Citation:
Zehua Zhang, Haitao Yu, Yanyu Qi. 多重共振TADF分子的设计策略[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 230904.
doi:
10.3866/PKU.WHXB202309042
-
自首例多重共振热激活延迟荧光(Multiple resonance thermal activation delayed fluorescence,MR-TADF)分子报道至今,其表现出的窄带发射、高发光量子效率等特性在有机电子学,尤其是有机发光二极管(Organic light-emitting diode,OLED)等领域引发了持续的研究热度,迅速成为重点研究对象,并涌现出了众多性能出色的分子和高性能器件。以MR-TADF分子为发光层的器件不断刷新人们对OLED的认知,其中一些采用了超荧光技术所制备的器件性能代表了当今某些光色领域OLED性能的最高值。随着人们对超高分辨率显示器需求的与日俱增,国际电信联盟(ITU)宣布了下一代色域标准,即BT.2020。此标准建立了最宽的显示色域标准,要求单色的原色波长为467、532和630 nm,这个色域非常宽。同时,在如此之宽的色域上实现高分辨率的显示,对器件基元色纯度的要求达到了可谓史无前例的严格。因此,它为显示技术树立了一个具有极大挑战难度的色纯度目标。鉴于以往传统荧光材料难以担当此攻关重任,故而BT.2020的出现给予了MR-TADF分子新的发展机遇,并在很大程度上使得该领域愈发火热起来。近年来,随着大量的研究与实践,MR-TADF分子家族得到了飞速的发展,然而大家讨论和归纳的重点基本都集中在领域整体的发展方面,专门针对分子设计策略所展开的讨论和总结依旧较少,不足以为刚涉足该领域的科研人员提供足够的参考。因此,本文从X-π-X原则,快反向系间窜越过程,窄带发射与高振子强度等方面,阐述了近三年来所报道的MR-TADF分子的设计思路,并对未来可能的设计方向进行了展望,例如将一些不同于传统MR-TADF分子的结构引入这一领域。最后,对今后MR-TADF领域的发展和产业化提出建议。
-
-
-
[1]
(1) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799
-
[2]
-
[3]
-
[4]
(4) Kim, K. H.; Moon, C. K.; Lee, J. H.; Kim, S. Y.; Kim, J. J. Adv. Mater. 2014, 26, 3844. doi: 10.1002/adma.201305733
-
[5]
(5) Cocchi, M.; Virgili, D.; Fattori, V.; Rochester, D. L.; Williams, J. A. G. Adv. Funct. Mater. 2007, 17, 285. doi: 10.1002/adfm.200600167
-
[6]
(6) Chan, A. K. W.; Ng, M.; Wong, Y. C.; Chan, M. Y.; Wong, W. T.; Yam, V. W. W. J. Am. Chem. Soc. 2017, 139, 10750. doi: 10.1021/jacs.7b04952
-
[7]
(7) Tang, M. C.; Lee, C. H.; Ng, M.; Wong, Y. C.; Chan, M. Y.; Yam, V. W. W. Angew. Chem. Int. Ed. 2018, 57, 5463. doi: 10.1002/anie.201711846
-
[8]
(8) Matsuo, K.; Yasuda, T. Chem. Commun. 2017, 53, 8723. doi: 10.1039/c7cc04875k
-
[9]
(9) Li, J.; Nakagawa, T.; MacDonald, J.; Zhang, Q.; Nomura, H.; Miyazaki, H.; Adachi, C. Adv. Mater. 2013, 25, 3319. doi: 10.1002/adma.201300575
-
[10]
(10) Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Angew. Chem. Int. Ed. 2015, 54, 13068. doi: 10.1002/anie.201506687
-
[11]
(11) Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; et al. J. Am. Chem. Soc. 2016, 138, 628. doi: 10.1021/jacs.5b10950
-
[12]
(12) Zhang, Y. L.; Ran, Q.; Wang, Q.; Liu, Y.; Hänisch, C.; Reineke, S.; Fan, J.; Liao, L. S. Adv. Mater. 2019, 31, 1902368. doi: 10.1002/adma.201902368
-
[13]
(13) Jayakumar, J.; Wu, T. L.; Huang, M. J.; Huang, P. Y.; Chou, T. Y.; Lin, H. W.; Cheng, C. H. ACS Appl. Mater. Interfaces 2019, 11, 21042. doi: 10.1021/acsami.9b04664
-
[14]
(14) Hall, D.; Suresh, S. M.; dos Santos, P. L.; Duda, E.; Bagnich, S.; Pershin, A.; Rajamalli, P.; Cordes, D. B.; Slawin, A. M. Z.; Beljonne D.; et al. Adv. Opt. Mater. 2020, 8, 1901627. doi: 10.1002/adom.201901627
-
[15]
(15) Hsieh, C. M.; Wu, T. L.; Jayakumar, J.; Wang, Y. C.; Ko, C. L.; Hung, W. Y.; Lin, T. C.; Wu, H. H.; Lin, K. H.; Lin, C. H.; et al. ACS Appl. Mater. Interfaces 2020, 12, 23199. doi: 10.1021/acsami.0c03711
-
[16]
(16) Liu, H.; Liu, Z. W.; Li, G. G.; Huang, H. N.; Zhou, C. J.; Wang, Z. M.; Yang, C. L. Angew. Chem. Int. Ed. 2021, 60, 12376. doi: 10.1002/anie.202103187
-
[17]
(17) Ni, F.; Huang, C. W.; Tang, Y. K.; Chen, Z. X.; Wu, Y. X.; Xia, S. P.; Cao, X. S.; Hsu, J. H.; Lee, W. K.; Zheng, K. L.; et al. Mater. Horiz. 2021, 8, 547. doi: 10.1039/d0mh01521k
-
[18]
(18) Wu, C.; Liu, W. Q.; Li, K.; Cheng, G.; Xiong, J. F.; Teng, T.; Che, C. M.; Yang, C. L. Angew. Chem. Int. Ed. 2021, 60, 3994. doi: 10.1002/anie.202013051
-
[19]
-
[20]
(20) Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302. doi: 10.1063/1.3626856
-
[21]
(21) Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777. doi: 10.1002/adma.201505491
-
[22]
(22) Hu, Y. X.; Huang, M. L.; Liu, H.; Miao, J. S.; Yang, C. L. Angew. Chem. Int. Ed. 2023, 62, e202312666. doi: 10.1002/anie.202312666
-
[23]
(23) Wei, J. B.; Zhang, C.; Zhang, D. D.; Zhang, Y.W.; Liu, Z. Y.; Li, Z. Q.; Yu, G.; Duan, L. Angew. Chem. Int. Ed. 2021, 60, 12269. doi: 10.1002/ange.202017328
-
[24]
(24) Jing, Y. Y.; Li, N. Q.; Cao, X. S.; Wu, H.; Miao, J. S.; Chen, Z. X.; Huang, M. L.; Wang, X. Z.; Hu, Y. X.; Zou, Y.; et al. Sci. Adv. 2023, 9, eadh8296. doi: 10.1126/sciadv.adh8296
-
[25]
(25) Qi, Y. Y.; Ning, W. M.; Zou, Y.; Cao, X. S.; Gong, S. L.; Yang, C. L. Adv. Funct. Mater. 2021, 31, 2102017. doi: 10.1002/adfm.202102017
-
[26]
(26) Yang, M.; Shikita, S.; Min, H.; Park, I. S.; Shibata, H.; Amanokura, N.; Yasuda, T. Angew. Chem. Int. Ed. 2021, 60, 23142. doi: 10.1002/anie.202109335
-
[27]
(27) Tsuchiya, Y.; Ishikawa, Y.; Lee, S. H.; Chen, X. K.; Brédas, J. L.; Nakanotani, H.; Adachi, C. Adv. Opt. Mater. 2021, 9, 2002174. doi: 10.1002/adom.202002174
-
[28]
(28) Yu, Y. J.; Feng, Z. Q.; Meng, X. Y.; Chen, L.; Liu, F. M.; Yang, S. Y.; Zhou, D. Y.; Liao, L. S.; Jiang, Z. Q. Angew. Chem. Int. Ed. 2023, 62, e202310047. doi: 10.1002/anie.202310047
-
[29]
(29) Stavrou, K.; Danos, A.; Hama, T.; Hatakeyama, T.; Monkman, A. ACS Appl. Mater. Interfaces 2021, 13, 8643. doi: 10.1021/acsami.0c20619
-
[30]
(30) Hamzehpoor, E.; Perepichka, D. F. Angew. Chem. Int. Ed. 2020, 59, 9977. doi: 10.1002/anie.201913393
-
[31]
(31) Fan, X. C.; Wang, K.; Shi, Y. Z.; Chen, J. X.; Huang, F.; Wang, H.; Hu, Y. N.; Tsuchiya, Y.; Ou, X. M.; Yu, J.; et al. Adv. Opt. Mater. 2022, 10, 2101789. doi: 10.1002/adom.202101789
-
[32]
(32) Wu, S.; Gupta, A. K.; Yoshida, K.; Gong, J. Y.; Hall, D.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Colman, E. Z. Angew. Chem. Int. Ed. 2022, 61, e202213697. doi: 10.1002/anie.202213697
-
[33]
(33) Yang, M. L.; Park, I. S. Yasuda, T. J. Am. Chem. Soc. 2020, 142, 19468. doi: 10.1021/jacs.0c10081
-
[34]
(34) Liu, Y.; Xiao, X.; Ran, Y.; Bin, Z. Y.; You, J. S. Chem. Sci. 2021, 12, 9408. doi: 10.1039/d1sc02042k
-
[35]
(35) Xu, Y. C.; Li, C. L.; Li, Z. Q.; Wang, Q. Y.; Cai, X. L.; Wei, J. B.; Wang, Y. Angew. Chem. Int. Ed. 2020, 59, 17442. doi: 10.1002/anie.202007210
-
[36]
(36) Xu, Y. C.; Wang, Q. Y.; Cai, X. L.; Li, C. L.; Wang, Y. Adv. Mater. 2021, 33, 2100652. doi: 10.1002/adma.202100652
-
[37]
(37) Zhang, Y. W.; Zhang, D. D.; Huang, T. Y.; Gillett, A. J.; Liu, Y.; Hu, D. P.; Cui, L. S.; Bin, Z. Y.; Li, G. M.; Wei, J. B.; et al. Angew. Chem. Int. Ed. 2021, 60, 20498. doi: 10.1002/anie.202107848
-
[38]
(38) Wu, S.; Li, W.; Yoshida, K.; Hall, D.; Suresh, S. M.; Sayner, T.; Gong, J.; Beljonne, D.; Olivier, Y.; Samuelb, I. D. W.; et al. ACS Appl. Mater. Interfaces 2022, 14, 22341. doi: 10.1021/acsami.2c02756
-
[39]
(39) Luo, X. F.; Ni, H. X.; Ma, H. L.; Qu, Z. Z.; Wang, J.; Zheng, Y. X.; Zuo, J. L. Adv. Opt. Mater. 2022, 10, 2102513. doi: 10.1002/adom.202102513
-
[40]
(40) Yu, Y. J.; Zou, S. N.; Peng, C. C.; Feng, Z. Q.; Qu, Y. K.; Yang, S. Y.; Jiang, Z. Q.; Liao, L. S. J. Mater. Chem. C 2022, 10, 4941. doi: 10.1039/d1tc05711a
-
[41]
(41) Zou, Y.; Hu, J. H.; Yu, M. X.; Miao, J. S.; Xie, Z. Y.; Qiu, Y. T.; Cao, X. S.; Yang, C. L. Adv. Mater. 2022, 34, 2201442. doi: 10.1002/adma.202201442
-
[42]
(42) Qiu, Y. T.; Xia, H.; Miao, J. S.; Huang, Z. Y.; Li, N. Q.; Cao, X. S.; Han, J. M.; Zhou, C. J.; Zhong, C.; Yang, C. L. ACS Appl. Mater. Interfaces 2021, 13, 59035. doi: 10.1021/acsami.1c18704
-
[43]
(43) Hu, Y. N.; Fan, X. C.; Huang, F.; Shi, Y. Z.; Wang, H.; Cheng, Y. C.; Chen, M. Y.; Wang, K.; Yu, J.; Zhang, X. H. Adv. Opt. Mater. 2022, 11, 2202267. doi: 10.1002/adom.202202267
-
[44]
(44) Cheon, H. J.; Shin, Y. S.; Park, N. H.; Lee, J. H.; Kim, Y. H. Small 2022, 18, 2107574. doi: 10.1002/smll.202107574
-
[45]
(45) Zhang, Y. W.; Zhang, D. D.; Wei, J. B.; Liu, Z. Y.; Lu, Y.; Duan, L. Angew. Chem. Int. Ed. 2019, 131, 17068. doi: 10.1002/ange.201911266
-
[46]
(46) Lee, Y. T.; Chan, C. Y.; Tanaka, M.; Mamada, M.; Balijapalli, U.; Tsuchiya, Y.; Nakanotani, H.; Hatakeyama, T.; Adachi, C. Adv. Electron. Mater. 2021, 7, 2001090. doi: 10.1002/aelm.202001090
-
[47]
(47) Cai, X. L.; Xu, Y. C.; Pan, Y.; Li, L. J.; Pu, Y. X.; Zhuang, X. M.; Li, C. L.; Wang, Y. Angew. Chem. Int. Ed. 2023, 62, e202216473. doi: 10.1002/anie.202216473
-
[48]
(48) Pratik, S. M.; Coropceanu, V.; Brédas, J. L. ACS Mater. Lett. 2022, 4, 440. doi: 10.1021/acsmaterialslett.1c00809
-
[49]
(49) Oda, S.; Kawakami, B.; Kawasumi, R.; Okita, R.; Hatakeyama, T. Org. Lett. 2019, 21, 9311. doi: 10.1021/acs.orglett.9b03342
-
[50]
(50) Pratik, S. M.; Coropceanu, V.; Brédas, J. L. Chem. Mater. 2022, 34, 8022. doi: 10.1021/acs.chemmater.2c01952
-
[51]
(51) Lee, H. L.; Chung, W. J.; Lee, J. Y. Small 2020, 16, 1907569. doi: 10.1002/smll.201907569
-
[52]
(52) Patil, V. V.; Lee, H. L.; Kim, I.; Lee, K. H.; Chung, W. J.; Kim, J.; Park, S.; Choi, H.; Son, W. J.; Jeon, S. O.; et al. Adv. Sci. 2021, 8, 2101137. doi: 10.1002/advs.202101137
-
[53]
(53) Hall, D.; Stavrou, K.; Duda, E.; Danos, A.; Bagnich, S.; Warriner, S.; Slawin, A. M. Z.; Beljonne, D.; Köhler, A.; Monkman, A.; et al. Mater. Horiz. 2022, 9, 1068. doi: 10.1039/d1mh01383a
-
[54]
(54) Cheon, H. J.; Woo, S. J.; Baek, S. H.; Lee, J. H.; Kim, Y. H. Adv. Mater. 2022, 34, 2207416. doi: 10.1002/adma.202207416
-
[55]
(55) Luo, X. F.; Ni, H. X.; Lv, A.Q.; Yao, X. K.; Ma, H. L.; Zheng, Y. X. Adv. Opt. Mater. 2022, 10, 2200504. doi: 10.1002/adom.202200504
-
[56]
(56) Chen, F.; Zhao, L.; Wang, X.; Yang, Q.; Li, W.; Tian, H.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Sci. China Chem. 2021, 64, 547. doi: 10.1007/s11426-020-9944-1
-
[57]
(57) Chang, Y.; Wu, Y.; Wang, X.; Li W.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chem. Eng. J. 2023, 451, 138545. doi: 10.1016/j.cej.2022.138545
-
[58]
(58) Park, I. S.; Min, H.; Yasuda, T. Angew. Chem. Int. Ed. 2022, 61, e202205684. doi: 10.1002/anie.202205684
-
[59]
(59) Liu, F. T.; Cheng, Z.; Jiang, Y. X.; Gao, L.; Liu, H. X.; Liu, H.; Feng, Z. J.; Lu, P; Yang, W. S. Angew. Chem. Int. Ed. 2022, 61, e202116927. doi: 10.1002/anie.202116927
-
[60]
(60) Cao, X. S.; Pan, K.; Miao, J. S.; Lv, X. L.; Huang, Z. Y.; Ni, F.; Yin, X. J.; Wei, Y. X.; Yang, C. L. J. Am. Chem. Soc. 2022, 144, 22976. doi: 10.1021/jacs.2c09543
-
[61]
(61) Xu, Y. C.; Li, C. L.; Li, Z. Q.; Wang, J. X.; Xue, J. X.; Wang, Q. Y.; Cai, X. L.; Wang, Y. CCS Chem. 2022, 4, 2065. doi: 10.31635/ccschem.021.202101033
-
[62]
(62) Lv, X. L.; Miao, J. S.; Liu, M. H.; Peng, Q.; Zhong, C.; Hu, Y. X.; Cao, X. S.; Wu, H.; Yang, Y. Y.; Zhou, C. J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202201588. doi: 10.1002/anie.202201588
-
[63]
(63) Huang, J. W.; Hsu, Y. C.; Wu, X.; Wang, S.; Gan, X. Q.; Zheng, W. Q.; Zhang, H.; Gong, Y. Z.; Hung, W. Y.; Chou, P. T.; et al. J. Mater. Chem. C 2022, 10, 7866. doi: 10.1039/D1TC06165H
-
[64]
(64) Hua, T.; Zhan, L. S.; Li, N. Q.; Huang, Z. Y.; Cao, X. S.; Xiao, Z. Q.; Gong, S. L.; Zhou, C. J.; Zhong, C.; Yang, C. L. Chem. Eng. J. 2021, 426, 131169. doi: 10.1016/j.cej.2021.131169
-
[65]
(65) Xu, Y. C.; Cheng, Z.; Li, Z. Q.; Liang, B. Y.; Wang, J. X.; Wei, J. B.; Zhang, Z. L.; Wang, Y. Adv. Opt. Mater. 2020, 8, 1902142. doi: 10.1002/adom.201902142
-
[66]
(66) Han, J. M.; Huang, Z. Y.; Lv, X. L.; Miao, J. S.; Qiu, Y. T.; Cao, X. S.; Yang, C. L. Adv. Opt. Mater. 2022, 10, 2102092. doi: 10.1002/adom.202102092
-
[1]
-
-
-
[1]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[2]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[3]
Feng Lu , Tao Wang , Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005
-
[4]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[5]
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
-
[6]
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
-
[7]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[8]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[11]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[12]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[13]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[14]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[15]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[16]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098
-
[17]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[18]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[19]
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
-
[20]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(343)
- HTML views(81)