Slawin, A. M. Z.; Beljonne D.; et al. Adv. Opt. Mater. 2020, 8, 1901627. doi: 10.1002/adom.201901627  doi: 10.1002/adom.201901627

    15. [15]

      Hsieh, C. M.; Wu, T. L.; Jayakumar, J.; Wang, Y. C.; Ko, C. L.; Hung, W. Y.; Lin, T. C.; Wu, H. H.; Lin, K. H.; Lin, C. H.; et al. ACS Appl. Mater. Interfaces 2020, 12, 23199. doi: 10.1021/acsami.0c03711  doi: 10.1021/acsami.0c03711

    16. [16]

      Liu, H.; Liu, Z. W.; Li, G. G.; Huang, H. N.; Zhou, C. J.; Wang, Z. M.; Yang, C. L. Angew. Chem. Int. Ed. 2021, 60, 12376. doi: 10.1002/anie.202103187  doi: 10.1002/anie.202103187

    17. [17]

      Ni, F.; Huang, C. W.; Tang, Y. K.; Chen, Z. X.; Wu, Y. X.; Xia, S. P.; Cao, X. S.; Hsu, J. H.; Lee, W. K.; Zheng, K. L.; et al. Mater. Horiz. 2021, 8, 547. doi: 10.1039/d0mh01521k  doi: 10.1039/d0mh01521k

    18. [18]

      Wu, C.; Liu, W. Q.; Li, K.; Cheng, G.; Xiong, J. F.; Teng, T.; Che, C. M.; Yang, C. L. Angew. Chem. Int. Ed. 2021, 60, 3994. doi: 10.1002/anie.202013051  doi: 10.1002/anie.202013051

    19. [19]

      Huang, B.; Dai, Y.; Ban, X. X.; Jiang, W.; Zhang, Z. H.; Sun, K. Y.; Lin, B. P.; Sun, Y. M. Acta Phys. -Chim Sin. 2015, 31, 1621.  doi: 10.3866/PKU.WHXB201506121

    20. [20]

      Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302. doi: 10.1063/1.3626856  doi: 10.1063/1.3626856

    21. [21]

      Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777. doi: 10.1002/adma.201505491  doi: 10.1002/adma.201505491

    22. [22]

      Hu, Y. X.; Huang, M. L.; Liu, H.; Miao, J. S.; Yang, C. L. Angew. Chem. Int. Ed. 2023, 62, e202312666. doi: 10.1002/anie.202312666  doi: 10.1002/anie.202312666

    23. [23]

      Wei, J. B.; Zhang, C.; Zhang, D. D.; Zhang, Y.W.; Liu, Z. Y.; Li, Z. Q.; Yu, G.; Duan, L. Angew. Chem. Int. Ed. 2021, 60, 12269. doi: 10.1002/ange.202017328  doi: 10.1002/ange.202017328

    24. [24]

      Jing, Y. Y.; Li, N. Q.; Cao, X. S.; Wu, H.; Miao, J. S.; Chen, Z. X.; Huang, M. L.; Wang, X. Z.; Hu, Y. X.; Zou, Y.; et al. Sci. Adv. 2023, 9, eadh8296. doi: 10.1126/sciadv.adh8296  doi: 10.1126/sciadv.adh8296

    25. [25]

      Qi, Y. Y.; Ning, W. M.; Zou, Y.; Cao, X. S.; Gong, S. L.; Yang, C. L. Adv. Funct. Mater. 2021, 31, 2102017. doi: 10.1002/adfm.202102017  doi: 10.1002/adfm.202102017

    26. [26]

      Yang, M.; Shikita, S.; Min, H.; Park, I. S.; Shibata, H.; Amanokura, N.; Yasuda, T. Angew. Chem. Int. Ed. 2021, 60, 23142. doi: 10.1002/anie.202109335  doi: 10.1002/anie.202109335

    27. [27]

      Tsuchiya, Y.; Ishikawa, Y.; Lee, S. H.; Chen, X. K.; Brédas, J. L.; Nakanotani, H.; Adachi, C. Adv. Opt. Mater. 2021, 9, 2002174. doi: 10.1002/adom.202002174  doi: 10.1002/adom.202002174

    28. [28]

      Yu, Y. J.; Feng, Z. Q.; Meng, X. Y.; Chen, L.; Liu, F. M.; Yang, S. Y.; Zhou, D. Y.; Liao, L. S.; Jiang, Z. Q. Angew. Chem. Int. Ed. 2023, 62, e202310047. doi: 10.1002/anie.202310047  doi: 10.1002/anie.202310047

    29. [29]

      Stavrou, K.; Danos, A.; Hama, T.; Hatakeyama, T.; Monkman, A. ACS Appl. Mater. Interfaces 2021, 13, 8643. doi: 10.1021/acsami.0c20619  doi: 10.1021/acsami.0c20619

    30. [30]

      Hamzehpoor, E.; Perepichka, D. F. Angew. Chem. Int. Ed. 2020, 59, 9977. doi: 10.1002/anie.201913393  doi: 10.1002/anie.201913393

    31. [31]

      Fan, X. C.; Wang, K.; Shi, Y. Z.; Chen, J. X.; Huang, F.; Wang, H.; Hu, Y. N.; Tsuchiya, Y.; Ou, X. M.; Yu, J.; et al. Adv. Opt. Mater. 2022, 10, 2101789. doi: 10.1002/adom.202101789  doi: 10.1002/adom.202101789

    32. [32]

      Wu, S.; Gupta, A. K.; Yoshida, K.; Gong, J. Y.; Hall, D.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Colman, E. Z. Angew. Chem. Int. Ed. 2022, 61, e202213697. doi: 10.1002/anie.202213697  doi: 10.1002/anie.202213697

    33. [33]

      Yang, M. L.; Park, I. S. Yasuda, T. J. Am. Chem. Soc. 2020, 142, 19468. doi: 10.1021/jacs.0c10081  doi: 10.1021/jacs.0c10081

    34. [34]

      Liu, Y.; Xiao, X.; Ran, Y.; Bin, Z. Y.; You, J. S. Chem. Sci. 2021, 12, 9408. doi: 10.1039/d1sc02042k  doi: 10.1039/d1sc02042k

    35. [35]

      Xu, Y. C.; Li, C. L.; Li, Z. Q.; Wang, Q. Y.; Cai, X. L.; Wei, J. B.; Wang, Y. Angew. Chem. Int. Ed. 2020, 59, 17442. doi: 10.1002/anie.202007210  doi: 10.1002/anie.202007210

    36. [36]

      Xu, Y. C.; Wang, Q. Y.; Cai, X. L.; Li, C. L.; Wang, Y. Adv. Mater. 2021, 33, 2100652. doi: 10.1002/adma.202100652  doi: 10.1002/adma.202100652

    37. [37]

      Zhang, Y. W.; Zhang, D. D.; Huang, T. Y.; Gillett, A. J.; Liu, Y.; Hu, D. P.; Cui, L. S.; Bin, Z. Y.; Li, G. M.; Wei, J. B.; et al. Angew. Chem. Int. Ed. 2021, 60, 20498. doi: 10.1002/anie.202107848  doi: 10.1002/anie.202107848

    38. [38]

      Wu, S.; Li, W.; Yoshida, K.; Hall, D.; Suresh, S. M.; Sayner, T.; Gong, J.; Beljonne, D.; Olivier, Y.; Samuelb, I. D. W.; et al. ACS Appl. Mater. Interfaces 2022, 14, 22341. doi: 10.1021/acsami.2c02756  doi: 10.1021/acsami.2c02756

    39. [39]

      Luo, X. F.; Ni, H. X.; Ma, H. L.; Qu, Z. Z.; Wang, J.; Zheng, Y. X.; Zuo, J. L. Adv. Opt. Mater. 2022, 10, 2102513. doi: 10.1002/adom.202102513  doi: 10.1002/adom.202102513

    40. [40]

      Yu, Y. J.; Zou, S. N.; Peng, C. C.; Feng, Z. Q.; Qu, Y. K.; Yang, S. Y.; Jiang, Z. Q.; Liao, L. S. J. Mater. Chem. C 2022, 10, 4941. doi: 10.1039/d1tc05711a  doi: 10.1039/d1tc05711a

    41. [41]

      Zou, Y.; Hu, J. H.; Yu, M. X.; Miao, J. S.; Xie, Z. Y.; Qiu, Y. T.; Cao, X. S.; Yang, C. L. Adv. Mater. 2022, 34, 2201442. doi: 10.1002/adma.202201442  doi: 10.1002/adma.202201442

    42. [42]

      Qiu, Y. T.; Xia, H.; Miao, J. S.; Huang, Z. Y.; Li, N. Q.; Cao, X. S.; Han, J. M.; Zhou, C. J.; Zhong, C.; Yang, C. L. ACS Appl. Mater. Interfaces 2021, 13, 59035. doi: 10.1021/acsami.1c18704  doi: 10.1021/acsami.1c18704

    43. [43]

      Hu, Y. N.; Fan, X. C.; Huang, F.; Shi, Y. Z.; Wang, H.; Cheng, Y. C.; Chen, M. Y.; Wang, K.; Yu, J.; Zhang, X. H. Adv. Opt. Mater. 2022, 11, 2202267. doi: 10.1002/adom.202202267  doi: 10.1002/adom.202202267

    44. [44]

      Cheon, H. J.; Shin, Y. S.; Park, N. H.; Lee, J. H.; Kim, Y. H. Small 2022, 18, 2107574. doi: 10.1002/smll.202107574  doi: 10.1002/smll.202107574

    45. [45]

      Zhang, Y. W.; Zhang, D. D.; Wei, J. B.; Liu, Z. Y.; Lu, Y.; Duan, L. Angew. Chem. Int. Ed. 2019, 131, 17068. doi: 10.1002/ange.201911266  doi: 10.1002/ange.201911266

    46. [46]

      Lee, Y. T.; Chan, C. Y.; Tanaka, M.; Mamada, M.; Balijapalli, U.; Tsuchiya, Y.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Adv. Electron. Mater. 2021, 7, 2001090. doi: 10.1002/aelm.202001090  doi: 10.1002/aelm.202001090

    47. [47]

      Cai, X. L.; Xu, Y. C.; Pan, Y.; Li, L. J.; Pu, Y. X.; Zhuang, X. M.; Li, C. L.; Wang, Y. Angew. Chem. Int. Ed. 2023, 62, e202216473. doi: 10.1002/anie.202216473  doi: 10.1002/anie.202216473

    48. [48]

      Pratik, S. M.; Coropceanu, V.; Brédas, J. L. ACS Mater. Lett. 2022, 4, 440. doi: 10.1021/acsmaterialslett.1c00809  doi: 10.1021/acsmaterialslett.1c00809

    49. [49]

      Oda, S.; Kawakami, B.; Kawasumi, R.; Okita, R.; Hatakeyama, T. Org. Lett. 2019, 21, 9311. doi: 10.1021/acs.orglett.9b03342  doi: 10.1021/acs.orglett.9b03342

    50. [50]

      Pratik, S. M.; Coropceanu, V.; Brédas, J. L. Chem. Mater. 2022, 34, 8022. doi: 10.1021/acs.chemmater.2c01952  doi: 10.1021/acs.chemmater.2c01952

    51. [51]

      Lee, H. L.; Chung, W. J.; Lee, J. Y. Small 2020, 16, 1907569. doi: 10.1002/smll.201907569  doi: 10.1002/smll.201907569

    52. [52]

      Patil, V. V.; Lee, H. L.; Kim, I.; Lee, K. H.; Chung, W. J.; Kim, J.; Park, S.; Choi, H.; Son, W. J.; Jeon, S. O.; et al. Adv. Sci. 2021, 8, 2101137. doi: 10.1002/advs.202101137  doi: 10.1002/advs.202101137

    53. [53]

      Hall, D.; Stavrou, K.; Duda, E.; Danos, A.; Bagnich, S.; Warriner, S.; Slawin, A. M. Z.; Beljonne, D.; Köhler, A.; Monkman, A.; et al. Mater. Horiz. 2022, 9, 1068. doi: 10.1039/d1mh01383a  doi: 10.1039/d1mh01383a

    54. [54]

      Cheon, H. J.; Woo, S. J.; Baek, S. H.; Lee, J. H.; Kim, Y. H. Adv. Mater. 2022, 34, 2207416. doi: 10.1002/adma.202207416  doi: 10.1002/adma.202207416

    55. [55]

      Luo, X. F.; Ni, H. X.; Lv, A.Q.; Yao, X. K.; Ma, H. L.; Zheng, Y. X. Adv. Opt. Mater. 2022, 10, 2200504. doi: 10.1002/adom.202200504  doi: 10.1002/adom.202200504

    56. [56]

      Chen, F.; Zhao, L.; Wang, X.; Yang, Q.; Li, W.; Tian, H.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Sci. China Chem. 2021, 64, 547. doi: 10.1007/s11426-020-9944-1  doi: 10.1007/s11426-020-9944-1

    57. [57]

      Chang, Y.; Wu, Y.; Wang, X.; Li W.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chem. Eng. J. 2023, 451, 138545. doi: 10.1016/j.cej.2022.138545  doi: 10.1016/j.cej.2022.138545

    58. [58]

      Park, I. S.; Min, H.; Yasuda, T. Angew. Chem. Int. Ed. 2022, 61, e202205684. doi: 10.1002/anie.202205684  doi: 10.1002/anie.202205684

    59. [59]

      Liu, F. T.; Cheng, Z.; Jiang, Y. X.; Gao, L.; Liu, H. X.; Liu, H.; Feng, Z. J.; Lu, P; Yang, W. S. Angew. Chem. Int. Ed. 2022, 61, e202116927. doi: 10.1002/anie.202116927  doi: 10.1002/anie.202116927

    60. [60]

      Cao, X. S.; Pan, K.; Miao, J. S.; Lv, X. L.; Huang, Z. Y.; Ni, F.; Yin, X. J.; Wei, Y. X.; Yang, C. L. J. Am. Chem. Soc. 2022, 144, 22976. doi: 10.1021/jacs.2c09543  doi: 10.1021/jacs.2c09543

    61. [61]

      Xu, Y. C.; Li, C. L.; Li, Z. Q.; Wang, J. X.; Xue, J. X.; Wang, Q. Y.; Cai, X. L.; Wang, Y. CCS Chem. 2022, 4, 2065. doi: 10.31635/ccschem.021.202101033  doi: 10.31635/ccschem.021.202101033

    62. [62]

      Lv, X. L.; Miao, J. S.; Liu, M. H.; Peng, Q.; Zhong, C.; Hu, Y. X.; Cao, X. S.; Wu, H.; Yang, Y. Y.; Zhou, C. J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202201588. doi: 10.1002/anie.202201588  doi: 10.1002/anie.202201588

    63. [63]

      Huang, J. W.; Hsu, Y. C.; Wu, X.; Wang, S.; Gan, X. Q.; Zheng, W. Q.; Zhang, H.; Gong, Y. Z.; Hung, W. Y.; Chou, P. T.; et al. J. Mater. Chem. C 2022, 10, 7866. doi: 10.1039/D1TC06165H  doi: 10.1039/D1TC06165H

    64. [64]

      Hua, T.; Zhan, L. S.; Li, N. Q.; Huang, Z. Y.; Cao, X. S.; Xiao, Z. Q.; Gong, S. L.; Zhou, C. J.; Zhong, C.; Yang, C. L. Chem. Eng. J. 2021, 426, 131169. doi: 10.1016/j.cej.2021.131169  doi: 10.1016/j.cej.2021.131169

    65. [65]

      Xu, Y. C.; Cheng, Z.; Li, Z. Q.; Liang, B. Y.; Wang, J. X.; Wei, J. B.; Zhang, Z. L.; Wang, Y. Adv. Opt. Mater. 2020, 8, 1902142. doi: 10.1002/adom.201902142  doi: 10.1002/adom.201902142

    66. [66]

      Han, J. M.; Huang, Z. Y.; Lv, X. L.; Miao, J. S.; Qiu, Y. T.; Cao, X. S.; Yang, C. L. Adv. Opt. Mater. 2022, 10, 2102092. doi: 10.1002/adom.202102092  doi: 10.1002/adom.202102092

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    6. [6]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    7. [7]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    17. [17]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    18. [18]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    19. [19]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    20. [20]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(460)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return