Citation: Chongjing Liu, Yujian Xia, Pengjun Zhang, Shiqiang Wei, Dengfeng Cao, Beibei Sheng, Yongheng Chu, Shuangming Chen, Li Song, Xiaosong Liu. Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 230903. doi: 10.3866/PKU.WHXB202309036 shu

Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy

  • Corresponding author: Shuangming Chen, csmp@ustc.edu.cn Xiaosong Liu, xsliu19@ustc.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 20 September 2023
    Revised Date: 17 October 2023
    Accepted Date: 23 October 2023

    Fund Project: the National Key Research and Development Program of China 2019YFA0405601the Youth Innovation Promotion Association of CAS 2022457the National Natural Science Foundation of China 12322515the National Natural Science Foundation of China U2032113the National Natural Science Foundation of China 22075264the National Natural Science Foundation of China 12205303the Fundamental Research Funds for the Central Universities WK2060000039the Fundamental Research Funds for the Central Universities WK2310000108

  • The surface of energy material is the direct place where energy storage and conversion reactions occur. Thus, the surface chemistry and the structure of the material under real reaction conditions are the key descriptors to clarify the reaction mechanism. However, such surfaces are usually immersed in gaseous or liquid environments under real reaction conditions, so it is not a simple task to identify the real physical and chemical properties of the interface under in situ conditions. X-ray photoelectron spectroscopy (XPS), as a surface-sensitive technique, is one of the main techniques for studying complex composition and electronic structure of material surfaces. However, due to the limited mean free path of photoelectrons in gas, liquid and solid media, the traditional XPS is confined to vacuum conditions, which poses a significant obstacle for studying solid-gas and solid-liquid interfaces under in situ conditions. With the introduction of differentially pumped analyzers and electrostatic lenses system, this limitation no longer restricts XPS only suitable for ultra-high vacuum conditions. With the active development of synchrotron radiation sources worldwide, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) offers advanced features combined with the benefits of synchrotron radiation sources. Compared to traditional X-ray source, synchrotron radiation sources have significantly higher photon flux and much smaller spot size, which enables more electrons to escape to the electron analyzer, therefore can effectively improve the signal-to-noise ratio and the maximum working pressure, and the continuous wavelength tunability of synchrotron radiation makes experimental measurements more flexible and provides more information on the surface reaction. Over the years, NAP-XPS has rapidly emerged as an influential tool for investigating various solid-gas and solid-liquid interfaces, reflecting the importance of understanding reaction mechanisms and structure-performance relationship of materials under conditions closer to practical reacting conditions, particularly in heterogeneous catalysis. Information at atomic scale can be delivered with surface and interface sensitivity by NAP-XPS in conjunction with several advanced spectroscopy and microscopy techniques. In this paper, we provide a concise overview of recent notable advancements in NAP-XPS to showcase the novel insights generated by research on solid-gas and solid-liquid interfaces in cutting-edge scientific fields. This demonstrates how the knowledge gained from NAP-XPS studies can contribute to a fundamental understanding of reaction mechanisms at a molecular level. Finally, we discuss new challenges and prospects to ensure a comprehensive understanding of this technique and, hopefully, inspire fresh ideas.
  • 加载中
    1. [1]

      Chu S., Majumdar A. Nature, 2012, 488, 294 doi: 10.1038/nature11475  doi: 10.1038/nature11475

    2. [2]

      Bockris J.O.M. Int. J. Hydrogen Energy, 2013, 38, 2579 doi: 10.1016/j.ijhydene.2012.12.026  doi: 10.1016/j.ijhydene.2012.12.026

    3. [3]

      Vasileff A., Xu C., Jiao Y., Zheng Y., Qiao S. -Z. Chem, 2018, 4, 1809 doi: 10.1016/j.chempr.2018.05.001  doi: 10.1016/j.chempr.2018.05.001

    4. [4]

      Zheng Y., Jiao Y., Vasileff A., Qiao S. -Z. Angew. Chem. Int. Ed., 2018, 57, 7568 doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    5. [5]

      Nam D. -H., Bushuyev O.S., Li J., De Luna P., Seifitokaldani A., Dinh C. -T., García de Arquer F.P., Wang Y., Liang Z. Proppe A.H., et al. J. Am. Chem. Soc., 2018, 140, 11378 doi: 10.1021/jacs.8b06407  doi: 10.1021/jacs.8b06407

    6. [6]

      Fabbri E., Nachtegaal M., Binninger T., Cheng X. Kim B. -J., Durst J., Bozza F., Graule T., Schäublin R., Wiles L., et al. Nat. Mater., 2017, 16, 925 doi: 10.1038/nmat4938  doi: 10.1038/nmat4938

    7. [7]

      Lunkenbein T., Schumann J., Behrens M., Schlögl R., Willinger M. G. Angew. Chem., 2015, 54, 4544 doi: 10.1002/anie.201411581  doi: 10.1002/anie.201411581

    8. [8]

      Dai J., Gong Z., Xu S., Cui Y., Yao M. Acta Phys. -Chim. Sin., 2022, 38, 2003026  doi: 10.3866/PKU.WHXB202003026

    9. [9]

      Han Y., Zhang H., Yu Y., Liu Z. ACS Catal., 2021, 11, 1464 doi: 10.1021/acscatal.0c04251  doi: 10.1021/acscatal.0c04251

    10. [10]

      Roy K., Artiglia L., van Bokhoven J. A. ChemCatChem, 2018, 10, 666 doi: 10.1002/cctc.201701522  doi: 10.1002/cctc.201701522

    11. [11]

      Nguyen L., Tao F.F., Tang Y., Dou J., Bao X. J. Chem. Rev., 2019, 119, 6822 doi: 10.1021/acs.chemrev.8b00114  doi: 10.1021/acs.chemrev.8b00114

    12. [12]

      Bluhm H. J. Electron Spectrosc. Relat. Phenom., 2010, 177, 71 doi: 10.1016/j.elspec.2009.08.006  doi: 10.1016/j.elspec.2009.08.006

    13. [13]

      Liu X., Yang W., Liu Z. Adv. Mater., 2014, 26, 7710 doi: 10.1002/adma.201304676  doi: 10.1002/adma.201304676

    14. [14]

      Starr D.E., Liu Z., Hävecker M., Knop-Gericke A., Bluhm H. Chem. Soc. Rev., 2013, 42, 5833 doi: 10.1039/c3cs60057b  doi: 10.1039/c3cs60057b

    15. [15]

      Karslıoğlu O., Nemšák S., Zegkinoglou I., Shavorskiy A., Hartl M., Salmassi F., Gullikson E. M. Ng M. L., Rameshan C., Rude B., et al. Faraday Discuss., 2015, 180, 35 doi: 10.1039/C5FD00003C  doi: 10.1039/C5FD00003C

    16. [16]

      Axnanda S., Crumlin E. J., Mao B., Rani S., Chang R., Karlsson P. G. Edwards M. O. M., Lundqvist M., Moberg R., Ross P., et al. Sci. Rep., 2015, 5, 9788 doi: 10.1038/srep09788  doi: 10.1038/srep09788

    17. [17]

      Siegbahn H. J. Phys. Chem., 1985, 89, 897 doi: 10.1021/j100252a005  doi: 10.1021/j100252a005

    18. [18]

      Siegbahn H., Siegbahn K. J. Electron Spectrosc. Relat. Phenom., 1973, 2, 319 doi: 10.1016/0368-2048(73)80023-4  doi: 10.1016/0368-2048(73)80023-4

    19. [19]

      Joyner R. W., Roberts M. W., Yates K. Surf. Sci., 1979, 87, 501 doi: 10.1016/0039-6028(79)90544-2  doi: 10.1016/0039-6028(79)90544-2

    20. [20]

      Ruppender H. J., Grunze M., Kong C. W., Wilmers M. Surf. Interface Anal., 1990, 15, 245 doi: 10.1002/sia.740150403  doi: 10.1002/sia.740150403

    21. [21]

      Ogletree D. F., Bluhm H., Lebedev G., Fadley C. S., Hussain Z., Salmeron M. Rev. Sci. Instrum., 2002, 73, 3872 doi: 10.1063/1.1512336  doi: 10.1063/1.1512336

    22. [22]

      Bluhm H., Hävecker M., Knop-Gericke A., Kleimenov E., Schlögl R., Teschner D., Bukhtiyarov V. I., Ogletree D. F., Salmeron M. J. Phys. Chem. B, 2004, 108, 14340 doi: 10.1021/jp040080j  doi: 10.1021/jp040080j

    23. [23]

      Frank Ogletree D., Bluhm H., Hebenstreit E. D., Salmeron M. Nucl. Instrum. Methods Phys. Res. Sect. A, 2009, 601, 151 doi: 10.1016/j.nima.2008.12.155  doi: 10.1016/j.nima.2008.12.155

    24. [24]

      Soler L., Casanovas A., Escudero C., Pérez-Dieste V., Aneggi E., Trovarelli A., Llorca J. ChemCatChem, 2016, 8, 2748 doi: 10.1002/cctc.201600615  doi: 10.1002/cctc.201600615

    25. [25]

      Toyoshima R., Yoshida M., Monya Y., Kousa Y., Suzuki K., Abe H., Mun B. S., Mase K., Amemiya K., Kondoh H. J. Phys. Chem. C, 2012, 116, 18691 doi: 10.1021/jp301636u  doi: 10.1021/jp301636u

    26. [26]

      Schnadt J., Knudsen J. Andersen J. N., Siegbahn H., Pietzsch A., Hennies F., Johansson N., Martensson N., Ohrwall G., Bahr S.,et al. J. Synchrotron Radiat., 2012, 19, 701 doi: 10.1107/S0909049512032700  doi: 10.1107/S0909049512032700

    27. [27]

      Cai J., Dong Q., Han Y., Mao B. -H., Zhang H., Karlsson P. G., Åhlund J., Tai R. -Z., Yu Y., Liu Z. Nucl. Sci. Tech., 2019, 30, 81 doi: 10.1007/s41365-019-0608-0  doi: 10.1007/s41365-019-0608-0

    28. [28]

      Zhang C., Grass M. E., Yu Y., Gaskell K. J., DeCaluwe S. C., Chang R., Jackson G. S., Hussain Z., Bluhm H. Eichhorn B. W., et al. ACS Catal., 2012, 2, 2297 doi: 10.1021/cs3004243  doi: 10.1021/cs3004243

    29. [29]

      Zhang C., Yu Y., Grass M. E., Dejoie C., Ding W., Gaskell K., Jabeen N. Hong Y. P., Shavorskiy A., Bluhm H., et al. J. Am. Chem. Soc., 2013, 135, 11572 doi: 10.1021/ja402604u  doi: 10.1021/ja402604u

    30. [30]

      Zhang C., Grass M. E., McDaniel A. H., DeCaluwe S. C., Gabaly F. E., Liu Z., McCarty K. F., Farrow R. L. Linne M. A., Hussain Z., et al. Nat. Mater., 2010, 9, 944 doi: 10.1038/nmat2851  doi: 10.1038/nmat2851

    31. [31]

      Yu Y., Mao B., Geller A., Chang R., Gaskell K., Liu Z., Eichhorn B. W. Phys. Chem. Chem. Phys., 2014, 16, 11633 doi: 10.1039/C4CP01054J  doi: 10.1039/C4CP01054J

    32. [32]

      Salmeron M. Top. Catal., 2018, 61, 2044 doi: 10.1007/s11244-018-1069-0  doi: 10.1007/s11244-018-1069-0

    33. [33]

      Bukhtiyarov V. I., Kaichev V. V., Prosvirin I. P. Top. Catal., 2005, 32, 3 doi: 10.1007/s11244-005-9254-3  doi: 10.1007/s11244-005-9254-3

    34. [34]

      Cai J., Han Y., Chen S., Crumlin E. J., Yang B., Li Y., Liu Z. J. Phys. Chem. C, 2019, 123, 12176 doi: 10.1021/acs.jpcc.8b11698  doi: 10.1021/acs.jpcc.8b11698

    35. [35]

      Liu Q., Han Y., Cao Y., Li X., Huang W., Yu Y., Yang F., Bao X., Li Y., Liu Z. Acta Phys. -Chim. Sin., 2018, 34, 1366  doi: 10.3866/PKU.WHXB201804161

    36. [36]

      Eren B., Heine C., Bluhm H., Somorjai G. A., Salmeron M. J. Am. Chem. Soc., 2015, 137, 11186 doi: 10.1021/jacs.5b07451  doi: 10.1021/jacs.5b07451

    37. [37]

      Duke A. S., Galhenage R. P., Tenney S. A., Ammal S. C., Heyden A., Sutter P., Chen D. A. J. Phys. Chem. C, 2015, 119, 23082 doi: 10.1021/acs.jpcc.5b07625  doi: 10.1021/acs.jpcc.5b07625

    38. [38]

      Jones T. E., Rocha T. C. R., Knop-Gericke A., Stampfl C., Schlögl R., Piccinin S. Phys. Chem. Chem. Phys., 2015, 17, 9288 doi: 10.1039/C5CP00342C  doi: 10.1039/C5CP00342C

    39. [39]

      Adler S. B. Chem. Rev., 2004, 104, 4791 doi: 10.1021/cr020724o  doi: 10.1021/cr020724o

    40. [40]

      Feng Z. A., El Gabaly F., Ye X., Shen Z. -X., Chueh W. C. Nat. Commun., 2014, 5, 4374 doi: 10.1038/ncomms5374  doi: 10.1038/ncomms5374

    41. [41]

      Chen D., Guan Z., Zhang D., Trotochaud L., Crumlin E., Nemsak S., Bluhm H., Tuller H. L., Chueh W. C. Nat. Catal., 2020, 3, 116 doi: 10.1038/s41929-019-0401-9  doi: 10.1038/s41929-019-0401-9

    42. [42]

      Gopal C. B., Gabaly F. E., McDaniel A. H., Chueh W. C. Adv. Mater., 2016, 28, 4692 doi: 10.1002/adma.201506333  doi: 10.1002/adma.201506333

    43. [43]

      Feng Z. A., Machala M. L., Chueh W. C. Phys. Chem. Chem. Phys., 2015, 17, 12273 doi: 10.1039/C5CP00114E  doi: 10.1039/C5CP00114E

    44. [44]

      Lu Y. -C., Crumlin E. J., Veith G. M., Harding J. R., Mutoro E., Baggetto L., Dudney N. J., Liu Z., Shao-Horn Y. Sci. Rep., 2012, 2, 715 doi: 10.1038/srep00715  doi: 10.1038/srep00715

    45. [45]

      Lu Y. -C., Crumlin E. J., Carney T. J., Baggetto L., Veith G. M., Dudney N. J., Liu Z., Shao-Horn Y. J. Phys. Chem. C, 2013, 117, 25948 doi: 10.1021/jp409453s  doi: 10.1021/jp409453s

    46. [46]

      Itkis D. M., Semenenko D. A., Kataev E. Y., Belova A. I., Neudachina V. S. Sirotina A. P., Hävecker M., Teschner D., Knop-Gericke A., Dudin P., et al. Nano Lett., 2013, 13, 4697 doi: 10.1021/nl4021649  doi: 10.1021/nl4021649

    47. [47]

      Wang J., Bishop S. R., Sun L., Lu Q., Vardar G., Bliem R., Tsvetkov N., Crumlin E. J., Gallet J. -J., Bournel F. J. Mater. Chem. A, 2019, 7, 15233 doi: 10.1039/C9TA03265G  doi: 10.1039/C9TA03265G

    48. [48]

      Lu Q., Vardar G., Jansen M., Bishop S. R., Waluyo I., Tuller H. L., Yildiz B. Chem. Mater., 2018, 30, 2600 doi: 10.1021/acs.chemmater.7b05129  doi: 10.1021/acs.chemmater.7b05129

    49. [49]

      Nenning A., Opitz A. K., Rameshan C., Rameshan R., Blume R., Hävecker M., Knop-Gericke A., Rupprechter G., Klötzer B., Fleig J. J. Phys. Chem. C, 2016, 120, 1461 doi: 10.1021/acs.jpcc.5b08596  doi: 10.1021/acs.jpcc.5b08596

    50. [50]

      Katsaounis A., Teschner D., Zafeiratos S. Top. Catal., 2018, 61, 2142 doi: 10.1007/s11244-018-1073-4  doi: 10.1007/s11244-018-1073-4

    51. [51]

      Espinós J. P., Rico V. J., González-Cobos J., Sánchez-Valencia J. R., Pérez-Dieste V., Escudero C., de Lucas-Consuegra A., González-Elipe A. R. J. Catal., 2018, 358, 27 doi: 10.1016/j.jcat.2017.11.027  doi: 10.1016/j.jcat.2017.11.027

    52. [52]

      Mao B., Dai Y., Cai J., Li Q., Jiang C., Li Y., Xie J., Liu Z. Top. Catal., 2018, 61, 2123 doi: 10.1007/s11244-018-1066-3  doi: 10.1007/s11244-018-1066-3

    53. [53]

      Papaefthimiou V., Shishkin M., Niakolas D. K., Athanasiou M. Law Y. T., Arrigo R., Teschner D., Hävecker M., Knop-Gericke A., Schlögl R., et al. Adv. Energy Mater., 2013, 3, 762 doi: 10.1002/aenm.201200727  doi: 10.1002/aenm.201200727

    54. [54]

      Wu L. -W., Liu C., Han Y., Yu Y., Liu Z., Huang Y. -F. J. Chem. Phys., 2023, 158, 151102 doi: 10.1063/5.0138672  doi: 10.1063/5.0138672

    55. [55]

      Lin W., Bao W., Cai J., Cai X., Zhao H., Zhang Y., Deng Y., Yang S., Zhou Z., Liu Z. Appl. Surf. Sci., 2023, 615: 156278 doi: 10.1016/j.apsusc.2022.156278  doi: 10.1016/j.apsusc.2022.156278

    56. [56]

      Ling Y., Luo J., Ran Y., Cao Y., Huang W., Cai J., Liu Z., Li W. -X., Yang F., Bao X. J. Energy Chem., 2022, 72, 258 doi: 10.1016/j.jechem.2022.03.009  doi: 10.1016/j.jechem.2022.03.009

    57. [57]

      Yi Z., Lin L., Chang Y., Luo X., Gao J., Mu R., Ning Y., Fu Q., Bao X. Proc. Natl. Acad. Sci. U. S. A., 2022, 119, e2120716119 doi: 10.1073/pnas.2120716119  doi: 10.1073/pnas.2120716119

    58. [58]

      Wang C., Meng C., Li S., Zhang G., Ning Y., Fu Q. J. Am. Chem. Soc., 2021, 143, 17843 doi: 10.1021/jacs.1c09429  doi: 10.1021/jacs.1c09429

    59. [59]

      Li R., Xu X., Zhu B. Li X. -Y., Ning Y., Mu R., Du P., Li M., Wang H., Liang J.,et al. Nat. Commun., 2021, 12, 1406 doi: 10.1038/s41467-021-21552-2  doi: 10.1038/s41467-021-21552-2

    60. [60]

      Zhang X., Zhang M., Deng Y., Xu M., Artiglia L., Wen W., Gao R., Chen B., Yao S., Zhang X., et al. Nature, 2021, 589, 396 doi: 10.1038/s41586-020-03130-6  doi: 10.1038/s41586-020-03130-6

    61. [61]

      Yao S., Lin L., Liao W., Rui N., Li N., Liu Z., Cen J., Zhang F., Li X., Song L.,et al. ACS Catal., 2019, 9, 9087 doi: 10.1021/acscatal.9b01945  doi: 10.1021/acscatal.9b01945

    62. [62]

      Zakharchenko T. K., Belova A. I., Frolov A. S., Kapitanova O. O., Velasco-Velez J. -J., Knop-Gericke A., Vyalikh D., Itkis D. M., Yashina L. V. Top. Catal., 2018, 61, 2114 doi: 10.1007/s11244-018-1072-5  doi: 10.1007/s11244-018-1072-5

    63. [63]

      Jiang C. G., Zhang H., Li P., Zhan X. Y., Liu Z. J., Wang L., Mao B. H., Li Q. T., Wen Z. Y. Peng Z. Q., et al. Adv. Funct. Mater., 2022, 32, 2202518 doi: 10.1002/adfm.202202518  doi: 10.1002/adfm.202202518

    64. [64]

      Zhang P., Shou H., Xia Y., Wang C., Wei S., Xu W., Chen Y., Liu Z., Guo X., Zhu K., et al. Nano Lett., 2023, 23, 1401 doi: 10.1021/acs.nanolett.2c04712  doi: 10.1021/acs.nanolett.2c04712

    65. [65]

      Kattel S., Yu W., Yang X., Yan B., Huang Y., Wan W., Liu P., Chen J. G. Angew. Chem. Int. Ed., 2016, 55, 7968 doi: 10.1002/anie.201601661  doi: 10.1002/anie.201601661

    66. [66]

      Ferrah D., Haines A. R., Galhenage R. P., Bruce J. P., Babore A. D., Hunt A., Waluyo I., Hemminger J. C. ACS Catal., 2019, 9, 6783 doi: 10.1021/acscatal.9b01419  doi: 10.1021/acscatal.9b01419

    67. [67]

      Liu C. Y., Dong Q., Han Y., Zang Y. J., Zhang H., Xie X. M., Yu Y., Liu Z. Chin. J. Catal., 2022, 43, 2858 doi: 10.1016/S1872-2067(22)64092-0  doi: 10.1016/S1872-2067(22)64092-0

    68. [68]

      Qian J., Baskin A., Liu Z., Prendergast D., Crumlin E. J. J. Chem. Phys., 2020, 153, 040901 doi: 10.1063/5.0006242  doi: 10.1063/5.0006242

    69. [69]

      Tanuma S., Powell C. J., Penn D. R. Surf. Interface Anal., 2011, 43, 689 doi: 10.1002/sia.3522  doi: 10.1002/sia.3522

    70. [70]

      Crumlin E. J., Bluhm H., Liu Z. J. Electron Spectrosc. Relat. Phenom., 2013, 190, 84 doi: 10.1016/j.elspec.2013.03.002  doi: 10.1016/j.elspec.2013.03.002

    71. [71]

      Temperton R. H., Kawde A., Eriksson A., Wang W., Kokkonen E., Jones R. Gericke S. M., Zhu S., Quevedo W., Seidel R., et. al. J. Chem. Phys., 2022, 157, 244701 doi: 10.1063/5.0130222  doi: 10.1063/5.0130222

    72. [72]

      Stoerzinger K. A., Favaro M., Ross P. N., Hussain Z., Liu Z., Yano J., Crumlin E. J. Top. Catal., 2018, 61, 2152 doi: 10.1007/s11244-018-1063-6  doi: 10.1007/s11244-018-1063-6

    73. [73]

      Kolmakov A., Dikin D. A., Cote L. J., Huang J., Abyaneh M. K., Amati M., Gregoratti L., Günther S., Kiskinova M. Nat. Nanotechnol., 2011, 6, 651 doi: 10.1038/nnano.2011.130  doi: 10.1038/nnano.2011.130

    74. [74]

      Velasco-Vélez J. J., Pfeifer V., Hävecker M., Weatherup R. S., Arrigo R. Chuang C. -H., Stotz E., Weinberg G., Salmeron M., Schlögl R.,et al. Angew. Chem. Int. Ed., 2015, 54, 14554 doi: 10.1002/anie.201506044  doi: 10.1002/anie.201506044

    75. [75]

      Cao D., Ye K. Moses O. A., Xu W., Liu D., Song P., Wu C., Wang C., Ding S., Chen S., et al. ACS Nano, 2019, 13, 11733 doi: 10.1021/acsnano.9b05714  doi: 10.1021/acsnano.9b05714

    76. [76]

      Ali-Löytty H., Louie M. W., Singh M. R., Li L., Sanchez Casalongue H. G., Ogasawara H., Crumlin E. J., Liu Z. Bell A. T., Nilsson A., et al. J. Phys. Chem. C, 2016, 120, 2247 doi: 10.1021/acs.jpcc.5b10931  doi: 10.1021/acs.jpcc.5b10931

    77. [77]

      Favaro M., Valero-Vidal C., Eichhorn J., Toma F. M., Ross P. N., Yano J., Liu Z., Crumlin E. J. J. Mater. Chem. A, 2017, 5, 11634 doi: 10.1039/c7ta00409e  doi: 10.1039/c7ta00409e

    78. [78]

      Han Y., Axnanda S., Crumlin E. J., Chang R., Mao B., Hussain Z., Ross P. N., Li Y., Liu Z. J. Phys. Chem. B, 2018, 122, 666 doi: 10.1021/acs.jpcb.7b05982  doi: 10.1021/acs.jpcb.7b05982

    79. [79]

      Salmeron M., Schlögl R. Surf. Sci. Rep., 2008, 63, 169 doi: 10.1016/j.surfrep.2008.01.001  doi: 10.1016/j.surfrep.2008.01.001

    80. [80]

      Masuda T., Yoshikawa H., Noguchi H., Kawasaki T., Kobata M., Kobayashi K., Uosaki K. Appl. Phys. Lett., 2013, 103, 111101 doi: 10.1063/1.4821180  doi: 10.1063/1.4821180

    81. [81]

      Gerischer H. J. Electroanal. Chem. Interfacial Electrochem., 1975, 58, 263 doi: 10.1016/S0022-0728(75)80359-7  doi: 10.1016/S0022-0728(75)80359-7

    82. [82]

      Heller A. Acc. Chem. Res., 1981, 14, 154 doi: 10.1021/ar00065a004  doi: 10.1021/ar00065a004

    83. [83]

      Barroso M., Pendlebury S. R., Cowan A. J., Durrant J. R. Chem. Sci., 2013, 4, 2724 doi: 10.1039/C3SC50496D  doi: 10.1039/C3SC50496D

    84. [84]

      Le Formal F., Pendlebury S. R., Cornuz M., Tilley S. D., Grätzel M., Durrant J. R. J. Am. Chem. Soc., 2014, 136, 2564 doi: 10.1021/ja412058x  doi: 10.1021/ja412058x

    85. [85]

      Klahr B., Hamann T. J. Phys. Chem. C, 2014, 118, 10393 doi: 10.1021/jp500543z  doi: 10.1021/jp500543z

    86. [86]

      Lichterman M. F., Hu S., Richter M. H., Crumlin E. J., Axnanda S., Favaro M., Drisdell W., Hussain Z., Mayer T. Brunschwig B. S.,et al. Energy Environ. Sci., 2015, 8, 2409 doi: 10.1039/C5EE01014D  doi: 10.1039/C5EE01014D

    87. [87]

      Shavorskiy A., Ye X., Karslıoğlu O., Poletayev A. D., Hartl M., Zegkinoglou I., Trotochaud L., Nemšák S., Schneider C. M. Crumlin E. J., et al. J. Phys. Chem. Lett., 2017, 8, 5579 doi: 10.1021/acs.jpclett.7b02548  doi: 10.1021/acs.jpclett.7b02548

    88. [88]

      Erickson E. M., Markevich E., Salitra G., Sharon D., Hirshberg D., de la Llave E., Shterenberg I., Rosenman A., Frimer A., Aurbach D. J. Electrochem. Soc., 2015, 162, A2424 doi: 10.1149/2.0051514jes  doi: 10.1149/2.0051514jes

    89. [89]

      Kim D. Y., Lim Y., Roy B., Ryu Y. -G., Lee S. -S. Phys. Chem. Chem. Phys., 2014, 16, 25789 doi: 10.1039/C4CP01259C  doi: 10.1039/C4CP01259C

    90. [90]

      Maibach J., Källquist I., Andersson M., Urpelainen S., Edström K., Rensmo H., Siegbahn H., Hahlin M. Nat. Commun., 2019, 10, 3080 doi: 10.1038/s41467-019-10803-y  doi: 10.1038/s41467-019-10803-y

    91. [91]

      Lee S., Meyer T. L., Park S., Egami T., Lee H. N. Appl. Phys. Lett., 2014, 105, 223515. doi: 10.1063/1.4903348  doi: 10.1063/1.4903348

    92. [92]

      Qazilbash M. M., Brehm M., Chae B. G., Ho P. C., Andreev G. O., Kim B. J., Yun S. J., Balatsky A. V. Maple M. B., Keilmann F., et al. Science, 2007, 318, 1750 doi: 10.1126/science.1150124  doi: 10.1126/science.1150124

    93. [93]

      Lu Q., Bishop S. R., Lee D., Lee S., Bluhm H., Tuller H. L., Lee H. N., Yildiz B. Adv. Funct. Mater., 2018, 28, 1803024 doi: 10.1002/adfm.201803024  doi: 10.1002/adfm.201803024

    94. [94]

      Connell J. G., Zorko M., Agarwal G., Yang M., Liao C., Assary R. S., Strmcnik D., Markovic N. M. ACS Appl. Mater. Interfaces, 2020, 12, 36137 doi: 10.1021/acsami.0c09404  doi: 10.1021/acsami.0c09404

    95. [95]

      Jay R., Tomich A. W., Zhang J., Zhao Y., De Gorostiza A., Lavallo V., Guo J. ACS Appl. Mater. Interfaces, 2019, 11, 11414 doi: 10.1021/acsami.9b00037  doi: 10.1021/acsami.9b00037

    96. [96]

      Rajput N. N., Qu X., Sa N., Burrell A. K., Persson K. A. J. Am. Chem. Soc., 2015, 137, 3411 doi: 10.1021/jacs.5b01004  doi: 10.1021/jacs.5b01004

    97. [97]

      Connell J. G., Genorio B., Lopes P. P., Strmcnik D., Stamenkovic V. R., Markovic N. M. Chem. Mater., 2016, 28, 8268 doi: 10.1021/acs.chemmater.6b03227  doi: 10.1021/acs.chemmater.6b03227

    98. [98]

      Yu Y., Baskin A., Valero-Vidal C., Hahn N. T., Liu Q., Zavadil K. R., Eichhorn B. W., Prendergast D., Crumlin E. J. Chem. Mater., 2017, 29, 8504 doi: 10.1021/acs.chemmater.7b03404  doi: 10.1021/acs.chemmater.7b03404

    99. [99]

      Toney M. F., Howard J. N., Richer J., Borges G. L., Gordon J. G., Melroy O. R., Wiesler D. G., Yee D., Sorensen L. B. Nature, 1994, 368, 444 doi: 10.1038/368444a0  doi: 10.1038/368444a0

    100. [100]

      Sparreboom W., van den Berg A., Eijkel J. C. T. Nat. Nanotechnol., 2009, 4, 713 doi: 10.1038/nnano.2009.332  doi: 10.1038/nnano.2009.332

    101. [101]

      Favaro M., Jeong B., Ross P. N., Yano J., Hussain Z., Liu Z., Crumlin E. J. Nat. Commun., 2016, 7, 12695 doi: 10.1038/ncomms12695  doi: 10.1038/ncomms12695

    102. [102]

      Brown M. A., Redondo A. B., Sterrer M., Winter B., Pacchioni G., Abbas Z., van Bokhoven J. A. Nano Lett., 2013, 13, 5403 doi: 10.1021/nl402957y  doi: 10.1021/nl402957y

    103. [103]

      Brown M. A., Goel A., Abbas Z. 2016, 55, 3790. doi: 10.1002/anie.201512025

    104. [104]

      Li X., Zhang H., Ran Y., Ye M., Yang F., Han Y., Liu Z. J. Phys. Chem. Lett., 2022, 13, 5677 doi: 10.1021/acs.jpclett.2c00605  doi: 10.1021/acs.jpclett.2c00605

    105. [105]

      Dai K., Wu J., Zhuo Z., Li Q., Sallis S., Mao J., Ai G., Sun C., Li Z. Gent W. E., et al. Joule, 2019, 3, 518 doi: 10.1016/j.joule.2018.11.014  doi: 10.1016/j.joule.2018.11.014

    106. [106]

      Tamenori Y., Morita M., Nakamura T. J. Synchrotron Radiat., 2011, 18, 747 doi: 10.1107/S0909049511027531  doi: 10.1107/S0909049511027531

    107. [107]

      Meng X., Guo Z., Wang Y., Zhang H., Han Y., Zhao G., Liu Z., Tai R. J. Synchrotron Radiat., 2019, 26, 543 doi: 10.1107/S1600577518018179  doi: 10.1107/S1600577518018179

    108. [108]

      Zhang H., Li X., Wang W., Mao B., Han Y., Yu Y., Liu Z. Rev. Sci. Instrum., 2020, 91, 123108 doi: 10.1063/5.0020469  doi: 10.1063/5.0020469

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Xianglan Zhang Jingwen Ma Junya Cao Weibin Cai Zhibing Chang Jinchang Liu . “价值引领,固基强能”的化工原理教改与实践. University Chemistry, 2025, 40(8): 11-17. doi: 10.12461/PKU.DXHX202410041

    7. [7]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    8. [8]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    9. [9]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    10. [10]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    14. [14]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

Metrics
  • PDF Downloads(2)
  • Abstract views(213)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return