Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets
- Corresponding author: Lijing Zhang, zhanglj@dlut.edu.cn Shengyang Tao, taosy@dlut.edu.cn †These authors contributed equally to this paper.
Citation:
Xinghai Li, Zhisen Wu, Lijing Zhang, Shengyang Tao. Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets[J]. Acta Physico-Chimica Sinica,
;2025, 41(2): 230904.
doi:
10.3866/PKU.WHXB202309041
Jordan, M. I.; Mitchell, T. M. Science 2015, 349, 255. doi: 10.1126/science.aaa8415
doi: 10.1126/science.aaa8415
Young, T.; Hazarika, D.; Poria, S.; Cambria, E. IEEE Comput. Intell. Mag. 2018, 13, 55. doi: 10.1109/mci.2018.2840738
doi: 10.1109/mci.2018.2840738
Myszczynska, M. A.; Ojamies, P. N.; Lacoste, A. M. B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G. M.; Holbrook, J. D.; Ferraiuolo, L. Nat. Rev. Neurol. 2020, 16, 440. doi: 10.1038/s41582-020-0377-8
doi: 10.1038/s41582-020-0377-8
Ranjan, R.; Sankaranarayanan, S.; Bansal, A.; Bodla, N.; Chen, J. C.; Patel, V. M.; Castillo, C. D.; Chellappa, R. IEEE Signal Process. Mag. 2018, 35, 66. doi: 10.1109/msp.2017.2764116
doi: 10.1109/msp.2017.2764116
Segler, M. H. S.; Waller, M. P. Chem. -Eur. J. 2017, 23, 5966. doi: 10.1002/chem.201605499
doi: 10.1002/chem.201605499
Shen, Y.; Borowski, J. E.; Hardy, M. A.; Sarpong, R.; Doyle, A. G.; Cernak, T. Nat. Rev. Method. Prim. 2021, 1, 1. doi: 10.1038/s43586-021-00022-5
doi: 10.1038/s43586-021-00022-5
Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K.; Müller, K. R. Nat. Commun. 2017, 8, 1. doi: 10.1038/s41467-017-00839-3
doi: 10.1038/s41467-017-00839-3
Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J. Artif. Intell. Rev. 2022, 55, 1947. doi: 10.1007/s10462-021-10058-4
doi: 10.1007/s10462-021-10058-4
Ahneman, D. T.; Estrada, J. G.; Lin, S. S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186. doi: 10.1126/science.aar5169
doi: 10.1126/science.aar5169
Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73. doi: 10.1038/nature17439
doi: 10.1038/nature17439
Roszak, R.; Beker, W.; Molga, K.; Grzybowski, B. A. J. Am. Chem. Soc. 2019, 141, 17142. doi: 10.1021/jacs.9b05895
doi: 10.1021/jacs.9b05895
Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. ACS Central Sci. 2018, 4, 1465. doi: 10.1021/acscentsci.8b00357
doi: 10.1021/acscentsci.8b00357
Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Science 2019, 363, 1. doi: 10.1126/science.aau5631
doi: 10.1126/science.aau5631
Reid, J. P.; Sigman, M. S. Nature 2019, 571, 343. doi: 10.1038/s41586-019-1384-z
doi: 10.1038/s41586-019-1384-z
Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604. doi: 10.1038/nature25978
doi: 10.1038/nature25978
Coley, C. W.; Thomas, D. A.; Lummiss, J. A. M.; Jaworski, J. N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L, ; Gao, H.; et al. Science 2019, 365, 1. doi: 10.1126/science.aax1566
doi: 10.1126/science.aax1566
Santanilla, A. B.; Regalado, E. L.; Pereira, T.; Shevlin, M.; Bateman, K.; Campeau, L. C.; Schneeweis, J.; Berritt, S.; Shi, Z. C.; Nantermet, P.; et al. Science 2015, 347, 49. doi: 10.1126/science.1259203
doi: 10.1126/science.1259203
Krska, S. W.; DiRocco, D. A.; Dreher, S. D.; Shevlin, M. Accounts Chem. Res. 2017, 50, 2976. doi: 10.1021/acs.accounts.7b00428
doi: 10.1021/acs.accounts.7b00428
Mennen, S. M.; Alhambra, C.; Allen, C. L.; Barberis, M.; Berritt, S.; Brandt, T. A.; Campbell, A. D.; Castañón, J.; Cherney, A. H.; Christensen, M.; et al. Org. Process Res. Dev. 2019, 23, 1213. doi: 10.1021/acs.oprd.9b00140
doi: 10.1021/acs.oprd.9b00140
Seefried, F.; Schmidt, T.; Reinecke, M.; Heinzlmeir, S.; Kuster, B.; Wilhelm, M. J. Proteome Res. 2019, 18, 1486. doi: 10.1021/acs.jproteome.8b00724
doi: 10.1021/acs.jproteome.8b00724
Figueiredo, R. M.; Suppo, J. S.; Campagne, J. M. Chem. Rev. 2016, 116, 12029. doi: 10.1021/acs.chemrev.6b00237
doi: 10.1021/acs.chemrev.6b00237
Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451. doi: 10.1021/jm200187y
doi: 10.1021/jm200187y
Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F.; Sheppard, T. D. Nat. Catal. 2019, 2, 10. doi: 10.1038/s41929-018-0211-5
doi: 10.1038/s41929-018-0211-5
Brown, D. G.; Bostrom, J. J. Med. Chem. 2016, 59, 4443. doi: 10.1021/acs.jmedchem.5b01409
doi: 10.1021/acs.jmedchem.5b01409
Halford, B. ACS Central Sci. 2022, 8, 405. doi: 10.1021/acscentsci.2c00369
doi: 10.1021/acscentsci.2c00369
Syed, Y. Y. Drugs 2022, 82, 455. doi: 10.1007/s40265-022-01684-5
doi: 10.1007/s40265-022-01684-5
Ghosh, S. C.; Ngiam, J. S.; Seayad, A. M.; Tuan, D. T.; Chai, C. L. L.; Chen, A. J. Org. Chem. 2012, 77, 8007. doi: 10.1021/jo301252c
doi: 10.1021/jo301252c
Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471. doi: 10.1038/nature10702
doi: 10.1038/nature10702
Beker, W.; Gajewska, E. P.; Badowski, T.; Grzybowski, B. A. Angew. Chem. -Int. Edit. 2019, 58, 4515. doi: 10.1002/anie.201806920
doi: 10.1002/anie.201806920
Aydogdu, S.; Hatipoglu, A. J. Indian Chem. Soc. 2022, 99, 100752. doi: 10.1016/j.jics.2022.100752
doi: 10.1016/j.jics.2022.100752
Ma, Y.; Zhang, X.; Zhu, L.; Feng, X.; Kowah, J. A. H.; Jiang, J.; Wang, L.; Jiang, L.; Liu, X. Molecules 2023, 28, 5995. doi: 10.3390/molecules28165995
doi: 10.3390/molecules28165995
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Lilienfeld, O. A. V. Sci. Data 2014, 1, 140022. doi: 10.1038/sdata.2014.22
doi: 10.1038/sdata.2014.22
Tsubaki, M.; Mizoguchi, T. J. Phys. Chem. Lett. 2018, 9, 5733. doi: 10.1021/acs.jpclett.8b01837
doi: 10.1021/acs.jpclett.8b01837
Yousef, W. A. Pattern Recognit. Lett. 2021, 146, 115. doi: 10.1016/j.patrec.2021.02.022
doi: 10.1016/j.patrec.2021.02.022
Dodge, Y. The Concise Encyclopedia of Statistics; Springer New York: New York, NY, USA, 2008; pp. 88–91.
Zollanvari, A.; Dougherty, E. R. Pattern Recognit. 2014, 47, 2178. doi: 10.1016/j.patcog.2013.11.022
doi: 10.1016/j.patcog.2013.11.022
Song, W.; Dong, K.; Li, M. Org. Lett. 2020, 22, 371. doi: 10.1021/acs.orglett.9b03905
doi: 10.1021/acs.orglett.9b03905
Mali, S. M.; Bhaisare, R. D.; Gopi, H. N. J. Org. Chem. 2013, 78, 5550. doi: 10.1021/jo400701v
doi: 10.1021/jo400701v
Chen, Z.; Fu, R.; Chai, W.; Zheng, H.; Sun, L.; Lu, Q.; Yuan, R. Tetrahedron 2014, 70, 2237. doi: 10.1016/j.tet.2014.02.042
doi: 10.1016/j.tet.2014.02.042
Li, X.; Li, Z.; Deng, H.; Deng, H.; Zhou, X. Tetrahedron Lett. 2013, 54, 2212. doi: 10.1016/j.tetlet.2013.02.058
doi: 10.1016/j.tetlet.2013.02.058
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Guangming Yang , Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
Xue-Peng Zhang , Yuchi Long , Yushu Pan , Jiding Wang , Baoyu Bai , Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
Ping Ye , Lingshuang Qin , Mengyao He , Fangfang Wu , Zengye Chen , Mingxing Liang , Libo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Chang Guo , Haipeng Yang , Hui Fang , Yingguo Zhao , Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Peihong Fan , Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027