Citation: Qianwen Han, Tenglong Zhu, Qiuqiu Lü, Mahong Yu, Qin Zhong. Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell[J]. Acta Physico-Chimica Sinica, ;2025, 41(1): 100005. doi: 10.3866/PKU.WHXB202309037 shu

Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell

  • Corresponding author: Tenglong Zhu, zhutenglong@njust.edu.cn
  • Received Date: 21 September 2023
    Revised Date: 6 November 2023
    Accepted Date: 13 November 2023

    Fund Project: the Key R&D Program of Jiangsu Province BE2022029

  • Solid oxide cell (SOC) is a typical multi-layer thin film ceramic device consisting of oxygen electrodes, electrolytes, and hydrogen electrodes. The currently widely used structure is a single cell supported by a Ni-YSZ (Nickel-Yttria Stabilized Zirconia) hydrogen electrode, with YSZ (Yttria Stabilized Zirconia) serving as the electrolyte. This configuration achieves electrolyte filmization, while also reducing the operating temperature of the cell. However, it introduces significant diffusion impedance within the hydrogen electrode, which is considered the main reason for the electrochemical asymmetry in reversible solid oxide cell (R-SOC). This study prepared hydrogen electrodes with varying porosity and investigated the impact of diffusion impedance of hydrogen electrodes on R-SOC asymmetry. On this basis, hydrothermal in situ growth technology was employed to prepare ultra-thin and dense GDC (Gd2O3 doped CeO2) barrier layers, compared with conventional screen-printed barrier layers to explore the effect of electrolyte ohmic impedance on electrochemical asymmetry. Experimental findings revealed that the electrolyte ohmic impedance is also a significant factor affecting the electrochemical asymmetry of reversible SOC, and the synergistic mechanism of the diffusion impedance of hydrogen electrodes and the ohmic impedance of thin film electrolytes on this asymmetry was elucidated. The experimental results show that increasing the hydrogen electrode porosity and reducing the electrolyte ohmic impedance can both enhance the R-SOC performance, particularly improving SOEC electrolysis performance, and both have the effect of reducing asymmetry. At 750 ℃, 50% H2O, and ±0.3 V bias conditions, the single cell with a large-pore hydrogen electrode and a thin film barrier layer exhibited a discharge current density of 0.752 A∙cm−2 and an electrolysis current density of 0.635 A∙cm−2. Compared to the single cell with a small pore hydrogen electrode and an ordinary screen-printed barrier layer, the discharge and electrolysis performance of the cell have been improved by ~37% and ~140%, respectively. At the same time, the current density asymmetry of the cell (∆j) under these conditions was only 0.117 A∙cm−2, reduced by 58% compared to a small porosity hydrogen electrode single cell and 24% compared to a large ohmic impedance single cell. In addition, the study noted that R-SOC asymmetry increases with operating temperature and decreases with higher steam content in the fuel on the hydrogen electrode side. These findings hold significant reference value the design, preparation, and reversible operation of high-performance hydrogen electrode supported thin film electrolyte SOC single cell structures.
  • 加载中
    1. [1]

      Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. Energ. Environ. Sci. 2019, 12, 463. doi: 10.1039/c8ee01157e  doi: 10.1039/c8ee01157e

    2. [2]

      Wang, M. Y.; Wang, Z.; Gong, X. Z.; Guo, Z. C. Renew. Sust. Energ. Rev. 2014, 29, 573. doi: 10.1016/j.rser.2013.08.090  doi: 10.1016/j.rser.2013.08.090

    3. [3]

      Marina, O. A.; Pederson, L. R.; Williams, M. C.; Coffey, G. W.; Meinhardt, K. D.; Nguyen, C. D.; Thomsen, E. C. J. Electrochem. Soc. 2007, 154, B452. doi: 10.1149/1.2710209  doi: 10.1149/1.2710209

    4. [4]

      Njodzefon, J. C.; Klotz, D.; Kromp, A.; Weber, A.; Ivers-Tiffee, E. J. Electrochem. Soc. 2013, 160, F313. doi: 10.1149/2.018304jes  doi: 10.1149/2.018304jes

    5. [5]

      Cui, T. H.; Lyu, Z. W.; Han, M. F.; Sun, K. H.; Liu, Y.; Ni, M. Energy Conv. Manag. 2022, 262, 115657. doi: 10.1016/j.enconman.2022.115657  doi: 10.1016/j.enconman.2022.115657

    6. [6]

      Ebbesen, S. D.; Sun, X. F.; Mogensen, M. B. Faraday Discuss. 2015, 182, 393. doi: 10.1039/c5fd00032g  doi: 10.1039/c5fd00032g

    7. [7]

      Kishimoto, M.; Tanimura, Y.; Seo, H.; Iwai, H.; Yoshida, H. Int. J. Hydrog. Energy 2023, 48, 11790. doi: 10.1016/j.ijhydene.2021.07.093  doi: 10.1016/j.ijhydene.2021.07.093

    8. [8]

      Kusnezoff, M.; Trofimenko, N.; Müller, M.; Michaelis, A. Materials 2016, 9, 906. doi: 10.3390/ma9110906  doi: 10.3390/ma9110906

    9. [9]

      Preininger, M.; Subotic, V.; Stoeckl, B.; Schauperl, R.; Reichholf, D.; Megel, S.; Kusnezoff, M.; Hochenauer, C. Int. J. Hydrog. Energy 2018, 43, 12398. doi: 10.1016/j.ijhydene.2018.04.230  doi: 10.1016/j.ijhydene.2018.04.230

    10. [10]

      Knibbe, R.; Hjelm, J.; Menon, M.; Pryds, N.; Sogaard, M.; Wang, H. J.; Neufeld, K. J. Am. Ceram. Soc. 2010, 93, 2877. doi: 10.1111/j.1551-2916.2010.03763.x  doi: 10.1111/j.1551-2916.2010.03763.x

    11. [11]

      Shiono, M.; Kobayashi, K.; Nguyen, T. L.; Hosoda, K.; Kato, T.; Ota, K.; Dokiya, M. Solid State Ion. 2004, 170, 1. doi: 10.1016/j.ssi.2004.02.018  doi: 10.1016/j.ssi.2004.02.018

    12. [12]

      De Vero, J. C.; Develos-Bagarinao, K.; Matsuda, H.; Kishimoto, H.; Ishiy ama, T.; Yamaji, K.; Horita, T.; Yokokawa, H. Solid State Ion. 2018, 314, 165. doi: 10.1016/j.ssi.2017.10.023  doi: 10.1016/j.ssi.2017.10.023

    13. [13]

      Budiman, R. A.; Yamaguchi, T.; Ishiyama, T.; Develos-Bagarinao, K.; Yamaji, K.; Kishimoto, H. Mater. Lett. 2022, 309, 131419. doi: 10.1016/j.matlet.2021.131419  doi: 10.1016/j.matlet.2021.131419

    14. [14]

      Molin, S.; Karczewski, J.; Kamecki, B.; Mrozi, A.; Wang, S. F.; Jasi, P. J. Eur. Ceram. Soc. 2020, 40, 5626. doi: 10.1016/j.jeurceramsoc.2020.06.006  doi: 10.1016/j.jeurceramsoc.2020.06.006

    15. [15]

      Lyu, Q. Q.; Zhu, T. L.; Qu, H. X.; Sun, Z. H.; Sun, K. H.; Zhong, Q.; Han, M. F. J. Eur. Ceram. Soc. 2021, 41, 5931. doi: 10.1016/j.jeurceramsoc.2021.05.020  doi: 10.1016/j.jeurceramsoc.2021.05.020

    16. [16]

      Yang, J.; Chen, L.; Cai, D. M.; Zhang, H.; Wang, J. X.; Guan, W. B. Int. J. Hydrog. Energy 2021, 46, 9730. doi: 10.1016/j.ijhydene.2020.12.228  doi: 10.1016/j.ijhydene.2020.12.228

    17. [17]

      Sun, Y.; He, S.; Saunders, M.; Chen, K.; Shao, Z.; Jiang, S. P. Int. J. Hydrog. Energy 2021, 46, 2606. doi: 10.1016/j.ijhydene.2020.10.113  doi: 10.1016/j.ijhydene.2020.10.113

    18. [18]

      Wang, H. Q.; Yakal-Kremski, K. J.; Yeh, T.; Rupp, G. M.; Limbeck, A.; Fleig, J.; Barnett, S. A. J. Electrochem. Soc. 2016, 163, F581. doi: 10.1149/2.0031607jes  doi: 10.1149/2.0031607jes

    19. [19]

      Zhao, H. Y.; Lv, Q. Q.; Cheng, L. Y.; Wu, S. L.; Zhu, T. L.; Zhong, Q. J. Chin. Ceram. Soc. 2023, 51, 1000.  doi: 10.14062/j.issn.0454-5648.20221073

    20. [20]

      Chen, X. Y.; Ni, W. J.; Du, X. J.; Sun, Z. H.; Zhu, T. L.; Zhong, Q.; Han, M. F. J. Mater. Sci. Technol. 2019, 35, 695. doi: 10.1016/j.jmst.2018.10.015  doi: 10.1016/j.jmst.2018.10.015

    21. [21]

      Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Electrochim. Acta 2015, 184, 483. doi: 10.1016/j.electacta.2015.09.097  doi: 10.1016/j.electacta.2015.09.097

    22. [22]

      Shi, W. Y.; Jia, C.; Zhang, Y. L.; Lv, Z. W.; Han, M. F. Acta Phys. -Chim. Sin. 2019, 35, 509.  doi: 10.3866/PKU.WHXB201806071

    23. [23]

      Lyu, Q.; Zhu, T.; Xu, N.; Qu, H.; Zhong, Q. ACS Appl. Mater. Inter. 2023, 15, 40588. doi: 10.1021/acsami.3c08019  doi: 10.1021/acsami.3c08019

    24. [24]

      Yang, Y. R.; Tong, X. F.; Hauch, A.; Sun, X. F.; Yang, Z. B.; Peng, S. P.; Chen, M. Chem. Eng. J. 2021, 417, 129260. doi: 10.1016/j.cej.2021.129260  doi: 10.1016/j.cej.2021.129260

    25. [25]

      Jin, C.; Yang, C. H.; Chen, F. L. J. Membrane Sci. 2010, 363, 250. doi: 10.1016/j.memsci.2010.07.044  doi: 10.1016/j.memsci.2010.07.044

  • 加载中
    1. [1]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    12. [12]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    13. [13]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    15. [15]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    16. [16]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(0)
  • Abstract views(225)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return