Citation:
Chongjing Liu, Yujian Xia, Pengjun Zhang, Shiqiang Wei, Dengfeng Cao, Beibei Sheng, Yongheng Chu, Shuangming Chen, Li Song, Xiaosong Liu. Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2025, 41(2): 100013.
doi:
10.3866/PKU.WHXB202309036
-
The surface of energy material is the direct place where energy storage and conversion reactions occur. Thus, the surface chemistry and the structure of the material under real reaction conditions are the key descriptors to clarify the reaction mechanism. However, such surfaces are usually immersed in gaseous or liquid environments under real reaction conditions, so it is not a simple task to identify the real physical and chemical properties of the interface under in situ conditions. X-ray photoelectron spectroscopy (XPS), as a surface-sensitive technique, is one of the main techniques for studying complex composition and electronic structure of material surfaces. However, due to the limited mean free path of photoelectrons in gas, liquid and solid media, the traditional XPS is confined to vacuum conditions, which poses a significant obstacle for studying solid-gas and solid-liquid interfaces under in situ conditions. With the introduction of differentially pumped analyzers and electrostatic lenses system, this limitation no longer restricts XPS only suitable for ultra-high vacuum conditions. With the active development of synchrotron radiation sources worldwide, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) offers advanced features combined with the benefits of synchrotron radiation sources. Compared to traditional X-ray source, synchrotron radiation sources have significantly higher photon flux and much smaller spot size, which enables more electrons to escape to the electron analyzer, therefore can effectively improve the signal-to-noise ratio and the maximum working pressure, and the continuous wavelength tunability of synchrotron radiation makes experimental measurements more flexible and provides more information on the surface reaction. Over the years, NAP-XPS has rapidly emerged as an influential tool for investigating various solid-gas and solid-liquid interfaces, reflecting the importance of understanding reaction mechanisms and structure-performance relationship of materials under conditions closer to practical reacting conditions, particularly in heterogeneous catalysis. Information at atomic scale can be delivered with surface and interface sensitivity by NAP-XPS in conjunction with several advanced spectroscopy and microscopy techniques. In this paper, we provide a concise overview of recent notable advancements in NAP-XPS to showcase the novel insights generated by research on solid-gas and solid-liquid interfaces in cutting-edge scientific fields. This demonstrates how the knowledge gained from NAP-XPS studies can contribute to a fundamental understanding of reaction mechanisms at a molecular level. Finally, we discuss new challenges and prospects to ensure a comprehensive understanding of this technique and, hopefully, inspire fresh ideas.
-
-
-
[1]
(1) Chu,S.;Majumdar,A.Nature 2012, 488,294.doi:10.1038/nature11475
-
[2]
(2) Bockris,J.O.M.Int.J.Hydrogen Energy 2013, 38,2579.doi:10.1016/j.ijhydene.2012.12.026
-
[3]
(3) Vasileff,A.;Xu,C.;Jiao,Y.;Zheng,Y.;Qiao,S.-Z.Chem 2018, 4,1809.doi:10.1016/j.chempr.2018.05.001
-
[4]
(4) Zheng,Y.;Jiao,Y.;Vasileff,A.;Qiao,S.-Z.Angew.Chem.Int.Ed. 2018, 57,7568.doi:10.1002/anie.201710556
-
[5]
(5) Nam,D.-H.;Bushuyev,O.S.;Li,J.;De Luna,P.;Seifitokaldani,A.;Dinh,C.-T.;García de Arquer,F.P.;Wang,Y.;Liang,Z.;Proppe,A.H.;et al. J.Am.Chem.Soc. 2018, 140,11378.doi:10.1021/jacs.8b06407
-
[6]
(6) Fabbri,E.;Nachtegaal,M.;Binninger,T.;Cheng,X.;Kim,B.-J.;Durst,J.;Bozza,F.;Graule,T.;Schäublin,R.;Wiles,L.;et al. Nat.Mater. 2017, 16,925.doi:10.1038/nmat4938
-
[7]
(7) Lunkenbein,T.;Schumann,J.;Behrens,M.;Schlögl,R.;Willinger,M.G.Angew.Chem. 2015, 54,4544.doi:10.1002/anie.201411581
-
[8]
-
[9]
(9) Han,Y.;Zhang,H.;Yu,Y.;Liu,Z.ACS Catal. 2021, 11,1464.doi:10.1021/acscatal.0c04251
-
[10]
(10) Roy,K.;Artiglia,L.;van Bokhoven,J.A.ChemCatChem 2018, 10,666.doi:10.1002/cctc.201701522
-
[11]
(11) Nguyen,L.;Tao,F.F.;Tang,Y.;Dou,J.;Bao,X.J.Chem.Rev. 2019, 119,6822.doi:10.1021/acs.chemrev.8b00114
-
[12]
(12) Bluhm,H.J.Electron Spectrosc.Relat.Phenom. 2010, 177,71.doi:10.1016/j.elspec.2009.08.006
-
[13]
(13) Liu,X.;Yang,W.;Liu,Z.Adv.Mater. 2014, 26,7710.doi:10.1002/adma.201304676
-
[14]
(14) Starr,D.E.;Liu,Z.; Hävecker, M.; Knop-Gericke, A.; Bluhm, H. Chem. Soc. Rev. 2013, 42, 5833. doi: 10.1039/c3cs60057b
-
[15]
(15) Karslıoğlu, O.; Nemšák, S.; Zegkinoglou, I.; Shavorskiy, A.; Hartl, M.; Salmassi, F.; Gullikson, E. M.; Ng, M. L.; Rameshan, C.; Rude, B.; et al. Faraday Discuss. 2015, 180, 35. doi: 10.1039/C5FD00003C
-
[16]
(16) Axnanda, S.; Crumlin, E. J.; Mao, B.; Rani, S.; Chang, R.; Karlsson, P. G.; Edwards, M. O. M.; Lundqvist, M.; Moberg, R.; Ross, P.; et al. Sci. Rep. 2015, 5, 9788. doi: 10.1038/srep09788
-
[17]
(17) Siegbahn, H. J. Phys. Chem. 1985, 89, 897. doi: 10.1021/j100252a005
-
[18]
(18) Siegbahn, H.; Siegbahn, K. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 319. doi: 10.1016/0368-2048(73)80023-4
-
[19]
(19) Joyner, R. W.; Roberts, M. W.; Yates, K. Surf. Sci. 1979, 87, 501. doi: 10.1016/0039-6028(79)90544-2
-
[20]
(20) Ruppender, H. J.; Grunze, M.; Kong, C. W.; Wilmers, M. Surf. Interface Anal. 1990, 15, 245. doi: 10.1002/sia.740150403
-
[21]
(21) Ogletree, D. F.; Bluhm, H.; Lebedev, G.; Fadley, C. S.; Hussain, Z.; Salmeron, M. Rev. Sci. Instrum. 2002, 73, 3872. doi: 10.1063/1.1512336
-
[22]
(22) Bluhm, H.; Hävecker, M.; Knop-Gericke, A.; Kleimenov, E.; Schlögl, R.; Teschner, D.; Bukhtiyarov, V. I.; Ogletree, D. F.; Salmeron, M. J. Phys. Chem. B 2004, 108, 14340. doi: 10.1021/jp040080j
-
[23]
(23) Frank Ogletree, D.; Bluhm, H.; Hebenstreit, E. D.; Salmeron, M. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 601, 151. doi: 10.1016/j.nima.2008.12.155
-
[24]
(24) Soler, L.; Casanovas, A.; Escudero, C.; Pérez-Dieste, V.; Aneggi, E.; Trovarelli, A.; Llorca, J. ChemCatChem 2016, 8, 2748. doi: 10.1002/cctc.201600615
-
[25]
(25) Toyoshima, R.; Yoshida, M.; Monya, Y.; Kousa, Y.; Suzuki, K.; Abe, H.; Mun, B. S.; Mase, K.; Amemiya, K.; Kondoh, H. J. Phys. Chem. C 2012, 116, 18691. doi: 10.1021/jp301636u
-
[26]
(26) Schnadt, J.; Knudsen, J.; Andersen, J. N.; Siegbahn, H.; Pietzsch, A.; Hennies, F.; Johansson, N.; Martensson, N.; Ohrwall, G.; Bahr, S.; et al. J. Synchrotron Radiat. 2012, 19, 701. doi: 10.1107/S0909049512032700
-
[27]
(27) Cai, J.; Dong, Q.; Han, Y.; Mao, B.-H.; Zhang, H.; Karlsson, P. G.;Åhlund, J.; Tai, R.-Z.; Yu, Y.; Liu, Z. Nucl. Sci. Tech. 2019, 30, 81. doi: 10.1007/s41365-019-0608-0
-
[28]
(28) Zhang, C.; Grass, M. E.; Yu, Y.; Gaskell, K. J.; DeCaluwe, S. C.; Chang, R.; Jackson, G. S.; Hussain, Z.; Bluhm, H.; Eichhorn, B. W.; et al. ACS Catal. 2012, 2, 2297. doi: 10.1021/cs3004243
-
[29]
(29) Zhang, C.; Yu, Y.; Grass, M. E.; Dejoie, C.; Ding, W.; Gaskell, K.; Jabeen, N.; Hong, Y. P.; Shavorskiy, A.; Bluhm, H.; et al. J. Am. Chem. Soc. 2013, 135, 11572. doi: 10.1021/ja402604u
-
[30]
(30) Zhang, C.; Grass, M. E.; McDaniel, A. H.; DeCaluwe, S. C.; Gabaly, F. E.; Liu, Z.; McCarty, K. F.; Farrow, R. L.; Linne, M. A.; Hussain, Z.; et al. Nat. Mater. 2010, 9, 944. doi: 10.1038/nmat2851
-
[31]
(31) Yu, Y.; Mao, B.; Geller, A.; Chang, R.; Gaskell, K.; Liu, Z.; Eichhorn, B. W. Phys. Chem. Chem. Phys. 2014, 16, 11633. doi: 10.1039/C4CP01054J
-
[32]
(32) Salmeron, M. Top. Catal. 2018, 61, 2044. doi: 10.1007/s11244-018-1069-0
-
[33]
(33) Bukhtiyarov, V. I.; Kaichev, V. V.; Prosvirin, I. P. Top. Catal. 2005, 32, 3. doi: 10.1007/s11244-005-9254-3
-
[34]
(34) Cai, J.; Han, Y.; Chen, S.; Crumlin, E. J.; Yang, B.; Li, Y.; Liu, Z. J. Phys. Chem. C 2019, 123, 12176. doi: 10.1021/acs.jpcc.8b11698
-
[35]
-
[36]
(36) Eren, B.; Heine, C.; Bluhm, H.; Somorjai, G. A.; Salmeron, M. J. Am. Chem. Soc. 2015, 137, 11186. doi: 10.1021/jacs.5b07451
-
[37]
(37) Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Ammal, S. C.; Heyden, A.; Sutter, P.; Chen, D. A. J. Phys. Chem. C 2015, 119, 23082. doi: 10.1021/acs.jpcc.5b07625
-
[38]
(38) Jones, T. E.; Rocha, T. C. R.; Knop-Gericke, A.; Stampfl, C.; Schlögl, R.; Piccinin, S. Phys. Chem. Chem. Phys. 2015, 17, 9288. doi: 10.1039/C5CP00342C
-
[39]
(39) Adler, S. B. Chem. Rev. 2004, 104, 4791. doi: 10.1021/cr020724o
-
[40]
(40) Feng, Z. A.; El Gabaly, F.; Ye, X.; Shen, Z.-X.; Chueh, W. C. Nat. Commun. 2014, 5, 4374. doi: 10.1038/ncomms5374
-
[41]
(41) Chen, D.; Guan, Z.; Zhang, D.; Trotochaud, L.; Crumlin, E.; Nemsak, S.; Bluhm, H.; Tuller, H. L.; Chueh, W. C. Nat. Catal. 2020, 3, 116. doi: 10.1038/s41929-019-0401-9
-
[42]
(42) Gopal, C. B.; Gabaly, F. E.; McDaniel, A. H.; Chueh, W. C. Adv. Mater. 2016, 28, 4692. doi: 10.1002/adma.201506333
-
[43]
(43) Feng, Z. A.; Machala, M. L.; Chueh, W. C. Phys. Chem. Chem. Phys. 2015, 17, 12273. doi: 10.1039/C5CP00114E
-
[44]
(44) Lu, Y.-C.; Crumlin, E. J.; Veith, G. M.; Harding, J. R.; Mutoro, E.; Baggetto, L.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. Sci. Rep. 2012,2, 715. doi: 10.1038/srep00715
-
[45]
(45) Lu, Y.-C.; Crumlin, E. J.; Carney, T. J.; Baggetto, L.; Veith, G. M.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. J. Phys. Chem. C 2013, 117, 25948. doi: 10.1021/jp409453s
-
[46]
(46) Itkis, D. M.; Semenenko, D. A.; Kataev, E. Y.; Belova, A. I.; Neudachina, V. S.; Sirotina, A. P.; Hävecker, M.; Teschner, D.; Knop-Gericke, A.; Dudin, P.; et al. Nano Lett. 2013, 13, 4697. doi: 10.1021/nl4021649
-
[47]
(47) Wang, J.; Bishop, S. R.; Sun, L.; Lu, Q.; Vardar, G.; Bliem, R.; Tsvetkov, N.; Crumlin, E. J.; Gallet, J.-J.; Bournel, F. J. Mater. Chem. A 2019,7, 15233. doi: 10.1039/C9TA03265G
-
[48]
(48) Lu, Q.; Vardar, G.; Jansen, M.; Bishop, S. R.; Waluyo, I.; Tuller, H. L.; Yildiz, B. Chem. Mater. 2018, 30, 2600. doi: 10.1021/acs.chemmater.7b05129
-
[49]
(49) Nenning, A.; Opitz, A. K.; Rameshan, C.; Rameshan, R.; Blume, R.; Hävecker, M.; Knop-Gericke, A.; Rupprechter, G.; Klötzer, B.; Fleig, J. J. Phys. Chem. C 2016, 120, 1461. doi: 10.1021/acs.jpcc.5b08596
-
[50]
(50) Katsaounis, A.; Teschner, D.; Zafeiratos, S. Top. Catal. 2018,61, 2142. doi: 10.1007/s11244-018-1073-4
-
[51]
(51) Espinós, J. P.; Rico, V. J.; González-Cobos, J.; Sánchez-Valencia, J. R.; Pérez-Dieste, V.; Escudero, C.; de Lucas-Consuegra, A.; González-Elipe, A. R. J. Catal. 2018, 358, 27. doi: 10.1016/j.jcat.2017.11.027
-
[52]
(52) Mao, B.; Dai, Y.; Cai, J.; Li, Q.; Jiang, C.; Li, Y.; Xie, J.; Liu, Z. Top. Catal. 2018, 61, 2123. doi: 10.1007/s11244-018-1066-3
-
[53]
(53) Papaefthimiou, V.; Shishkin, M.; Niakolas, D. K.; Athanasiou, M.; Law, Y. T.; Arrigo, R.; Teschner, D.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; et al. Adv. Energy Mater. 2013, 3, 762. doi: 10.1002/aenm.201200727
-
[54]
(54) Wu, L.-W.; Liu, C.; Han, Y.; Yu, Y.; Liu, Z.; Huang, Y.-F. J. Chem. Phys. 2023, 158, 151102. doi: 10.1063/5.0138672
-
[55]
(55) Lin, W.; Bao, W.; Cai, J.; Cai, X.; Zhao, H.; Zhang, Y.; Deng, Y.; Yang, S.; Zhou, Z.; Liu, Z. Appl. Surf. Sci. 2023, 615, 156278. doi: 10.1016/j.apsusc.2022.156278
-
[56]
(56) Ling, Y.; Luo, J.; Ran, Y.; Cao, Y.; Huang, W.; Cai, J.; Liu, Z.; Li, W.-X.; Yang, F.; Bao, X. J. Energy Chem. 2022, 72, 258. doi: 10.1016/j.jechem.2022.03.009
-
[57]
(57) Yi, Z.; Lin, L.; Chang, Y.; Luo, X.; Gao, J.; Mu, R.; Ning, Y.; Fu, Q.; Bao, X. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2120716119. doi: 10.1073/pnas.2120716119
-
[58]
(58) Wang, C.; Meng, C.; Li, S.; Zhang, G.; Ning, Y.; Fu, Q. J. Am. Chem. Soc. 2021, 143, 17843. doi: 10.1021/jacs.1c09429
-
[59]
(59) Li, R.; Xu, X.; Zhu, B.; Li, X.-Y.; Ning, Y.; Mu, R.; Du, P.; Li, M.; Wang, H.; Liang, J.; et al. Nat. Commun. 2021, 12, 1406. doi: 10.1038/s41467-021-21552-2
-
[60]
(60) Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021,589, 396. doi: 10.1038/s41586-020-03130-6
-
[61]
(61) Yao, S.; Lin, L.; Liao, W.; Rui, N.; Li, N.; Liu, Z.; Cen, J.; Zhang, F.; Li, X.; Song, L.; et al. ACS Catal. 2019, 9, 9087. doi: 10.1021/acscatal.9b01945
-
[62]
(62) Zakharchenko, T. K.; Belova, A. I.; Frolov, A. S.; Kapitanova, O. O.; Velasco-Velez, J.-J.; Knop-Gericke, A.; Vyalikh, D.; Itkis, D. M.; Yashina, L. V. Top. Catal. 2018, 61, 2114. doi: 10.1007/s11244-018-1072-5
-
[63]
(63) Jiang, C. G.; Zhang, H.; Li, P.; Zhan, X. Y.; Liu, Z. J.; Wang, L.; Mao, B. H.; Li, Q. T.; Wen, Z. Y.; Peng, Z. Q.; et al. Adv. Funct. Mater. 2022, 32, 2202518. doi: 10.1002/adfm.202202518
-
[64]
(64) Zhang, P.; Shou, H.; Xia, Y.; Wang, C.; Wei, S.; Xu, W.; Chen, Y.; Liu, Z.; Guo, X.; Zhu, K.; et al. Nano Lett. 2023, 23, 1401. doi: 10.1021/acs.nanolett.2c04712
-
[65]
(65) Kattel, S.; Yu, W.; Yang, X.; Yan, B.; Huang, Y.; Wan, W.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2016, 55, 7968. doi: 10.1002/anie.201601661
-
[66]
(66) Ferrah, D.; Haines, A. R.; Galhenage, R. P.; Bruce, J. P.; Babore, A. D.; Hunt, A.; Waluyo, I.; Hemminger, J. C. ACS Catal. 2019, 9, 6783. doi: 10.1021/acscatal.9b01419
-
[67]
(67) Liu, C. Y.; Dong, Q.; Han, Y.; Zang, Y. J.; Zhang, H.; Xie, X. M.; Yu, Y.; Liu, Z. Chin. J. Catal. 2022, 43, 2858. doi: 10.1016/S1872-2067(22)64092-0
-
[68]
(68) Qian, J.; Baskin, A.; Liu, Z.; Prendergast, D.; Crumlin, E. J. J. Chem. Phys. 2020, 153, 040901. doi: 10.1063/5.0006242
-
[69]
(69) Tanuma, S.; Powell, C. J.; Penn, D. R. Surf. Interface Anal. 2011,43, 689. doi: 10.1002/sia.3522
-
[70]
(70) Crumlin, E. J.; Bluhm, H.; Liu, Z. J. Electron Spectrosc. Relat. Phenom. 2013, 190, 84. doi: 10.1016/j.elspec.2013.03.002
-
[71]
(71) Temperton, R. H.; Kawde, A.; Eriksson, A.; Wang, W.; Kokkonen, E.; Jones, R.; Gericke, S. M.; Zhu, S.; Quevedo, W.; Seidel, R.; et. al. J. Chem. Phys. 2022, 157, 244701. doi: 10.1063/5.0130222
-
[72]
(72) Stoerzinger, K. A.; Favaro, M.; Ross, P. N.; Hussain, Z.; Liu, Z.; Yano, J.; Crumlin, E. J. Top. Catal. 2018, 61, 2152. doi: 10.1007/s11244-018-1063-6
-
[73]
(73) Kolmakov, A.; Dikin, D. A.; Cote, L. J.; Huang, J.; Abyaneh, M. K.; Amati, M.; Gregoratti, L.; Günther, S.; Kiskinova, M. Nat. Nanotechnol. 2011,6, 651. doi: 10.1038/nnano.2011.130
-
[74]
(74) Velasco-Vélez, J. J.; Pfeifer, V.; Hävecker, M.; Weatherup, R. S.; Arrigo, R.; Chuang, C.-H.; Stotz, E.; Weinberg, G.; Salmeron, M.; Schlögl, R.; et al. Angew. Chem. Int. Ed. 2015, 54, 14554. doi: 10.1002/anie.201506044
-
[75]
(75) Cao, D.; Ye, K.; Moses, O. A.; Xu, W.; Liu, D.; Song, P.; Wu, C.; Wang, C.; Ding, S.; Chen, S.; et al. ACS Nano 2019, 13, 11733. doi: 10.1021/acsnano.9b05714
-
[76]
(76) Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A.; et al. J. Phys. Chem. C 2016, 120, 2247. doi: 10.1021/acs.jpcc.5b10931
-
[77]
(77) Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; Toma, F. M.; Ross, P. N.; Yano, J.; Liu, Z.; Crumlin, E. J. J. Mater. Chem. A 2017, 5, 11634. doi: 10.1039/c7ta00409e
-
[78]
(78) Han, Y.; Axnanda, S.; Crumlin, E. J.; Chang, R.; Mao, B.; Hussain, Z.; Ross, P. N.; Li, Y.; Liu, Z. J. Phys. Chem. B 2018, 122, 666. doi: 10.1021/acs.jpcb.7b05982
-
[79]
(79) Salmeron, M.; Schlögl, R. Surf. Sci. Rep. 2008, 63, 169. doi: 10.1016/j.surfrep.2008.01.001
-
[80]
(80) Masuda, T.; Yoshikawa, H.; Noguchi, H.; Kawasaki, T.; Kobata, M.; Kobayashi, K.; Uosaki, K. Appl. Phys. Lett. 2013, 103, 111101. doi: 10.1063/1.4821180
-
[81]
(81) Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 1975,58, 263. doi: 10.1016/S0022-0728(75)80359-7
-
[82]
(82) Heller, A. Acc. Chem. Res. 1981, 14, 154. doi: 10.1021/ar00065a004
-
[83]
(83) Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Chem. Sci. 2013, 4, 2724. doi: 10.1039/C3SC50496D
-
[84]
(84) Le Formal, F.; Pendlebury, S. R.; Cornuz, M.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. J. Am. Chem. Soc. 2014, 136, 2564. doi: 10.1021/ja412058x
-
[85]
(85) Klahr, B.; Hamann, T. J. Phys. Chem. C 2014, 118, 10393. doi: 10.1021/jp500543z
-
[86]
(86) Lichterman, M. F.; Hu, S.; Richter, M. H.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, W.; Hussain, Z.; Mayer, T.; Brunschwig, B. S.; et al. Energy Environ. Sci. 2015, 8, 2409. doi: 10.1039/C5EE01014D
-
[87]
(87) Shavorskiy, A.; Ye, X.; Karslıoğlu, O.; Poletayev, A. D.; Hartl, M.; Zegkinoglou, I.; Trotochaud, L.; Nemšák, S.; Schneider, C. M.; Crumlin, E. J.; et al. J. Phys. Chem. Lett. 2017, 8, 5579. doi: 10.1021/acs.jpclett.7b02548
-
[88]
(88) Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rosenman, A.; Frimer, A.; Aurbach, D. J. Electrochem. Soc. 2015, 162, A2424. doi: 10.1149/2.0051514jes
-
[89]
(89) Kim, D. Y.; Lim, Y.; Roy, B.; Ryu, Y.-G.; Lee, S.-S. Phys. Chem. Chem. Phys. 2014, 16, 25789. doi: 10.1039/C4CP01259C
-
[90]
(90) Maibach, J.; Källquist, I.; Andersson, M.; Urpelainen, S.; Edström, K.; Rensmo, H.; Siegbahn, H.; Hahlin, M. Nat. Commun. 2019,10, 3080. doi: 10.1038/s41467-019-10803-y
-
[91]
(91) Lee, S.; Meyer, T. L.; Park, S.; Egami, T.; Lee, H. N. Appl. Phys. Lett. 2014, 105, 223515. doi: 10.1063/1.4903348
-
[92]
(92) Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. O.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F.; et al. Science 2007, 318, 1750. doi: 10.1126/science.1150124
-
[93]
(93) Lu, Q.; Bishop, S. R.; Lee, D.; Lee, S.; Bluhm, H.; Tuller, H. L.; Lee, H. N.; Yildiz, B. Adv. Funct. Mater. 2018, 28, 1803024. doi: 10.1002/adfm.201803024
-
[94]
(94) Connell, J. G.; Zorko, M.; Agarwal, G.; Yang, M.; Liao, C.; Assary, R. S.; Strmcnik, D.; Markovic, N. M. ACS Appl. Mater. Interfaces 2020,12, 36137. doi: 10.1021/acsami.0c09404
-
[95]
(95) Jay, R.; Tomich, A. W.; Zhang, J.; Zhao, Y.; De Gorostiza, A.; Lavallo, V.; Guo, J. ACS Appl. Mater. Interfaces 2019, 11, 11414. doi: 10.1021/acsami.9b00037
-
[96]
(96) Rajput, N. N.; Qu, X.; Sa, N.; Burrell, A. K.; Persson, K. A. J. Am. Chem. Soc. 2015, 137, 3411. doi: 10.1021/jacs.5b01004
-
[97]
(97) Connell, J. G.; Genorio, B.; Lopes, P. P.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M. Chem. Mater. 2016, 28, 8268. doi: 10.1021/acs.chemmater.6b03227
-
[98]
(98) Yu, Y.; Baskin, A.; Valero-Vidal, C.; Hahn, N. T.; Liu, Q.; Zavadil, K. R.; Eichhorn, B. W.; Prendergast, D.; Crumlin, E. J. Chem. Mater. 2017, 29, 8504. doi: 10.1021/acs.chemmater.7b03404
-
[99]
(99) Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. L.; Gordon, J. G.; Melroy, O. R.; Wiesler, D. G.; Yee, D.; Sorensen, L. B. Nature 1994,368, 444. doi: 10.1038/368444a0
-
[100]
(100) Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Nat. Nanotechnol. 2009, 4, 713. doi: 10.1038/nnano.2009.332
-
[101]
(101) Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Nat. Commun. 2016, 7, 12695. doi: 10.1038/ncomms12695
-
[102]
(102) Brown, M. A.; Redondo, A. B.; Sterrer, M.; Winter, B.; Pacchioni, G.; Abbas, Z.; van Bokhoven, J. A. Nano Lett. 2013, 13, 5403. doi: 10.1021/nl402957y
-
[103]
(103) Brown, M. A.; Goel, A.; Abbas, Z. 2016, 55, 3790. doi: 10.1002/anie.201512025
-
[104]
(104) Li, X.; Zhang, H.; Ran, Y.; Ye, M.; Yang, F.; Han, Y.; Liu, Z. J. Phys. Chem. Lett. 2022, 13, 5677. doi: 10.1021/acs.jpclett.2c00605
-
[105]
(105) Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi: 10.1016/j.joule.2018.11.014
-
[106]
(106) Tamenori, Y.; Morita, M.; Nakamura, T. J. Synchrotron Radiat. 2011,18, 747. doi: 10.1107/S0909049511027531
-
[107]
(107) Meng, X.; Guo, Z.; Wang, Y.; Zhang, H.; Han, Y.; Zhao, G.; Liu, Z.; Tai, R. J. Synchrotron Radiat. 2019, 26, 543. doi: 10.1107/S1600577518018179
-
[108]
(108) Zhang, H.; Li, X.; Wang, W.; Mao, B.; Han, Y.; Yu, Y.; Liu, Z. Rev. Sci. Instrum. 2020, 91,123108. doi: 10.1063/5.0020469
-
[1]
-
-
-
[1]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[2]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[3]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[4]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[5]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[6]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[7]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[8]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[9]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[10]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[11]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[12]
Jiahui CHEN , Tingting ZHENG , Xiuyun ZHANG , Wei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106
-
[13]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[14]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[15]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[16]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[17]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[18]
Yunxin Xu , Wenbo Zhang , Jing Yan , Wangchang Geng , Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008
-
[19]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[20]
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(137)
- HTML views(23)