Citation:
Xiutao Xu, Chunfeng Shao, Jinfeng Zhang, Zhongliao Wang, Kai Dai. Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 230903.
doi:
10.3866/PKU.WHXB202309031
-
In the pursuit of efficient photocatalytic carbon dioxide (CO2) conversion, the use of artificial semiconductors powered by solar energy offers great potential for simulating natural carbon cycling. However, the efficiency of photocatalytic CO2 conversion remains suboptimal, primarily due to inadequate separation of photogenerated charges, which hinders the performance of semiconductor-based CO2 reduction. Consequently, recent research efforts have focused on identifying ideal materials for CO2 photocatalytic conversion. Among the candidate materials, the structure of Bi2MoO6 consists of alternating layers of (Bi2O2)2+ and perovskite-like (MoO4)2- layers with shared oxygen atoms between them. This inherent charge distribution within Bi2MoO6 creates an inhomogeneous electric field, facilitating the efficient separation of photogenerated charge carriers. The morphology and structure of a catalyst significantly influence the rate of recombination of photogenerated charge carriers. Research has shown that ultrathin Bi2MoO6 nanosheets, compared to other 2D and 3D structures of Bi2MoO6 materials, possess longer fluorescence lifetimes, providing more opportunities for the separation of photogenerated charge carriers. However, Bi2MoO6 still exhibits relatively low catalytic efficiency due to its insufficiently negative conduction band position (ranging between -0.2 and -0.4 V). To address this limitation, a viable strategy is to load a semiconductor with a more negatively positioned conduction band onto Bi2MoO6, creating an S-scheme heterojunction. In this study, Bi2MoO6 nanosheets were synthesized through a hydrothermal method, and simultaneously, CeO2 nanoparticles were grown on their surfaces, forming an S-scheme heterojunction modified with Ce3+/Ce4+ ion bridges. Time-resolved photoluminescence (TRPL) and photoelectrochemical tests demonstrated the enhanced charge separation effect of this heterojunction. In situ X-ray photoelectron spectroscopy (In situ XPS) analysis and theoretical calculations further confirmed that photogenerated electrons follow an S-scheme mechanism, transferring from Bi2MoO6 to CeO2. Experimental results revealed that the photocatalytic CO2 reduction efficiencies of CeO2/Bi2MoO6, Bi2MoO6, and CeO2 were 65.3, 14.8, and 1.2 μmol·g-1·h-1, respectively. Compared to pure Bi2MoO6, the catalytic efficiency of the CeO2/Bi2MoO6 composite catalyst for CO2 photocatalytic reduction to CO improved by a factor of 3.12. This enhancement in photocatalytic CO2 conversion performance can be attributed to the synergistic interaction between the S-scheme heterojunction and Ce3+/Ce4+ ion bridging, resulting in enhanced light absorption, efficient charge separation, and redox capabilities of the composite catalyst. This study offers valuable insights into the rational design and construction of novel S-scheme heterojunction photocatalysts.
-
-
-
[1]
(1) Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2022,5, 4187. doi: 10.1016/j.matt.2022.09.009
-
[2]
(2) Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.; Wang, L. Chin. J. Catal. 2022, 43, 586. doi: 10.1016/S1872-2067(21)63925-6
-
[3]
(3) Wang, G.; Quan, Y.; Yang, K.; Jin, Z. J. Mater. Sci. Technol. 2022, 121, 28. doi: 10.1016/j.jmst.2021.11.07
-
[4]
(4) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
-
[5]
(5) Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Ghamdi, A. A. A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst. 2021, 6, 2100264. doi: 10.1002/adsu.202100264
-
[6]
(6) Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T. M.; Morikawa, T.; Kudo, A. J. Am. Chem. Soc. 2022, 144, 2323. doi: 10.1021/jacs.1c12636
-
[7]
(7) Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Sol. RRL 2021, 5, 2100788. doi: 10.1002/solr.202100788
-
[8]
(8) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023,35, 2300643. doi: 10.1002/adma.202300643
-
[9]
(9) Yu, J.; Li, X.; Jin, Z.; Tang, H.; Liu, E. Chin. J. Struct. Chem. 2022, 41, 2206001. doi: 10.14102/j.cnki.0254-5861.2022-0158
-
[10]
(10) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022,41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
-
[11]
(11) Yi, J.; Mo, H.; Zhang, B.; Song, J.; Liu, D.; Zhuo, G. Sep. Purif. Technol. 2019, 211, 474. doi: 10.1016/j.seppur.2018.10.022
-
[12]
(12) Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.-H. Chem. Eng. J. 2022,444, 136609. doi: 10.1016/j.cej.2022.136609
-
[13]
(13) Bonchio, M.; Bonin, J.; Ishitani, O.; Lu, T.-B.; Morikawa, T.; Morris, A. J.; Reisner, E.; Sarkar, D.; Toma, F. M.; Robert, M. Nat. Catal. 2023,6, 657. doi: 10.1038/s41929-023-00992-7
-
[14]
(14) Bohra, D.; Ledezma-Yanez, I.; Li, G.; de Jong, W.; Pidko, E. A.; Smith, W. A. Angew. Chem. Int. Ed. 2019, 58, 1345. doi: 10.1002/anie.201811667
-
[15]
(15) He, W.; Wei, Y.; Xiong, J.; Tang, Z.; Wang, Y.; Wang, X.; Xu, H.; Zhang, X.; Yu, X.; Zhao, Z.; et al. J. Energy Chem. 2023, 80, 361. doi: 10.1016/j.jechem.2023.01.028
-
[16]
(16) Zhu, X.; Wang, Z.; Zhong, K.; Li, Q.; Ding, P.; Feng, Z.; Yang, J.; Du, Y.; Song, Y.; Hua, Y.; et al. Chem. Eng. J. 2022, 429, 132204. doi: 10.1016/j.cej.2021.132204
-
[17]
(17) He, W.; Wei, Y.; Xiong, J.; Tang, Z.; Song, W.; Liu, J.; Zhao, Z. Chem. Eng. J. 2022, 433, 133540. doi: 10.1016/j.cej.2021.133540
-
[18]
(18) Zhang, Y.; Zhi, X.; Harmer, J. R.; Xu, H.; Davey, K.; Ran, J.; Qiao, S. Z. Angew. Chem. Int. Ed. 2022, 61, e202212355. doi: 10.1002/anie.202212355
-
[19]
(19) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150
-
[20]
(20) Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi: 10.14102/j.cnki.0254-5861.2022-0096
-
[21]
-
[22]
(22) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012
-
[23]
(23) Wang, Y.; Wang, F.; Song, Q.; Xin, Q.; Xu, S.; Xu, J. J. Am. Chem. Soc. 2013, 135, 1506. doi: 10.1021/ja310498c
-
[24]
(24) Yang, W.; Wang, X.; Song, S.; Zhang, H. Chem 2019, 5, 1743. doi: 10.1016/j.chempr.2019.04.009
-
[25]
(25) Dong, P.; Zhang, A.; Cheng, T.; Pan, J.; Song, J.; Zhang, L.; Guan, R.; Xi, X.; Zhang, J. Chin. J. Catal. 2022, 43, 2592. doi: 10.1016/S1872‐2067(22)64094‐4
-
[26]
(26) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022,43, 2652. doi: 10.1016/S1872‐2067(22)64106-8
-
[27]
(27) Wang, X.; Zhang, Y.; Song, S.; Yang, X.; Wang, Z.; Jin, R.; Zhang, H. Angew. Chem. Int. Ed. 2016, 128, 4618. doi: 10.1002/ange.201600625
-
[28]
(28) Zhang, Z.; Wang, Y.; Lu, J.; Zhang, C.; Wang, M.; Li, M.; Liu, X.; Wang, F. ACS Catal. 2016, 6, 8248. doi: 10.1021/acscatal.6b02134
-
[29]
(29) Muravev, V.; Parastaev, A.; Bosch, Y. v. d.; Ligt, B.; Claes, N.; Bals, S.; Kosinov, N.; Hensen, E. J. M. Science 2023, 380, 1174. doi: 10.1126/science.adf9082
-
[30]
(30) Song, S.; Liu, X.; Li, J.; Pan, J.; Wang, F.; Xing, Y.; Wang, X.; Liu, X.; Zhang, H. Adv. Mater. 2017, 29, 1700495. doi: 10.1002/adma.201700495
-
[31]
(31) Wang, D.; Yin, F.-X.; Cheng, B.; Xia, Y.; Yu, J.; Ho, W. Rare Met. 2021,40, 2369. doi: 10.1007/s12598-021-01731-2
-
[32]
(32) Wang, X.; Liu, D.; Song, S.; Zhang, H. J. Am. Chem. Soc. 2013,135, 15864. doi: 10.1021/ja4069134
-
[33]
(33) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022,34, 2203225. doi: 10.1002/adma.202203225
-
[34]
(34) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023,49, 42. doi: 10.1016/s1872-2067(23)64444-4
-
[35]
(35) Yang, T.; Deng, P.; Wang, L.; Hu, J.; Liu, Q.; Tang, H. Chin. J. Struct. Chem. 2022, 41, 2206023. doi: 10.14102/j.cnki.0254-5861.2022-0062
-
[36]
(36) Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022,43, 226. doi: 10.1016/s1872-2067(21)63832-9
-
[37]
(37) Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Appl. Catal. B-Environ. 2019, 250, 313. doi: 10.1016/j.apcatb.2019.03.055
-
[38]
(38) Huang, J.; Li, C.; Hu, X.; Fan, J.; Zhao, B.; Liu, E. Chin. J. Struct. Chem. 2022,41, 2206062. doi: 10.14102/j.cnki.0254-5861.2021-0055
-
[39]
-
[40]
(40) Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; et al. Chin. J. Struct. Chem. 2022, 41, 2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103
-
[41]
-
[42]
(42) Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2020,41, 41. doi: 10.1016/s1872-2067(19)63389-9
-
[43]
(43) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046
-
[44]
(44) Liang, Z.; Shen, R.; Zhang, P.; Li, Y.; Li, N.; Li, X. Chin. J. Catal.2022, 43, 2581. doi: 10.1016/S1872-2067(22)64130-5
-
[45]
(45) Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst. 2023,7, 2100498. doi: 10.1002/adsu.202100498
-
[46]
(46) Li, X.; Zhang, J.; Huo, Y.; Dai, K.; Li, S.; Chen, S. Appl. Catal. B-Environ. 2021, 280, 119452. doi: 10.1016/j.apcatb.2020.119452
-
[47]
(47) Li, X.; Luo, Q.; Han, L.; Deng, F.; Yang, Y.; Dong, F. J. Mater. Sci. Technol. 2022, 114, 222. doi: 10.1016/j.jmst.2021.10.030
-
[48]
(48) Yang, G.; Liang, Y.; Zheng, H.; Yang, J.; Guo, S.; Yu, H. Sep. Purif. Technol. 2023, 309, 123084. doi: 10.1016/j.seppur.2022.123084
-
[49]
(49) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023,165, 187. doi: 10.1016/j.jmst.2023.03.067
-
[50]
-
[51]
(51) Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/s1872-2067(20)63784-6
-
[52]
-
[53]
(53) Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029
-
[54]
(54) Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. J. Mater. Sci. Technol. 2022, 124, 164. doi: 10.1016/j.jmst.2022.01.030
-
[55]
(55) Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/S1872‐-2067(21)63883-4
-
[56]
(56) Teramura, K.; Iguchi, S.; Mizuno, Y.; Shishido, T.; Tanaka, T. Angew. Chem. Int. Ed. 2012, 51, 8008. doi: 10.1002/anie.201201847
-
[57]
(57) Vu, N.-N.; Kaliaguine, S.; Do, T.-O. ACS Appl. Energy Mater. 2020,3, 6422. doi: 10.1021/acsaem.0c00656
-
[58]
-
[59]
(59) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470
-
[60]
(60) Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013
-
[61]
(61) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022,124, 171. doi: 10.1016/j.jmst.2022.02.016
-
[62]
-
[63]
(63) Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045
-
[64]
(64) Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124
-
[65]
(65) Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016
-
[66]
(66) Zhang, L.; Yang, Y.; Li, Y.; Wu, J.; Wu, S.; Tan, X.; Hu, Q. Chin. J. Catal. 2022, 43, 379. doi: 10.1016/s1872-2067(21)63816-0
-
[67]
(67) Xu, X.; Huang, Y.; Dai, K.; Wang, Z.; Zhang, J. Sep. Purif. Technol. 2023,317, 123887. doi: 10.1016/j.seppur.2023.123887
-
[68]
(68) Chen, Y.; Zhong, W.; Chen, F.; Wang, P.; Fan, J.; Yu, H. J. Mater. Sci. Technol. 2022, 121, 19. doi: 10.1016/j.jmst.2021.12.051
-
[69]
(69) Zhang, Z.; Wang, Y.; Lu, J.; Zhang, J.; Li, M.; Liu, X.; Wang, F. ACS Catal. 2018, 8, 2635. doi: 10.1021/acscatal.7b04500
-
[70]
(70) Cao, Y.; Guo, L.; Dan, M.; Doronkin, D. E.; Han, C.; Rao, Z.; Liu, Y.; Meng, J.; Huang, Z.; Zheng, K.; et al. Nat. Commun. 2021, 12, 1675. doi: 10.1038/s41467-021-21925-7
-
[71]
(71) Wu, X.; Li, Y.; Zhang, G.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2019, 141, 5267. doi: 10.1021/jacs.8b12928
-
[72]
(72) Feng, X.; Zheng, R.; Gao, C.; Wei, W.; Peng, J.; Wang, R.; Yang, S.; Zou, W.; Wu, X.; Ji, Y.; et al. Nat. Commun. 2022, 13, 2146. doi: 10.1038/s41467-022-29671-0
-
[73]
(73) Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi: 10.1016/j.jmst.2022.02.012
-
[1]
-
-
-
[1]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[2]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[3]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[4]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[5]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[6]
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336
-
[7]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[8]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[9]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[10]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[11]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[12]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[13]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[14]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[15]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[16]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[17]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[18]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[19]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[20]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(564)
- HTML views(69)